Biological Ice Nucleators in Snow Samples from Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Snow Samples
2.2. Snow Sample Processing
2.3. Isolation and Characterization of Bacteria from Snow Samples
3. Results
3.1. Ice Nuclei in Snow Samples
3.2. Properties of Bacterial Isolates from Snow
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Upper, C.D.; Vali, G. The Discovery of Bacterial Ice Nucleation and Its Role in the Injury of Plants by Frost. In Biological Ice Nucleation and Its Applications; Lee, R.E., Jr., Warren, G.J., Gusta, L.V., Eds.; APS Press: St. Paul, MN, USA, 1995; pp. 29–40. [Google Scholar]
- Warren, G.J. Identification and Analysis of ina Genes and Proteins. In Biological Ice Nucleation and its Applications; Lee, R.E., Jr., Warren, G.J., Gusta, L.V., Eds.; APS Press: St. Paul, MN, USA, 1995; pp. 85–99. [Google Scholar]
- Pouleur, S.; Richard, C.; Martin, J.-G.; Antoun, H. Ice Nucleation Activity in Fusarium acuminatum and Fusarium avenaceum. Appl. Environ. Microbiol. 1992, 58, 2960–2964. [Google Scholar] [CrossRef] [Green Version]
- Kieft, T.L. Ice Nucleation Activity in Lichens. Appl. Environ. Microbiol. 1988, 54, 1678–1681. [Google Scholar] [CrossRef] [Green Version]
- Moffett, B.F.; Getti, G.; Henderson-Begg, S.K.; Hill, T.C.J. Ubiquity of ice nucleation in lichen—Possible atmospheric implications. Lindbergia 2015, 38, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Diehl, K.; Quick, C.; Matthias-Maser, S.; Mitra, S.K.; Jaenicke, R. The ice nucleating ability of pollen: Part I: Laboratory studies in deposition and condensation freezing modes. Atmos. Res. 2001, 58, 75–87. [Google Scholar] [CrossRef]
- Diehl, K.; Matthias-Maser, S.; Jaenicke, R.; Mitra, S.K. The ice nucleating ability of pollen: Part II. Laboratory studies in immersion and contact freezing modes. Atmos. Res. 2002, 61, 125–133. [Google Scholar] [CrossRef]
- von Blohn, N.; Mitra, S.K.; Diehl, K.; Borrmann, S. The ice nucleating ability of pollen: Part III: New laboratory studies in immersion and contact freezing modes including more pollen types. Atmos. Res. 2005, 78, 182–189. [Google Scholar] [CrossRef]
- Creamean, J.M.; Ceniceros, J.E.; Newman, L.; Pace, A.D.; Hill, T.C.; DeMott, P.J.; Rhodes, M.E. Evaluating the potential for Haloarchaea to serve as ice nucleating particles. Biogeosciences 2021, 18, 3751–3762. [Google Scholar] [CrossRef]
- Adams, M.; Atanasova, N.; Sofieva, S.; Ravantti, J.; Heikkinen, A.; Brasseur, Z.; Duplissy, J.; Bamford, D.; Murray, B. Data set for ice nucleation by viruses and their potential for cloud glaciation. Biogeosciences 2021, 18, 4431–4444. [Google Scholar] [CrossRef]
- Sands, D.C.; Langhans, V.E.; Scharen, A.L.; De Smet, G. The association between bacteria and rain and possible resultant meteorological implications. Idojaras 1982, 86, 148–152. [Google Scholar]
- Morris, C.E.; Conen, F.; Huffman, J.; Phillips, V.; Pöschl, U.; Sands, D.C. Bioprecipitation: A feedback cycle linking Earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob. Chang. Biol. 2013, 20, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.A.; Martinetti, D.; Bigg, E.K.; Christner, B.C.; Morris, C.E. Climatic and landscape changes as drivers of environmental feedback that influence rainfall frequency in the United States. Glob. Chang. Biol. 2021, 1–13. [Google Scholar] [CrossRef]
- Joly, M.; Amato, P.; Deguillaume, L.; Monier, M.; Hoose, C.; Delort, A.-M. Quantification of ice nuclei active at near 0 °C temperatures in low-altitude clouds at the Puy de Dôme atmospheric station. Atmos. Chem. Phys. Discuss. 2014, 14, 8185–8195. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.E.; Sands, D.C.; Vinatzer, B.A.; Glaux, C.; Guilbaud, C.; Buffiere, A.; Yan, S.; Dominguez, H.; Thompson, B.M. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J. 2008, 2, 321–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christner, B.C.; Cai, R.; Morris, C.E.; McCarter, K.S.; Foreman, C.; Skidmore, M.L.; Montross, S.N.; Sands, D.C. Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proc. Natl. Acad. Sci. USA 2008, 105, 18854–18859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christner, B.C.; Morris, C.E.; Foreman, C.M.; Cai, R.; Sands, D.C. Ubiquity of Biological Ice Nucleators in Snowfall. Science 2008, 319, 1214. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.J.; DeMott, P.J. Preliminary experimental evaluation of Snomax (TM) snow inducer, nucleus Pseudomonas syringae, as an artificial ice for weather modification. J. Weather. Modif. 1989, 21, 9–13. [Google Scholar]
- Möhler, O.; Georgakopoulos, D.G.; Morris, C.E.; Benz, S.; Ebert, V.; Hunsmann, S.; Saathoff, H.; Schnaiter, M.; Wagner, R. Heterogeneous ice nucleation activity of bacteria: New laboratory experiments at simulated cloud conditions. Biogeosciences 2008, 5, 1425–1435. [Google Scholar] [CrossRef] [Green Version]
- Wex, H.; Augustin-Bauditz, S.; Boose, Y.; Budke, C.; Curtius, J.; Diehl, K.; Dreyer, A.; Frank, F.; Hartmann, S.; Hiranuma, N.; et al. Intercomparing different devices for the investigation of ice nucleating particles using Snomax® as test substance. Atmos. Chem. Phys. Discuss. 2015, 15, 1463–1485. [Google Scholar] [CrossRef] [Green Version]
- Vali, G. Quantitative Evaluation of Experimental Results and the Heterogeneous Freezing Nucleation of Supercooled Liquids. J. Atmos. Sci. 1971, 28, 402–409. [Google Scholar] [CrossRef]
- Sands, D.C.; Schroth, M.N.; Hildebrand, D.C. Genus Pseudomonas in Laboratory Guide for Identification of Plant Pathogenic Bacteria; Schaad, N.W., Ed.; Bacteriology Committee of the American Phytopathological Society: St. Paul, MN, USA, 1980; pp. 36–44. [Google Scholar]
- Steel, K.J. The Oxidase Reaction as a Taxonomic Tool. J. Gen. Microbiol. 1961, 25, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Klement, Z. Rapid detection of the pathogenicity of phytopathogenic pseudomonads. Nature 1963, 199, 299–300. [Google Scholar] [CrossRef]
- Hill, T.C.; Moffett, B.F.; DeMott, P.J.; Georgakopoulos, D.G.; Stump, W.L.; Franc, G.D. Measurement of ice nucleation-active bacteria on plants and in precipitation by quantitative PCR. Appl. Environ. Microbiol. 2014, 80, 1256–1267. [Google Scholar] [CrossRef] [Green Version]
- Petters, M.D.; Wright, T.P. Revisiting ice nucleation from precipitation samples. Geophys. Res. Lett. 2015, 42, 8758–8766. [Google Scholar] [CrossRef]
- Maki, T.; Furumoto, S.; Asahi, Y.; Lee, K.C.; Watanabe, K.; Aoki, K.; Murakami, M.; Tajiri, T.; Hasegawa, H.; Mashio, A.; et al. Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: Impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities. Atmos. Chem. Phys. Discuss. 2018, 18, 8155–8171. [Google Scholar] [CrossRef] [Green Version]
Sample | Origin | Coordinates | Collection Date | Volume | ina/mL Initial | ina/mL Heat | ina/mL Lysozyme |
---|---|---|---|---|---|---|---|
PK112 | Parnassos Kellaria | 38.5393 N, 22.60645 E | 20 January 2012 | 618 | 9 | 0 | 0 |
PK212 | Parnassos Kellaria | 38.5393 N, 22.60645 E | 20 January 2012 | 800 | 0 | 0 | 0 |
PF112 | Parnassos Fterolakka | 38.5641 N, 22.58497 E | 20 January 2012 | 943 | 711 | 0 | 21 |
PF212 | Parnassos Fterolakka | 38.5641 N, 22.58497 E | 20 January 2012 | 757 | 3 | 3 | 0 |
PK31 | Parnassos Kellaria | 38.5877 N, 22.60109 E | 1 March 2012 | 426 | 10 | 1 | 1 |
PK32 | Parnassos Kellaria | 38.5877 N, 22.60109 E | 1 March 2012 | 272 | 3 | 0 | 0 |
PK33 | Parnassos Kellaria | 38.5877 N, 22.60109 E | 1 March 2012 | 376 | 7 | 0 | 4 |
10PN1 | Parnassos Kellaria | 38.5740 N, 22.61319 E | 9 April 2013 | 450 | 112 | 0 | 0 |
10PN2 | Parnassos kellaria | 38.5740 N, 22.61319 E | 9 April 2013 | 520 | 33 | 0 | 0 |
10PN3 | Parnassos Fterolakka | 38.5436 N, 22.59831 E | 9 April 2013 | 580 | 241 | 0 | 0 |
10PN4 | Parnassos Fterolakka | 38.5436 N, 22.59831 E | 9 April 2013 | 580 | 151 | 0 | 0 |
D1 | Parnitha | 38.1724 N, 23.72862 E | 7 February 2016 | 495 | 484 | 0 | 537 |
D2 | Parnitha | 38.1724 N, 23.72862 E | 7 February 2016 | 930 | 373 | 376 | 93 |
KR1 | Kithaironas | 38.1820 N, 23.27815 E | 26 January 2017 | 463 | 41 | 0 | 8 |
KR2 | Kithaironas | 38.1820 N, 23.27815 E | 26 January 2017 | 427 | 4 | 0 | 0 |
KRS | Kithaironas | 38.1838 N, 23.24971 E | 26 January 2017 | 625 | 68 | 0 | 1 |
D5 | Parnitha | 38.1716 N, 23.73404 E | 23 January 2018 | 1027 | 39 | nd | 0 |
Strain | Oxidase Test | Initial Temperature of INA | Hypersensitivity Test | Origin/Snow Sample |
---|---|---|---|---|
P. syringae 31R1 | − | −7 | + | type strain |
P. syringae Cit 7 | − | −3 | + | type strain |
X1 | + | −6 | − | Parnitha/D1 |
X2 | + | −7 | − | Parnitha/D1 |
X3 | + | −5 | − | Parnitha/D1 |
X4 | + | −5 | − | Parnitha/D2 |
X5 | + | −6 | − | Parnitha/D2 |
X6 | + | −7 | − | Parnitha/D4 |
X7 | + | −6 | − | Parnitha/D4 |
X8 | + | −6 | − | Parnitha/D4 |
X9 | + | −7 | − | Parnitha/D5 |
X10 | + | −7 | − | Parnitha/D5 |
X11 | + | −5 | − | Parnitha/D5 |
X12 | + | −7 | − | Parnitha/D5 |
X13 | + | −8 | − | Parnassos/PF112 |
X14 | + | −8 | − | Parnassos/PF212 |
X15 | + | −9 | − | Parnassos/PF212 |
X16 | + | −7 | − | Parnassos/PK112 |
X17 | + | −6 | − | Parnassos/PK112 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgakopoulos, D.G. Biological Ice Nucleators in Snow Samples from Greece. Atmosphere 2021, 12, 1461. https://doi.org/10.3390/atmos12111461
Georgakopoulos DG. Biological Ice Nucleators in Snow Samples from Greece. Atmosphere. 2021; 12(11):1461. https://doi.org/10.3390/atmos12111461
Chicago/Turabian StyleGeorgakopoulos, Dimitrios G. 2021. "Biological Ice Nucleators in Snow Samples from Greece" Atmosphere 12, no. 11: 1461. https://doi.org/10.3390/atmos12111461