Bottom–Up Inventory of Residential Combustion Emissions in Poland for National Air Quality Modelling: Current Status and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. CED Emission Inventory
2.2. EMEP and CAMS-REG Emission Inventories
3. Results
4. Discussion
Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Struzewska, J.; Zdunek, M.; Kaminski, J.W.; Łobocki, L.; Porebska, M.; Jefimow, M.; Gawuc, L. Evaluation of the GEM-AQ Model in the Context of the AQMEII Phase 1 Project. Atmos. Chem. Phys. 2015, 15, 3971–3990. [Google Scholar] [CrossRef] [Green Version]
- Szymankiewicz, K.; Kaminski, J.W.; Struzewska, J. Interannual Variability of Tropospheric NO2 Column over Central Europe—Observations from SCIAMACHY and GEM-AQ Model Simulations. Acta Geophys. 2014, 62, 915–929. [Google Scholar] [CrossRef]
- Solazzo, E.; Bianconi, R.; Hogrefe, C.; Curci, G.; Tuccella, P.; Alyuz, U.; Balzarini, A.; Baró, R.; Bellasio, R.; Bieser, J.; et al. Evaluation and Error Apportionment of an Ensemble of Atmospheric Chemistry Transport Modeling Systems: Multivariable Temporal and Spatial Breakdown. Atmos. Chem. Phys. 2017, 17, 3001–3054. [Google Scholar] [CrossRef] [Green Version]
- Dennis, R.; Fox, T.; Fuentes, M.; Gilliland, A.; Hanna, S.; Hogrefe, C.; Irwin, J.; Rao, S.T.; Scheffe, R.; Schere, K.; et al. A Framework for Evaluating Regional-Scale Numerical Photochemical Modeling Systems. Environ. Fluid Mech. 2010, 10, 471–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huijnen, V.; Eskes, H.J.; Poupkou, A.; Elbern, H.; Boersma, K.F.; Foret, G.; Sofiev, M.; Valdebenito, A.; Flemming, J.; Stein, O.; et al. Comparison of OMI NO2 Tropospheric Columns with an Ensemble of Global and European Regional Air Quality Models. Atmos. Chem. Phys. 2010, 10, 3273–3296. [Google Scholar] [CrossRef] [Green Version]
- Russell, A.; Dennis, R. NARSTO Critical Review of Photochemical Models and Modeling. Atmos. Environ. 2000, 34, 2283–2324. [Google Scholar] [CrossRef]
- Clappier, A.; Thunis, P. A Probabilistic Approach to Screen and Improve Emission Inventories. Atmos. Environ. 2020, 242, 117831. [Google Scholar] [CrossRef]
- Bond, T.C.; Streets, D.G.; Yarber, K.F.; Nelson, S.M.; Woo, J.-H.; Klimont, Z. A Technology-Based Global Inventory of Black and Organic Carbon Emissions from Combustion. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Kannari, A.; Tonooka, Y.; Baba, T.; Murano, K. Development of Multiple-Species 1km×1km Resolution Hourly Basis Emissions Inventory for Japan. Atmos. Environ. 2007, 41, 3428–3439. [Google Scholar] [CrossRef]
- Kara, M.; Mangir, N.; Bayram, A.; Elbir, T. A Spatially High Resolution and Activity Based Emissions Inventory for the Metropolitan Area of Istanbul, Turkey. Aerosol Air Qual. Res. 2014, 14, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Aparicio, S.; Grythe, H.; Vogt, M.; Pierce, M.; Vallejo, I. Webcrawling and Machine Learning as a New Approach for the Spatial Distribution of Atmospheric Emissions. PLoS ONE 2018, 13, e0200650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.; Liu, L.; Yin, S.; Zhang, J.; Wang, K.; Zhang, R. County-Level Emission Inventory for Rural Residential Combustion and Emission Reduction Potential by Technology Optimization: A Case Study of Henan, China. Atmos. Environ. 2020, 228, 117436. [Google Scholar] [CrossRef]
- Huy, L.N.; Oanh, N.T.K.; Phuc, N.H.; Nhung, C.P. Survey-Based Inventory for Atmospheric Emissions from Residential Combustion in Vietnam. Environ. Sci. Pollut. Res. 2021, 28, 10678–10695. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Li, Q.; Wang, S.; Chen, J.; Ding, D.; Zhao, B.; Yang, D.; Hao, J. Pollutant Emissions from Residential Combustion and Reduction Strategies Estimated via a Village-Based Emission Inventory in Beijing. Environ. Pollut. 2018, 238, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, D.; Lang, J.; Zi, T.; Chen, D.; Zhang, Y.; Li, S.; Jiao, Y.; Cheng, S. Improved Estimation of Rural Residential Coal Emissions Considering Coal-Stove Combinations and Combustion Modes. Environ. Pollut. 2021, 272, 115558. [Google Scholar] [CrossRef] [PubMed]
- Pastorello, C.; Caserini, S.; Galante, S.; Dilara, P.; Galletti, F. Importance of Activity Data for Improving the Residential Wood Combustion Emission Inventory at Regional Level. Atmos. Environ. 2011, 45, 2869–2876. [Google Scholar] [CrossRef]
- Denier van der Gon, H.A.C.; Bergström, R.; Fountoukis, C.; Johansson, C.; Pandis, S.N.; Simpson, D.; Visschedijk, A.J.H. Particulate Emissions from Residential Wood Combustion in Europe—Revised Estimates and an Evaluation. Atmos. Chem. Phys. 2015, 15, 6503–6519. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, M.; Asmi, A.; Lappalainen, H.K.; Baltensperger, U.; Brenguier, J.-L.; Facchini, M.C.; Hansson, H.-C.; Hov, Ø.; O’Dowd, C.D.; Pöschl, U.; et al. General Overview: European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI)—Integrating Aerosol Research from Nano to Global Scales. Atmos. Chem. Phys. 2011, 11, 13061–13143. [Google Scholar] [CrossRef] [Green Version]
- Fagbeja, M.; Jennifer, H.; Tim, C.; James, L.; Joseph, A. Residential-Source Emission Inventory for the Niger Delta—A Methodological Approach. J. Sustain. Dev. 2013, 6, 98. [Google Scholar] [CrossRef]
- López-Aparicio, S.; Vogt, M.; Schneider, P.; Kahila-Tani, M.; Broberg, A. Public Participation GIS for Improving Wood Burning Emissions from Residential Heating and Urban Environmental Management. J. Environ. Manag. 2017, 191, 179–188. [Google Scholar] [CrossRef]
- Kukkonen, J.; López-Aparicio, S.; Segersson, D.; Geels, C.; Kangas, L.; Kauhaniemi, M.; Maragkidou, A.; Jensen, A.; Assmuth, T.; Karppinen, A.; et al. The Influence of Residential Wood Combustion on the Concentrations of PM2.5 in Four Nordic Cities. Atmos. Chem. Phys. 2020, 20, 4333–4365. [Google Scholar] [CrossRef] [Green Version]
- Glasius, M.; Ketzel, M.; Wåhlin, P.; Jensen, B.; Mønster, J.; Berkowicz, R.; Palmgren, F. Impact of Wood Combustion on Particle Levels in a Residential Area in Denmark. Atmos. Environ. 2006, 40, 7115–7124. [Google Scholar] [CrossRef]
- Plejdrup, M.S.; Nielsen, O.-K.; Brandt, J. Spatial Emission Modelling for Residential Wood Combustion in Denmark. Atmos. Environ. 2016, 144, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, J.W.; Neary, L.; Struzewska, J.; McConnell, J.C.; Lupu, A.; Jarosz, J.; Toyota, K.; Gong, S.L.; Côté, J.; Liu, X.; et al. GEM-AQ, an on-Line Global Multiscale Chemical Weather Modelling System: Model Description and Evaluation of Gas Phase Chemistry Processes. Atmos. Chem. Phys. 2008, 8, 3255–3281. [Google Scholar] [CrossRef] [Green Version]
- Air Quality Assessment for the Year 2020. Chief Inspectorate for Environmental Protection. Available online: https://powietrze.gios.gov.pl/pjp/content/show/1002921 (accessed on 2 November 2021).
- Mareckova, K.; Marion Pinterits, M.; Ullrich, B.; Wankmueller, R.; Markus, A.; Schindlbacher, S. Inventory Review 2020 (Technical Report 2020/4). EMEP Centre on Emission Inventories and Projections, Convention on Long-Range Transboundary Air Pollution. 2020. Available online: https://www.ceip.at/review-of-emission-inventories/technical-review-reports/rr2020 (accessed on 2 November 2021).
- Veldeman, N.; van der Maas, W. EMEP/EEA Air Pollutant Emission Inventory Guidebook: Spatial Mapping of Emissions 2019; European Environment Agency: Copenhagen, Denmark, 2019; Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-a-general-guidance-chapters/7-spatial-mapping-of-emissions/view (accessed on 2 November 2021).
- Kuenen, J.; Dellaert, S.; Visschedijk, A.; Jalkanen, J.-P.; Super, I.; Denier van der Gon, H. CAMS-REG-v4: A State-of-the-Art High-Resolution European Emission Inventory for Air Quality Modelling. Earth Syst. Sci. Data Discuss. 2021, 1–37, preprint. [Google Scholar] [CrossRef]
- Kuenen, J.J.P.; Visschedijk, A.J.H.; Jozwicka, M.; Denier van der Gon, H.A.C. TNO-MACC_II Emission Inventory; a Multi-Year (2003-2009) Consistent High-Resolution European Emission Inventory for Air Quality Modelling. Atmos. Chem. Phys. 2014, 14, 10963–10976. [Google Scholar] [CrossRef] [Green Version]
- Granier, C.; Darras, S.; Denier van der Gon, H.; Doubalova, J. The Copernicus Atmosphere Monitoring Service Global and Regional Emissions (April 2019 Version); Research Report; Copernicus Atmosphere Monitoring Service: Bonn, Germany, 2019. [Google Scholar]
- Trombetti, M.; Thunis, P.; Bessagnet, B.; Clappier, A.; Couvidat, F.; Guevara, M.; Kuenen, J.; López-Aparicio, S. Spatial Inter-Comparison of Top-down Emission Inventories in European Urban Areas. Atmos. Environ. 2018, 173, 142–156. [Google Scholar] [CrossRef]
- Guevara, M.; Lopez-Aparicio, S.; Cuvelier, C.; Tarrason, L.; Clappier, A.; Thunis, P. A Benchmarking Tool to Screen and Compare Bottom-Up and Top-down Atmospheric Emission Inventories. Air Qual. Atmos. Health 2017, 10, 627–642. [Google Scholar] [CrossRef] [Green Version]
- Guevara, M.; Jorba, O.; Tena, C.; van der Gon, H.D.; Kuenen, J.; Elguindi, N.; Darras, S.; Granier, C.; Perez Garcia-Pando, C. Copernicus Atmosphere Monitoring Service TEMPOral Profiles (CAMS-TEMPO): Global and European Emission Temporal Profile Maps for Atmospheric Chemistry Modelling. Earth Syst. Sci. Data 2021, 13, 367–404. [Google Scholar] [CrossRef]
- Ferreira, J.; Guevara, M.; Baldasano, J.M.; Tchepel, O.; Schaap, M.; Miranda, A.I.; Borrego, C. A Comparative Analysis of Two Highly Spatially Resolved European Atmospheric Emission Inventories. Atmos. Environ. 2013, 75, 43–57. [Google Scholar] [CrossRef]
- López-Aparicio, S.; Guevara, M.; Thunis, P.; Cuvelier, K.; Tarrasón, L. Assessment of Discrepancies between Bottom-Up and Regional Emission Inventories in Norwegian Urban Areas. Atmos. Environ. 2017, 154, 285–296. [Google Scholar] [CrossRef]
- Thunis, P.; Crippa, M.; Cuvelier, C.; Guizzardi, D.; de Meij, A.; Oreggioni, G.; Pisoni, E. Sensitivity of Air Quality Modelling to Different Emission Inventories: A Case Study over Europe. Atmos. Environ. X 2021, 10, 100111. [Google Scholar] [CrossRef]
- Thunis, P.; Degraeuwe, B.; Cuvelier, K.; Guevara, M.; Tarrason, L.; Clappier, A. A Novel Approach to Screen and Compare Emission Inventories. Air Qual. Atmos. Health 2016, 9, 325–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Fu, L.; Lin, X.; Zhou, Y.; Chen, J. A Bottom-Up Methodology to Estimate Vehicle Emissions for the Beijing Urban Area. Sci. Total Environ. 2009, 407, 1947–1953. [Google Scholar] [CrossRef]
- Timmermans, R.M.A.; Denier van der Gon, H.A.C.; Kuenen, J.J.P.; Segers, A.J.; Honoré, C.; Perrussel, O.; Builtjes, P.J.H.; Schaap, M. Quantification of the Urban Air Pollution Increment and Its Dependency on the Use of Down-Scaled and Bottom-Up City Emission Inventories. Urban Clim. 2013, 6, 44–62. [Google Scholar] [CrossRef]
- Zhao, Y.; Nielsen, C.P.; Lei, Y.; McElroy, M.B.; Hao, J. Quantifying the Uncertainties of a Bottom-Up Emission Inventory of Anthropogenic Atmospheric Pollutants in China. Atmos. Chem. Phys. 2011, 11, 2295–2308. [Google Scholar] [CrossRef] [Green Version]
- Paunu, V.-V.; Karvosenoja, N.; Segersson, D.; López-Aparicio, S.; Nielsen, O.-K.; Plejdrup, M.S.; Thorsteinsson, T.; Niemi, J.V.; Vo, D.T.; Denier van der Gon, H.A.C.; et al. Spatial Distribution of Residential Wood Combustion Emissions in the Nordic Countries: How Well National Inventories Represent Local Emissions? Atmos. Environ. 2021, 264, 118712. [Google Scholar] [CrossRef]
- Air Quality Assessment for the Year 2020: Model Evaluation. Chief Inspectorate for Environmental Protection. Available online: https://powietrze.gios.gov.pl/pjp/publications/card/23102 (accessed on 2 November 2021).
- Maksyutov, S.; Oda, T.; Saito, M.; Janardanan, R.; Belikov, D.; Kaiser, J.W.; Zhuravlev, R.; Ganshin, A.; Valsala, V.K.; Andrews, A.; et al. Technical Note: A High-Resolution Inverse Modelling Technique for Estimating Surface CO2 Fluxes Based on the NIES-TM–FLEXPART Coupled Transport Model and Its Adjoint. Atmos. Chem. Phys. 2021, 21, 1245–1266. [Google Scholar] [CrossRef]
- Clappier, A.; Belis, C.A.; Pernigotti, D.; Thunis, P. Source Apportionment and Sensitivity Analysis: Two Methodologies with Two Different Purposes. Geosci. Model Dev. 2017, 10, 4245–4256. [Google Scholar] [CrossRef] [Green Version]
- Thunis, P.; Clappier, A.; Tarrason, L.; Cuvelier, C.; Monteiro, A.; Pisoni, E.; Wesseling, J.; Belis, C.A.; Pirovano, G.; Janssen, S.; et al. Source Apportionment to Support Air Quality Planning: Strengths and Weaknesses of Existing Approaches. Environ. Int. 2019, 130, 104825. [Google Scholar] [CrossRef] [PubMed]
- Geng, G.; Zhang, Q.; Martin, R.V.; Lin, J.; Huo, H.; Zheng, B.; Wang, S.; He, K. Impact of Spatial Proxies on the Representation of Bottom-Up Emission Inventories: A Satellite-Based Analysis. Atmos. Chem. Phys. 2017, 17, 4131–4145. [Google Scholar] [CrossRef] [Green Version]
- Curier, R.L.; Kranenburg, R.; Segers, A.J.S.; Timmermans, R.M.A.; Schaap, M. Synergistic Use of OMI NO2 Tropospheric Columns and LOTOS–EUROS to Evaluate the NOx Emission Trends across Europe. Remote Sens. Environ. 2014, 149, 58–69. [Google Scholar] [CrossRef]
- Butt, E.W.; Rap, A.; Schmidt, A.; Scott, C.E.; Pringle, K.J.; Reddington, C.L.; Richards, N.A.D.; Woodhouse, M.T.; Ramirez-Villegas, J.; Yang, H.; et al. The Impact of Residential Combustion Emissions on Atmospheric Aerosol, Human Health, and Climate. Atmos. Chem. Phys. 2016, 16, 873–905. [Google Scholar] [CrossRef] [Green Version]
Data | Spatial Coverage (Resolution, Form) | Source |
---|---|---|
Building location, area, number of stories, function | Country (vector) | Topographic Objects Database (BDOT10k) |
HDD | Country (0.025 deg, raster) | GEM-AQ |
Fuel mix (gas, wood, coal, oil) | Country (district units, table) | ChIEP, municipality offices |
Gas usage for heating | 4/16 Voivodships (district unit, tables) | Polish Gas Distribution Group |
Building age (insulation factor) | Country (fixed for poviats, tables) | Main Statistics Office |
Heat distribution network geometries | Poviat (vector) | Poviat Centers for Geodetic and Cartographic Documentation, Institute for Territorial Development, heat power companies |
Access to a heat distribution network | Local (tables or vectors) | Local heating plants, heat power companies |
[g/GJ] | Gas | Oil | Wood | Coal |
---|---|---|---|---|
NOx | 51 | 51 | 50 | 110 |
SOx | 0.3 | 70 | 11 | 350 |
PM10 | 0.5 | 1.9 | 760 | 404 |
PM2.5 | 0.5 | 1.9 | 740 | 398 |
B(a)P [mg/GJ] | 0.000562 | 0.08 | 250 | 300 |
TSP | 0.5 | 1.9 | 800 | 444 |
CO | 26 | 57 | 4000 | 4600 |
NMVOC | 1.9 | 0.69 | 600 | 484 |
PM2.5 | 0.5 | 1.9 | 740 | 398 |
Pollutant [Mg] | CED (2019) | EMEP (2019) | CAMS (2017) |
---|---|---|---|
NOx | 46,222.3 | 73,794.5 | 85,722.7 |
SOx | 109,346.3 | 116,409.4 | 170,871.0 |
PM10 | 188,776.2 | 88,073.0 | 190,596.6 |
PM2.5 | 185,236.3 | 58,318.0 | 187,384.5 |
B(a)P | 113.5 | 59.7 | not available |
NMVOC | 200,052.7 | 99,537.4 | 116,151.6 |
CO | 1,758,858.8 | 1,273,909.3 | 1,505,800.4 |
TSP | 204,473.8 | 117,225.8 | not available |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawuc, L.; Szymankiewicz, K.; Kawicka, D.; Mielczarek, E.; Marek, K.; Soliwoda, M.; Maciejewska, J. Bottom–Up Inventory of Residential Combustion Emissions in Poland for National Air Quality Modelling: Current Status and Perspectives. Atmosphere 2021, 12, 1460. https://doi.org/10.3390/atmos12111460
Gawuc L, Szymankiewicz K, Kawicka D, Mielczarek E, Marek K, Soliwoda M, Maciejewska J. Bottom–Up Inventory of Residential Combustion Emissions in Poland for National Air Quality Modelling: Current Status and Perspectives. Atmosphere. 2021; 12(11):1460. https://doi.org/10.3390/atmos12111460
Chicago/Turabian StyleGawuc, Lech, Karol Szymankiewicz, Dorota Kawicka, Ewelina Mielczarek, Kamila Marek, Marek Soliwoda, and Jadwiga Maciejewska. 2021. "Bottom–Up Inventory of Residential Combustion Emissions in Poland for National Air Quality Modelling: Current Status and Perspectives" Atmosphere 12, no. 11: 1460. https://doi.org/10.3390/atmos12111460
APA StyleGawuc, L., Szymankiewicz, K., Kawicka, D., Mielczarek, E., Marek, K., Soliwoda, M., & Maciejewska, J. (2021). Bottom–Up Inventory of Residential Combustion Emissions in Poland for National Air Quality Modelling: Current Status and Perspectives. Atmosphere, 12(11), 1460. https://doi.org/10.3390/atmos12111460