Thermal Response of Spring–Summer-Grown Black Gram (Vigna mungo L. Hepper) in Indian Subtropics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location Details
2.2. Experimental Soils and Weather Conditions
2.3. Experimental Details
2.4. Crop Management
2.5. Data Collection and Collection Procedures
2.6. Statistical Analysis
3. Results and Discussion
3.1. Phenophase Duration
3.2. Thermal Requirements of Black Gram
3.3. Dry Matter Accumulation and Yield during Harvest Maturity
3.4. Thermal Use Efficiency (TUE) of Black Gram
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ko, J.; Ahujab, L.; Kimballc, B.; Anapallib, S.; Mab, L.; Greenb, T.R. Simulation of free air CO2 enriched wheat growth and interactions with water, nitrogen, and temperature. Agric. Forest Meteorol. 2010, 150, 1331–1346. [Google Scholar] [CrossRef]
- Singh, G.; Kaur, H.; Aggarwal, N.; Ram, H.; Gill, K.K.; Khanna, V. Symbiotic efficiency, thermal requirement and yield of black gram (Vigna mungo) genotypes as influenced by sowing time. Indian J. Agric. Sci. 2013, 83, 953–958. [Google Scholar]
- Akter, N.; Islam, M.R. Heat stress effects and management in wheat: A review. Agron. Sustain. Dev. 2017, 37, 1–17. [Google Scholar] [CrossRef]
- Ransing, D.M.; Verma, A.K.; Meshram, M.R.; Paikra, P.R. Nodulation, yield and thermal requirement of mungbean (Vigna radiata L.) genotypes as influenced by date of sowing. Int. J. Agric. Sci. 2014, 10, 638–641. [Google Scholar]
- Prakash, V.; Singh, A.K.; Kumar, R.; Mishra, J.S.; Kumar, S.; Dwivedi, S.K.; Rao, K.K.; Samal, S.K.; Bhatt, B.P. Thermal regimes: The key to phenological dynamics and productivity of faba bean (Vicia faba L.). J. Agrometeorol. 2018, 20, 36–39. [Google Scholar]
- Singh, G.; Sekhon, H.S.; Ram, H.; Gill, K.K.; Sharma, P. Effect of date of sowing on nodulation, growth, thermal requirement and grain yield of kharif mungbean genotypes. J. Food Legume 2010, 23, 132–134. [Google Scholar]
- Visha Kumari, V.; Banerjee, P.; Vijayan, R.; Nath, R.; Sengupta, K.; Chandran, M.A.S. Effects of micronutrients foliar spray on thermal indices, phenology and yield of lentil in new alluvial zone of West Bengal. J. AgriSearch 2020, 7, 202–205. [Google Scholar]
- Annie, M.; Goswami, B.; Dutta, P.; Singh, G.; Paschapur, N.S.; Rajkhowa, S. Effect of sowing dates on heat requirements of different cultivars of green gram (Vigna radiata L.). J. Agric. Phys. 2020, 20, 120–124. [Google Scholar]
- Basu, S.; Chakraborty, P.K.; Nath, R.; Chakraborty, P.K. Thermal indices: Impact on phenology and seed yield of spring-summer greengram [Vigna radiata (L.) Wilczek] under different dates of sowing. J. Pharm. Phytochem. 2018, 2, 123–127. [Google Scholar]
- Porter, J.R. Rising temperatures are likely to reduce crop yields. Nature 2005, 436, 174. [Google Scholar] [CrossRef] [Green Version]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maheswari, M.; Sarkar, B.; Vanaja, M.; Srinivasarao, M.; Srinivasarao, C.; Venkateswarlu, B.; Sikka, A.K. Climate resilient crop varieties for sustainable food production under aberrant weather conditions. In Technical Bulletin; ICAR-Central Research Institute for Dryland Agriculture: Hyderabad, India, 2015; p. 47. [Google Scholar]
- Kang, J.S.; Singh, H.; Singh, G.; Kang, H.; Kalra, V.P.; Kaur, J. Abiotic Stress and Its Amelioration in Cereals and Pulses: A Review. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1019–1045. [Google Scholar]
- Gaur, P.M.; Samineni, S.; Krishnamurthy, L.; Varshney, R.K.; Kumar, S.; Ghanem, M.E. High temperature tolerance in grain legumes. Legume Perspect. 2015, 7, 23–24. [Google Scholar]
- Visha kumari, V.; Banerjee, P.; Nath, R.; Sengupta, K.; Sarath Chandan, M.A.; Kumar, R. Effect of foliar spray on phenology and yield of lentil sown on different dates. J. Crop Weed 2019, 15, 54–58. [Google Scholar] [CrossRef]
- Maji, S.; Bhowmick, M.; Basu, S.; Chakraborty, P.; Jena, S.; Dutta, S.K.; Nath, R.; Bandyopadhyay, P.; Chakraborty, P.K. Impact of agro-meteorological indices on growth and productivity of potato (Solanum tuberosum L.) in Eastern India. J. Crop Weed 2014, 10, 183–189. [Google Scholar]
- Kumar, K.; Ghosh, M.; Dolui, S.; Banerjee, S.; Saha, A. Phenology, thermal indices and yield of summer greengram [Vigna radiata (L.) Wilczek] under different sowing dates in Gangetic plains of West Bengal. J. Food Legume 2020, 33, 170–174. [Google Scholar]
- Nath, R.; Chakraborty, P.K.; Chakraborty, A. Requirement of growing degree days, photothermal unit and heliothermal unit for different phenophases of sesame (Sesamum indicum L.) at different dates of sowing. Indian Agric. 1999, 43, 127–134. [Google Scholar]
- Kingra, P.K.; Kaur, P. Agroclimatic indices for prediction of pod yield of groundnut (Arachis hypogaea L.) in Punjab. J. Res. 2011, 48, 1–4. [Google Scholar]
- Anitha, Y.; Vanaja, M.; Vijay Kumar, G. Identification of attributes contributing to high temperature tolerance in black gram (Vigna mungo L. Hepper) genotypes. Int. J. Sci. Res. 2016, 5, 1021–1025. [Google Scholar]
- Mane, R.B.; Asewar, B.V.; Kadam, Y.E.; Deshmukh, K.V. Correlation studies in weather parameters and yield of black gram varieties under changing weather conditions. Bull. Env. Pharmacol. Life Sci. 2018, 7, 37–42. [Google Scholar]
- Joseph, J.; Francies, R.M.; Santhosh Kumar, A.V.; Sunil, K.M.; Dayalakshmi, E.M. Stability of black gram (Vigna mungo L. Hepper) varieties for seed yield. Electron. J. Plant Breed. 2015, 6, 899–903. [Google Scholar]
- Biswas, M.; Begum, A.A.; Afzal, A.; Mia, F.U.; Hamid, A. Effect of sowing dates on the growth and yield of black gram varieties. Pak. J. Biol. Sci. 2002, 5, 272–274. [Google Scholar] [CrossRef]
- Rani, N.; Kumar, P.; Singh, A. Crop weather relationship of summer irrigated black gram (Vigna mungo) at coastal areas of Karaikal. TECHNOFAME-A J. Multidiscip. Adv. Res. 2014, 3, 01–09. [Google Scholar]
- Ganapathy, M.; Baradhan, G.; Ramesh, N. Effect of foliar nutrition on reproductive efficiency and grain-yield of rice fallow pulses. Legume Res. 2008, 31, 142–144. [Google Scholar]
- Kannan, P.; Arunachlam, P.; Prabukumar, G.; Prabhaharan, J. Response of Black gram (Vigna Mungo L.) to Multi-Micronutrient Mixtures under Rainfed Alfisol. J. Indian Soc. Soil Sci. 2014, 62, 154–160. [Google Scholar]
- Thakur, V.; Patil, R.P.; Patil, J.R.; Suma, T.C.; Umesh, M.R. Physiological Approaches for Yield Improvement of Black gram under Rainfed Condition. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 4114–4122. [Google Scholar] [CrossRef]
- Amutha, R.; Nithila, S.; Siva Kumar, T. Management of source limitation by foliar spray of nutrients and growth regulators in black gram. Int. J. Plant Sci. 2012, 7, 65–68. [Google Scholar]
- Singh, S.; Singh, Y.P.; Tomar, S.S. Review on climatic abnormalities impact on area, productivity of central India and strategies of mitigating technology on yield and benefits of black gram. J. Pharm. Phytochem. 2018, 7, 1048–1056. [Google Scholar]
- Balaji, P.; Vinod Kumar, S.R.; Srinivasan, G.; Mrunalini, K. Effect of foliar nutrition on yield maximization strategies for irrigated black gram cv. ADT 3. J. Pharm. Phytochem. 2019, 8, 2884–2886. [Google Scholar]
- Pegu, L.; Kalita, P.; Das, K.; Alam, S.; Dekabarua, Z.P.; Konwar, P.B. Performance of some black gram genotypes in relation to physio-chemical, root parameters and yield as influence by foliar feeding with boron. Legume Res. 2013, 36, 505–510. [Google Scholar]
- Shashikumar Basavarajappa, R.; Salakinkop, S.R.; Hebbar, M.; Basavarajappa, M.P.; Patil, H.Y. Influence of foliar nutrition on performance of black gram (Vigna mungo L.), nutrient uptake and economics under dry land ecosystems. Legume Res. 2013, 36, 422–428. [Google Scholar]
- Waraich, E.; Ahmad, R.; Halim, A.; Aziz, T. Alleviation of temperature stress by nutrient management in crop plants: A Review. J. Soil Sci. Plant Nutr. 2012, 12, 221–244. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.; Bhattacharya, P. Investigating Cobalt in Soil-plant-animal-human system: Dynamics, Impact and Management. J. Soil Sci. Plant Nutr. 2021, 21, 2339–2354. [Google Scholar] [CrossRef]
- Awomi, T.A.; Singh, A.K.; Kumar, M.; Bordoloi, L.J. Effect of phosphorus, molybdenum and cobalt nutrition on yield and quality of mungbean (Vigna radiata L.) in acidic soil of Northeast India. Indian J. Hill Farm 2012, 25, 22–26. [Google Scholar]
- Iram, A.; Awan, T.H.; Tanveer, A.; Akbar, N.; Saleem, M.F.; Safdar, M.E. Optimization of cobalt and nitrogen for improving seed yield, protein content and nitrogen use efficiency in mungbean. J. Environ. Agric. 2017, 2, 173–179. [Google Scholar]
- Srivastava, S.; Shukla, A.K. Differential Response of Black Gram towards Heavy Metal Stress. Environ. Pollut. Prot. 2016, 1, 89–96. [Google Scholar]
- El-Baz, E.E.T.; Lo’ay, A.A.; Ibrahium, E.G.; El-Deeb, M.R.I. Effect of cobalt and some vitamins as foliar application treatments on productivity and quality of williams banana cultivar. J. Plant Prod. 2016, 7, 777–786. [Google Scholar] [CrossRef]
- Shabala, S. and Pottosin, I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 2014, 151, 257–279. [Google Scholar] [CrossRef]
- Kataria, N.; Rani, P.; Dar, M.H.; Singh, N. Potassium to Alleviate the Adverse Effect of Water Deficit in Mungbean [Vigna radiata (L.) Wilczek]. Int. J. Curr. Res. Biosci. Plant Biol. 2014, 1, 33–40. [Google Scholar]
- Sahay, N.; Singh, S.P.; Sharma, V.K. Effect of cobalt and potassium application on growth, yield and nutrient uptake in lentil (Lens culinaris L.). Legume Res. 2013, 36, 259–262. [Google Scholar]
- Pandey, N.; Gupta, B. The impact of foliar boron sprays on reproductive biology and seed quality of black gram. J. Trace Elem. Med. Biol. 2013, 27, 58–64. [Google Scholar] [CrossRef]
- Patra, P.K.; Bhattacharya, C. Effect of different levels of boron and molybdenum on growth and yield of mung bean [Vigna radiate (L.) Wilczek (cv. Baisakhi Mung)] in Red and Laterite Zone of West Bengal. J. Crop Weed 2009, 5, 111–114. [Google Scholar]
- Bele, P.; Thakur, R. Boron nutrition of crops in relation to yield and Quality: A review. J. Pharm. Innov. 2019, 8, 430–433. [Google Scholar]
- Singh, D.P.; Singh, B.B.; Gupta, S. Development of Pant Urd 31: A high yielding and Yellow Mosaic Disease resistant variety of black gram (Vigna mungo (L.) Hepper). J. Food Legume 2015, 28, 1–4. [Google Scholar]
- Nuttonson, M.Y. Wheat-Climate Relationships and the Use of Phenology in Ascertaining the Thermal and Photo-Thermal Requirements of Wheat Based on Data of North America and of Some Thermally Analogous Areas of North America in the Soviet Union and in Finland; American Institute of Crop Ecology: Washington, DC, USA, 1955. [Google Scholar]
- Singh, G.; Narwal, S.S.; Rao, V.U.M.; Dahiya, D.S. Effect of sowing date on requirement of growing degree days, heliothermal units and photothermal units, and phenology of winter maize (Zea mays). Indian J. Agric. Sci. 1990, 60, 723–731. [Google Scholar]
- Nuttonson, M.Y. Some preliminary observations of phenological data as a tool in the study of photoperiod and thermal requirements of various plant materials. In Proc. Symp. on Vernalization and photoperiodism; Murneek, A.E., Whyte, P.R., Eds.; Chronica Botanica Publishing Co.: Walthani, MA, USA, 1948. [Google Scholar]
- Saha, G.; Khan, S.A. Predicting yield and yield attributes of yellow sarson with agrometeorological parameters. J. Agromet. 2008, I, 115–119. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Willey and Sons, Inc.: New York, NY, USA, 1984; p. 180. [Google Scholar]
- Parya, M.; Nath, D.; Mazumdar, D.; Chakraborty, P.K. Effect of thermal stress on wheat productivity in West Bengal. J. Agrometeorol. 2010, 12, 217–220. [Google Scholar]
- Mane, R.B.; Asewar, B.V.; Chavan, K.K.; Kadam, Y.E. Study of agrometeorological indices on black gram as affected by different dates of sowing and varieties. J. Agric. Res. Technol. 2017, 42, 126–131. [Google Scholar]
- Agrawal, K.K.; Upadhyay, A.P.; Metange, K.K.; Shanker, U. Phenological development and thermal time in pulses and oilseed crops grown in summer season. J. Agromet. 2004, 6, 284–287. [Google Scholar]
- Banerjee, P.; Visha Kumari, V.; Nath, R.; Bandopadhyay, P. Seed primary and foliar nutrition studies on relay grass pea after winter rice in lower Gangetic plain. J. Crop Weed 2019, 15, 72–78. [Google Scholar] [CrossRef]
- Banerjee, P.; Ghosh, A.; Visha Kumari, V.; Nath, R. Effect of canopy temperature on physiological processes of grass pea as influenced by seed priming and foliar fertilization. J. Agromet. 2021, 23, 340–343. [Google Scholar] [CrossRef]
- Kaisher, M.S.; Rahman, M.T.; Amin, M.H.A.; Amanullah, A.S.M.; Ahsanullah, A.S.M. Effects of sulphur and boron on the seed yield and protein content of mungbean. Bangladesh Res. Publ. J. 2010, 3, 1181–1186. [Google Scholar]
- Math, G.; Vijayakumar, A.G.; Hegde, Y.; Basamma, K. Study of Different Moisture Stress Mitigation Techniques for Rabi Urdbean (Vigna mungo (L.) Hepper). Indian J. Dryland Agric. Res. Dev. 2014, 29, 45–48. [Google Scholar] [CrossRef]
- Rana, A.M.; Chandel, S.S.; James, A. Effect of microclimatic condition on growth and yield of black gram (Vigna mungo L.) in Allahabad city, India. Int. J. Res Soc. Sci. 2017, 7, 363–372. [Google Scholar]
Soil Properties | Content | |
---|---|---|
2020 | 2021 | |
Sand (%) | 65.61 | 64.65 |
Silt (%) | 17.86 | 18.25 |
Clay (%) | 16.53 | 17.1 |
pH | 7.5 | 7.4 |
Bulk density (g/cm−3) | 1.26 | 1.25 |
Organic carbon (%) | 0.52 | 0.52 |
Available nitrogen (kg/ha−1) | 263.56 | 264.15 |
Available phosphate (kg/ha−1) | 38.17 | 39.72 |
Available potassium (kg/ha−1) | 195.43 | 197.92 |
Available cobalt (ppm) | 9.18 | 9.31 |
Available boron (ppm) | 0.46 | 0.45 |
Day Length (hours) | ||||||||
---|---|---|---|---|---|---|---|---|
Date | March | April | May | June | ||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
1 | – | 11.5 | 12.2 | 12.2 | 12.9 | 12.9 | 13.3 | – |
2 | 11.6 | 11.5 | 12.3 | 12.2 | 12.9 | 12.9 | 13.3 | – |
3 | 11.6 | 11.6 | 12.3 | 12.3 | 12.9 | 12.9 | 13.3 | – |
4 | 11.6 | 11.6 | 12.3 | 12.3 | 12.9 | 12.9 | – | – |
5 | 11.6 | 11.6 | 12.3 | 12.3 | 12.9 | 12.9 | – | – |
6 | 11.6 | 11.6 | 12.3 | 12.3 | 13 | 12.9 | – | – |
7 | 11.7 | 11.6 | 12.4 | 12.3 | 13 | 13 | – | – |
8 | 11.7 | 11.7 | 12.4 | 12.4 | 13 | 13 | – | – |
9 | 11.7 | 11.7 | 12.4 | 12.4 | 13 | 13 | – | – |
10 | 11.7 | 11.7 | 12.4 | 12.4 | 13 | 13 | – | – |
11 | 11.8 | 11.7 | 12.5 | 12.4 | 13 | 13 | – | – |
12 | 11.8 | 11.8 | 12.5 | 12.5 | 13.1 | 13 | – | – |
13 | 11.8 | 11.8 | 12.5 | 12.5 | 13.1 | 13.1 | – | – |
14 | 11.8 | 11.8 | 12.5 | 12.5 | 13.1 | 13.1 | – | – |
15 | 11.8 | 11.8 | 12.5 | 12.5 | 13.1 | 13.1 | – | – |
16 | 11.9 | 11.8 | 12.6 | 12.5 | 13.1 | 13.1 | – | – |
17 | 11.9 | 11.9 | 12.6 | 12.6 | 13.1 | 13.1 | – | – |
18 | 11.9 | 11.9 | 12.6 | 12.6 | 13.2 | 13.1 | – | – |
19 | 11.9 | 11.9 | 12.6 | 12.6 | 13.2 | 13.2 | – | – |
20 | 12 | 11.9 | 12.7 | 12.6 | 13.2 | 13.2 | – | – |
21 | 12 | 12 | 12.7 | 12.7 | 13.2 | 13.2 | – | – |
22 | 12 | 12 | 12.7 | 12.7 | 13.2 | 13.2 | – | – |
23 | 12 | 12 | 12.7 | 12.7 | 13.2 | 13.2 | – | – |
24 | 12.1 | 12 | 12.7 | 12.7 | 13.2 | 13.2 | – | – |
25 | 12.1 | 12.1 | 12.8 | 12.7 | 13.2 | 13.2 | – | – |
26 | 12.1 | 12.1 | 12.8 | 12.8 | 13.3 | 13.2 | – | – |
27 | 12.1 | 12.1 | 12.8 | 12.8 | 13.3 | 13.3 | – | – |
28 | 12.1 | 12.1 | 12.8 | 12.8 | 13.3 | 13.3 | – | – |
29 | 12.2 | 12.1 | 12.8 | 12.8 | 13.3 | 13.3 | – | – |
30 | 12.2 | 12.2 | 12.9 | 12.8 | 13.3 | 13.3 | – | – |
31 | 12.2 | 12.2 | – | – | 13.3 | 13.3 | – | – |
Black Gram Variety | Parents | Duration | Released from | Year of Release | Specifications |
---|---|---|---|---|---|
Pant Urd 31 | UPU 89-6-7 × 7668/4B | 75–85 days | G.B. Pant University of Agriculture and Technology, Pant Nagar, Uttarakhand | 2005 | Dark green-colored leaves and yellow mosaic disease resistance |
Treatment | Days to Emergence | Days to Flower Initiation | Days to Pod Initiation | Days to Maturity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | Mean | 2020 | 2021 | Mean | 2020 | 2021 | Mean | 2020 | 2021 | Mean | |
D1S1F1 | 7 ± 0.08 | 7 ± 0.09 | 7 | 32 ± 0.02 | 33 ± 0.00 | 32 | 39 ± 0.01 | 42 ± 0.01 | 40 | 78 ± 0.01 | 76 ± 0.01 | 77 |
D1S1F2 | 7 ± 0.08 | 6 ± 0.00 | 7 | 32 ± 0.03 | 33 ± 0.00 | 33 | 39 ± 0.00 | 43 ± 0.01 | 41 | 79 ± 0.01 | 78 ± 0.00 | 79 |
D1S1F3 | 7 ± 0.08 | 7 ± 0.09 | 7 | 32 ± 0.05 | 33 ± 0.02 | 33 | 40 ± 0.01 | 43 ± 0.00 | 41 | 80 ± 0.00 | 81 ± 0.01 | 80 |
D1S1F4 | 8 ± 0.07 | 6 ± 0.00 | 7 | 32 ± 0.02 | 33 ± 0.02 | 33 | 41 ± 0.01 | 44 ± 0.01 | 43 | 82 ± 0.01 | 83 ± 0.01 | 82 |
D1S1F5 | 8 ± 0.07 | 7 ± 0.09 | 7 | 33 ± 0.02 | 35 ± 0.02 | 34 | 42 ± 0.01 | 45 ± 0.00 | 43 | 83 ± 0.01 | 85 ± 0.01 | 84 |
Mean | 7 | 7 | 32 | 33 | 40 | 43 | 80 | 81 | ||||
D1S2F1 | 6 ± 0.10 | 5 ± 0.10 | 6 | 35 ± 0.02 | 33 ± 0.02 | 34 | 40 ± 0.01 | 43 ± 0.01 | 42 | 81 ± 0.01 | 79 ± 0.01 | 80 |
D1S2F2 | 6 ± 0.10 | 4 ± 0.13 | 5 | 35 ± 0.04 | 34 ± 0.02 | 35 | 41 ± 0.01 | 44 ± 0.01 | 43 | 82 ± 0.01 | 81 ± 0.01 | 82 |
D1S2F3 | 5 ± 0.12 | 6 ± 0.00 | 6 | 35 ± 0.03 | 35 ± 0.00 | 35 | 42 ± 0.01 | 45 ± 0.01 | 44 | 85 ± 0.01 | 83 ± 0.01 | 84 |
D1S2F4 | 5 ± 0.12 | 5 ± 0.12 | 5 | 35 ± 0.03 | 36 ± 0.02 | 35 | 43 ± 0.01 | 46 ± 0.01 | 45 | 85 ± 0.01 | 86 ± 0.01 | 86 |
D1S2F5 | 5 ± 0.12 | 5 ± 0.12 | 5 | 35 ± 0.02 | 36 ± 0.02 | 36 | 44 ± 0.01 | 47 ± 0.01 | 46 | 86 ± 0.01 | 87 ± 0.00 | 86 |
Mean | 5 | 5 | 35 | 35 | 42 | 45 | 84 | 83 | ||||
D2S1F1 | 8 ± 0.07 | 9 ± 0.07 | 9 | 30 ± 0.02 | 30 ± 0.02 | 30 | 37 ± 0.01 | 40 ± 0.01 | 39 | 75 ± 0.01 | 72 ± 0.00 | 74 |
D2S1F2 | 9 ± 0.07 | 8 ± 0.07 | 9 | 31 ± 0.03 | 31 ± 0.00 | 31 | 38 ± 0.01 | 41 ± 0.02 | 39 | 76 ± 0.01 | 74 ± 0.01 | 75 |
D2S1F3 | 8 ± 0.07 | 8 ± 0.07 | 8 | 31 ± 0.03 | 32 ± 0.02 | 31 | 38 ± 0.03 | 42 ± 0.01 | 40 | 77 ± 0.01 | 75 ± 0.01 | 76 |
D2S1F4 | 8 ± 0.00 | 7 ± 0.08 | 8 | 31 ± 0.02 | 32 ± 0.00 | 32 | 38 ± 0.01 | 43 ± 0.01 | 41 | 77 ± 0.00 | 77 ± 0.00 | 77 |
D2S1F5 | 8 ± 0.07 | 8 ± 0.07 | 8 | 32 ± 0.00 | 32 ± 0.02 | 32 | 39 ± 0.00 | 43 ± 0.00 | 41 | 78 ± 0.01 | 79 ± 0.01 | 78 |
Mean | 8 | 8 | 31 | 31 | 38 | 42 | 77 | 75 | ||||
D2S2F1 | 7 ± 0.09 | 7 ± 0.00 | 7 | 32 ± 0.02 | 32 ± 0.02 | 32 | 38 ± 0.03 | 42 ± 0.00 | 40 | 78 ± 0.01 | 76 ± 0.00 | 77 |
D2S2F2 | 7 ± 0.09 | 6 ± 0.09 | 7 | 32 ± 0.02 | 33 ± 0.02 | 33 | 40 ± 0.00 | 43 ± 0.01 | 42 | 79 ± 0.01 | 78 ± 0.01 | 78 |
D2S2F3 | 6 ± 0.09 | 7 ± 0.08 | 7 | 32 ± 0.00 | 33 ± 0.00 | 33 | 41 ± 0.01 | 44 ± 0.01 | 43 | 80 ± 0.01 | 80 ± 0.01 | 80 |
D2S2F4 | 6 ± 0.09 | 7 ± 0.09 | 7 | 33 ± 0.02 | 34 ± 0.02 | 34 | 42 ± 0.01 | 45 ± 0.01 | 43 | 80 ± 0.01 | 82 ± 0.01 | 81 |
D2S2F5 | 7 ± 0.09 | 8 ± 0.07 | 7 | 33 ± 0.00 | 35 ± 0.00 | 34 | 42 ± 0.00 | 46 ± 0.01 | 44 | 81 ± 0.01 | 84 ± 0.00 | 83 |
Mean | 7 | 7 | 32 | 33 | 41 | 44 | 80 | 80 |
Phenological Parameters | Seasons | Statistical Significance | Factor-Wise Effect | Interaction Effect of All Treatments | |||||
---|---|---|---|---|---|---|---|---|---|
D | S | F | D × S | D × F | S × F | D × S × F | |||
Days to emergence | 2020 | SEM (±) | 0.09 | 0.08 | 0.17 | 0.15 | 0.23 | 0.23 | 0.33 |
LSD | 0.58 | 0.32 | NS | NS | NS | NS | NS | ||
2021 | SEM (±) | 0.08 | 0.07 | 0.16 | 0.22 | 0.09 | 0.22 | 0.35 | |
LSD | 0.52 | 0.26 | NS | 0.64 | NS | NS | NS | ||
Days to flower initiation | 2020 | SEM (±) | 0.06 | 0.32 | 0.21 | 0.23 | 0.37 | 0.37 | 0.52 |
LSD | 0.38 | 1.26 | 0.60 | 0.67 | NS | NS | NS | ||
2021 | SEM (±) | 0.04 | 0.12 | 0.13 | 0.18 | 0.02 | 0.18 | 0.26 | |
LSD | 0.25 | 0.47 | 0.38 | 0.053 | NS | NS | NS | ||
Days to pod initiation | 2020 | SEM (±) | 0.15 | 0.06 | 0.17 | 0.08 | 0.24 | 0.24 | 0.33 |
LSD | 0.95 | 0.22 | 0.48 | NS | NS | 0.68 | NS | ||
2021 | SEM (±) | 0.05 | 0.10 | 0.13 | 0.16 | 0.18 | 0.18 | 0.26 | |
LSD | 0.29 | 0.41 | 0.37 | NS | NS | NS | NS | ||
Days to maturity | 2020 | SEM (±) | 0.07 | 0.14 | 0.17 | 0.20 | 0.25 | 0.25 | 0.35 |
LSD | 0.44 | 0.55 | 0.50 | 0.43 | 0.71 | 0.72 | 1.01 | ||
2021 | SEM (±) | 0.02 | 0.06 | 0.13 | 0.09 | 0.08 | 0.18 | 0.25 | |
LSD | 0.14 | 0.24 | 0.36 | 0.34 | 0.51 | 0.51 | 0.73 |
Treatment | Days to Emergence | Days to Flowering | Days to Pod Initiation | Days to Maturity | |
---|---|---|---|---|---|
Date of sowing (D) | |||||
First week of March (D1) | 6.3 ± 0.00 | 34.2 ± 0.00 | 43.0 ± 0.00 | 82.2 ± 0.00 | |
Third week of March (D2) | 7.7 ± 0.33 | 34.3 ± 0.00 | 41.3 ± 0.00 | 78.2 ± 0.00 | |
LSD (0.05) | 0.29 | 0.38 | 0.29 | 0.29 | |
Soil application (S) | |||||
RDF (S1) | 7.8 ± 0.58 | 32.3 ± 0.67 | 41.0 ± 0.00 | 78.4 ± 1.33 | |
RDF + Co at 4 kg/ha−1 (S2) | 6.2 ± 0.33 | 34.2 ± 0.67 | 43.3 ± 0.00 | 82.0 ± 1.33 | |
LSD (0.05) | 0.18 | 0.44 | 0.18 | 0.26 | |
Foliar spray (F) | |||||
No spray (F1) | 7.1 ± 0.00 | 32.3 ± 0.33 | 40.4 ± 0.07 | 77.17 ± 0.08 | |
Tap water (F2) | 6.9 ± 0.00 | 32.9 ± 0.13 | 41.4 ± 0.07 | 78.7 ± 0.04 | |
K at 1.25% (F3) | 7.1 ± 0.00 | 33.2 ± 0.29 | 42.2 ± 0.11 | 80.4 ± 0.15 | |
B at 0.2% (F4) | 6.8 ± 0.00 | 33.7 ± 0.36 | 43.0 ± 0.07 | 81.5 ± 0.04 | |
K + B (F5) | 7.2 ± 0.00 | 34.1 ± 0.00 | 43.7 ± 0.07 | 83.0 ± 0.11 | |
LSD (0.05) | NS | 0.40 | 0.33 | 0.39 | |
Interaction | |||||
DXS | SEM (±) | 0.07 | 0.16 | 0.07 | 0.09 |
LSD (0.05) | 0.21 | 0.44 | 0.20 | 0.23 | |
DXF | SEM (±) | 0.18 | 0.19 | 0.16 | 0.19 |
LSD (0.05) | NS | 0.56 | 0.46 | 0.55 | |
SXF | SEM (±) | 0.18 | 0.19 | 0.16 | 0.19 |
LSD (0.05) | NS | 0.56 | 0.46 | 0.55 | |
DXSXF | SEM (±) | 0.25 | 0.28 | 0.23 | 0.27 |
LSD (0.05) | NS | NS | 0.60 | 0.64 |
Parameters | Treatment | Days to Emergence | Days to Flower Initiation | Days to Pod Initiation | Days to Maturity | ||||
---|---|---|---|---|---|---|---|---|---|
Years of Experimentation | |||||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
D1S1F1 | 95.1 | 103.1 | 503.6 | 576.8 | 645.2 | 776.9 | 1418.4 | 1435.3 | |
AGDD (°C days) | D1S1F2 | 95.1 | 91.1 | 503.6 | 576.8 | 645.2 | 776.9 | 1432.9 | 1480.0 |
D1S1F3 | 95.1 | 103.1 | 503.6 | 576.8 | 666.2 | 776.9 | 1447.1 | 1545.7 | |
D1S1F4 | 107.8 | 91.1 | 503.6 | 576.8 | 688.2 | 799.2 | 1485.4 | 1589.8 | |
D1S1F5 | 107.8 | 103.1 | 524.1 | 618.3 | 706.5 | 821.8 | 1506.4 | 1631.6 | |
D1S2F1 | 80.6 | 77.1 | 543.8 | 576.8 | 666.2 | 776.9 | 1464.9 | 1503.3 | |
D1S2F2 | 80.6 | 64.5 | 543.8 | 597.5 | 688.2 | 799.2 | 1485.4 | 1545.7 | |
D1S2F3 | 68.6 | 91.1 | 543.8 | 618.3 | 706.5 | 821.8 | 1564.7 | 1589.8 | |
D1S2F4 | 68.6 | 77.1 | 543.8 | 634.0 | 727.0 | 844.0 | 1564.7 | 1649.3 | |
D1S2F5 | 68.6 | 77.1 | 543.8 | 634.0 | 748.8 | 864.8 | 1585.3 | 1666.8 | |
D2S1F1 | 123.5 | 166.1 | 549.6 | 592.6 | 679.9 | 800.3 | 1403.6 | 1442.7 | |
D2S1F2 | 139.3 | 145.9 | 569.5 | 615.2 | 696.5 | 821.0 | 1424.1 | 1477.8 | |
D2S1F3 | 123.5 | 145.9 | 569.5 | 637.4 | 696.5 | 843.8 | 1439.6 | 1496.6 | |
D2S1F4 | 123.5 | 125.9 | 569.5 | 637.4 | 696.5 | 865.8 | 1439.6 | 1536.8 | |
D2S1F5 | 123.5 | 145.9 | 587.2 | 637.4 | 713.5 | 865.8 | 1457.8 | 1574.5 | |
D2S2F1 | 108.7 | 125.9 | 587.2 | 637.4 | 696.5 | 843.8 | 1457.8 | 1516.8 | |
D2S2F2 | 108.7 | 106.8 | 587.2 | 658.2 | 731.5 | 865.8 | 1477.8 | 1554.3 | |
D2S2F3 | 95.8 | 125.9 | 587.2 | 658.2 | 749.2 | 888.3 | 1496.5 | 1594.0 | |
D2S2F4 | 95.8 | 125.9 | 606.4 | 677.7 | 767.8 | 910.4 | 1496.5 | 1637.3 | |
D2S2F5 | 108.7 | 145.9 | 606.4 | 694.4 | 767.8 | 932.1 | 1532.0 | 1680.4 | |
APTU (°C hours) | D1S1F1 | 1105.4 | 1192.7 | 6007.6 | 6865.4 | 7756.1 | 9338.9 | 17,789.8 | 17,761.8 |
D1S1F2 | 1105.4 | 1053.6 | 6007.6 | 6865.4 | 7756.1 | 9338.9 | 18,062.5 | 18,348.9 | |
D1S1F3 | 1105.4 | 1192.7 | 6007.6 | 6865.4 | 8017.3 | 9338.9 | 18,268.8 | 19,212.5 | |
D1S1F4 | 1254.7 | 1053.6 | 6007.6 | 6865.4 | 8291.4 | 9616.6 | 18,268.8 | 19,794.2 | |
D1S1F5 | 1254.7 | 1192.7 | 6259.4 | 7374.0 | 8519.2 | 9899.8 | 18,511.9 | 20,346.7 | |
D1S2F1 | 935.8 | 890.2 | 6501.8 | 6865.4 | 8017.3 | 9338.9 | 18,511.9 | 18,655.1 | |
D1S2F2 | 935.8 | 744.1 | 6501.8 | 7119.1 | 8291.4 | 9616.6 | 18,778.5 | 19,212.5 | |
D1S2F3 | 796.4 | 1053.6 | 6501.8 | 7374.0 | 8519.2 | 9899.8 | 19,027.3 | 19,794.2 | |
D1S2F4 | 796.4 | 890.2 | 6501.8 | 7567.1 | 9048.5 | 10,177.9 | 19,027.3 | 20,581.7 | |
D1S2F5 | 796.4 | 890.2 | 6501.8 | 7567.1 | 8775.5 | 10,438.2 | 19,054.8 | 20,813.5 | |
D2S1F1 | 1475.8 | 1980.1 | 6716.4 | 7208.4 | 8359.1 | 9824.9 | 17,680.5 | 18,173.4 | |
D2S1F2 | 1666.3 | 1736.9 | 6966.1 | 7491.5 | 8569.8 | 10,088.1 | 17,871.7 | 18,637.9 | |
D2S1F3 | 1475.8 | 1736.9 | 6966.1 | 7769.6 | 8569.8 | 10,379.0 | 18,058.5 | 18,887.4 | |
D2S1F4 | 1475.8 | 1497.2 | 6966.1 | 7769.6 | 8569.8 | 10,659.6 | 18,564.7 | 19,421.5 | |
D2S1F5 | 1475.8 | 1736.9 | 7189.1 | 7769.6 | 8785.9 | 10,659.6 | 18,842.6 | 19,923.9 | |
D2S2F1 | 1297.1 | 1497.2 | 7189.1 | 7769.6 | 8569.8 | 10,379.0 | 18,293.6 | 19,156.4 | |
D2S2F2 | 1297.1 | 1268.7 | 7189.1 | 8029.9 | 9015.1 | 10,659.6 | 18,564.7 | 19,654.3 | |
D2S2F3 | 1142.2 | 1497.2 | 7189.1 | 8029.9 | 9241.5 | 10,946.4 | 19,615.6 | 20,183.7 | |
D2S2F4 | 1142.2 | 1497.2 | 7430.8 | 8275.0 | 9241.5 | 11,229.1 | 19,615.6 | 20,760.4 | |
D2S2F5 | 1297.1 | 1736.9 | 7430.8 | 8485.8 | 9479.1 | 11,507.8 | 19,888.8 | 21,335.8 | |
AHTU (°C hours) | D1S1F1 | 463.5 | 688.9 | 4158.2 | 4015.4 | 5426.9 | 5496.6 | 11,010.1 | 10,874.9 |
D1S1F2 | 463.5 | 651.8 | 4158.2 | 4015.4 | 5426.9 | 5496.6 | 11,102.3 | 11,245.7 | |
D1S1F3 | 463.5 | 688.9 | 4158.2 | 4015.4 | 5605.4 | 5496.6 | 11,151.9 | 11,420.5 | |
D1S1F4 | 591.0 | 651.8 | 4158.2 | 4015.4 | 5788.0 | 5716.9 | 11,151.9 | 11,579.6 | |
D1S1F5 | 591.0 | 688.9 | 4346.8 | 4301.4 | 5928.5 | 5932.1 | 11,287.0 | 11,681.3 | |
D1S2F1 | 357.6 | 577.4 | 4722.8 | 4015.4 | 5605.4 | 5496.6 | 11,287.0 | 11,519.7 | |
D1S2F2 | 357.6 | 529.5 | 4722.8 | 4176.9 | 5788.0 | 5716.9 | 11,487.0 | 11,589.7 | |
D1S2F3 | 320.6 | 651.8 | 4722.8 | 4301.4 | 5928.5 | 5932.1 | 11,675.4 | 11,764.3 | |
D1S2F4 | 320.6 | 577.4 | 4722.8 | 4447.4 | 6082.2 | 6131.9 | 11,675.4 | 11,984.8 | |
D1S2F5 | 320.6 | 577.4 | 4722.8 | 4447.4 | 6274.1 | 6138.1 | 11,675.4 | 12,346.2 | |
D2S1F1 | 1034.5 | 1344.9 | 4960.8 | 4399.5 | 5866.2 | 6141.3 | 11,382.3 | 11,240.4 | |
D2S1F2 | 1181.4 | 1223.4 | 5032.4 | 4614.7 | 5955.9 | 6348.3 | 11,382.3 | 11,361.0 | |
D2S1F3 | 1034.5 | 1223.4 | 5032.4 | 4814.5 | 5955.9 | 6576.8 | 11,382.3 | 11,900.8 | |
D2S1F4 | 1034.5 | 1065.4 | 5032.4 | 4814.5 | 5955.9 | 6774.8 | 11,719.1 | 12,316.5 | |
D2S1F5 | 1034.5 | 1223.4 | 5185.1 | 4814.5 | 6008.6 | 6774.8 | 11,880.8 | 12,545.4 | |
D2S2F1 | 899.4 | 1065.4 | 5185.1 | 4814.5 | 5955.9 | 6576.8 | 11,540.7 | 11,591.7 | |
D2S2F2 | 899.4 | 914.5 | 5185.1 | 4820.7 | 6107.6 | 6774.8 | 11,719.1 | 11,900.8 | |
D2S2F3 | 787.1 | 1065.4 | 5185.1 | 4820.7 | 6231.8 | 6976.9 | 12,084.8 | 12,316.5 | |
D2S2F4 | 787.1 | 1065.4 | 5356.0 | 5006.0 | 6298.8 | 7175.8 | 12,084.8 | 12557.8 | |
D2S2F5 | 899.4 | 1223.4 | 5356.0 | 5166.8 | 6298.8 | 7375.9 | 12,130.1 | 12,563.1 |
Parameters | Treatment | Days to Emergence | Days to Flower Initiation | Days to Pod Initiation | Days to Maturity | ||||
---|---|---|---|---|---|---|---|---|---|
Years of Experimentation | |||||||||
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
AGDD (°C days) | Date of sowing (D) | ||||||||
D1 | 86.8 | 87.8 | 525.8 | 598.6 | 688.8 | 805.8 | 1495.5 | 1563.7 | |
D2 | 115.1 | 136.0 | 582.0 | 644.6 | 719.6 | 863.7 | 1462.5 | 1551.1 | |
Soil application (S) | |||||||||
S1 | 113.4 | 122.1 | 538.4 | 604.6 | 683.4 | 814.8 | 1445.5 | 1521.1 | |
S2 | 88.5 | 101.7 | 569.3 | 638.7 | 854.7 | 854.7 | 1512.6 | 1593.8 | |
Foliar spray (F) | |||||||||
F1 | 102.0 | 118.1 | 546.1 | 595.9 | 799.5 | 799.5 | 1436.2 | 1474.5 | |
F2 | 105.9 | 102.1 | 551.0 | 611.9 | 815.7 | 815.7 | 1455.1 | 1514.5 | |
F3 | 95.8 | 116.5 | 551.0 | 622.7 | 832.7 | 832.7 | 1487.0 | 1556.5 | |
F4 | 98.9 | 105.0 | 555.8 | 631.5 | 854.9 | 854.9 | 1496.6 | 1603.3 | |
F5 | 102.2 | 118.0 | 565.4 | 646.0 | 871.1 | 871.1 | 1520.4 | 1638.3 | |
APTU (°C hours) | Date of sowing (D) | ||||||||
D1 | 1008.6 | 1015.4 | 6279.9 | 7132.8 | 8299.2 | 9700.5 | 18,530.2 | 18,530.2 | |
D2 | 1374.5 | 1618.5 | 7123.3 | 7859.9 | 8840.1 | 10,633.3 | 18,699.6 | 18,699.6 | |
Soil application (S) | |||||||||
S1 | 1339.5 | 1437.3 | 6509.4 | 7284.4 | 8319.5 | 9914.4 | 18,192.0 | 18,192.0 | |
S2 | 1043.7 | 1196.6 | 6893.8 | 7708.3 | 8819.9 | 10,419.3 | 18,699.6 | 18,699.6 | |
Foliar spray (F) | |||||||||
F1 | 1203.5 | 1390.1 | 6603.7 | 7177.2 | 8175.6 | 9720.4 | 18,069.0 | 18,069.0 | |
F2 | 1251.2 | 1200.8 | 6666.2 | 7376.5 | 8408.1 | 9925.8 | 18,319.4 | 18,319.4 | |
F3 | 1130.0 | 1370.1 | 6666.2 | 7509.7 | 8587.0 | 10,141.0 | 18,742.6 | 18,742.6 | |
F4 | 1167.3 | 1234.4 | 6726.6 | 7619.3 | 8787.8 | 10,420.8 | 18,869.1 | 18,869.1 | |
F5 | 1206.0 | 1389.2 | 6845.3 | 7799.1 | 8889.9 | 10,626.4 | 19,074.5 | 19,074.5 | |
AHTU (°C hours) | Date of sowing (D) | ||||||||
D1 | 425.0 | 628.4 | 4459.4 | 4175.2 | 5785.4 | 5755.4 | 11,350.3 | 11,600.7 | |
D2 | 959.2 | 1141.5 | 5151.0 | 4808.6 | 5948.5 | 6749.6 | 11,730.6 | 12,029.4 | |
Soil application (S) | |||||||||
S1 | 789.2 | 945.1 | 4622.3 | 4382.1 | 5791.8 | 6075.5 | 11,345.0 | 11,616.6 | |
S2 | 594.9 | 824.8 | 4988.1 | 4601.7 | 5942.1 | 6429.6 | 11,736.0 | 12,013.5 | |
Foliar spray (F) | |||||||||
F1 | 688.8 | 919.2 | 4756.7 | 4311.2 | 5713.8 | 5927.8 | 11,305.0 | 11,306.7 | |
F2 | 725.5 | 829.8 | 4774.6 | 4406.9 | 5819.6 | 6084.2 | 11,422.7 | 11,524.3 | |
F3 | 615.4 | 907.4 | 4774.6 | 4488.0 | 5930.4 | 6245.6 | 11,573.6 | 11,850.5 | |
F4 | 683.3 | 840.0 | 4817.4 | 4570.8 | 6031.2 | 6449.9 | 11,657.8 | 12,109.7 | |
F5 | 711.4 | 928.3 | 4902.7 | 4682.5 | 6127.5 | 6555.2 | 11,743.3 | 12,284.0 |
Parameter | Soil Application | Foliar Spray | First Week of March | Third Week of March | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | Mean | 2020 | 2021 | Mean | |||
Dry matter accumulation at harvest maturity (g/m−2) | RDF (20:40:40, N/P2O5/K2O kg/ha−1) | No spray | 206.2 ± 0.02 | 185.5 ± 0.04 | 195.8 | 200.2 ± 0.04 | 161.5 ± 0.05 | 180.8 |
Tap water | 246.9 ± 0.01 | 220.9 ± 0.06 | 233.9 | 241.5 ± 0.01 | 187.6 ± 0.05 | 214.6 | ||
K at 1.25% | 279.5 ± 0.02 | 253.6 ± 0.03 | 266.6 | 275.4 ± 0.05 | 216.6 ± 0.03 | 246.0 | ||
B at 0.2% | 309.9 ± 0.01 | 280.1 ± 0.01 | 295.0 | 304.3 ± 0.02 | 244.1 ± 0.05 | 274.2 | ||
K + B | 342.6 ± 0.02 | 304.2 ± 0.05 | 323.4 | 324.9 ± 0.03 | 274.9 ± 0.03 | 299.9 | ||
Mean | 277.0 | 248.9 | 269.2 | 216.9 | ||||
RDF + Co at 4 kg/ha−1 | No spray | 232.2 ± 0.02 | 223.7 ± 0.01 | 227.9 | 216.1 ± 0.05 | 182.0 ± 0.03 | 199.0 | |
Tap water | 277.4 ± 0.00 | 258.3 ± 0.05 | 267.8 | 255.7 ± 0.01 | 216.4 ± 0.03 | 236.0 | ||
K at 1.25% | 313.9 ± 0.02 | 295.9 ± 0.01 | 304.9 | 284.0 ± 0.02 | 247.7 ± 0.01 | 265.8 | ||
B at 0.2% | 358.2 ± 0.03 | 320.6 ± 0.02 | 339.4 | 305.6 ± 0.01 | 273.0 ± 0.03 | 289.3 | ||
K + B | 388.5 ± 0.01 | 346.8 ± 0.02 | 367.7 | 329.2 ± 0.01 | 301.2 ± 0.03 | 315.2 | ||
Mean | 314.0 | 314.0 | 301.5 | 278.1 | ||||
Seed yield (kg/ha−1) | RDF (20:40:40, N/P2O5/K2O kg/ha−1) | No spray | 860.7 ± 0.04 | 783.3 ± 0.05 | 822.0 | 756.6 ± 0.07 | 729.7 ± 0.07 | 743.1 |
Tap water | 1044.0 ± 0.01 | 998.3 ± 0.05 | 1021.2 | 922.8 ± 0.02 | 853.3 ± 0.06 | 888.1 | ||
K at 1.25% | 1188.5 ± 0.04 | 1101.0 ± 0.03 | 1144.8 | 1123.9 ± 0.07 | 983.7 ± 0.03 | 1053.8 | ||
B at 0.2% | 1320.2 ± 0.02 | 1261.3 ± 0.05 | 1290.8 | 1279.3 ± 0.03 | 1139.3 ± 0.05 | 1209.3 | ||
K + B | 1461.3 ± 0.03 | 1391.0 ± 0.03 | 1426.1 | 1429.3 ± 0.01 | 1280.7 ± 0.01 | 1355.0 | ||
Mean | 1174.9 | 1107.0 | 1102.4 | 997.3 | ||||
RDF + Co at 4 kg/ha−1 | No spray | 1002.4 ± 0.05 | 977.0 ± 0.03 | 989.7 | 895.3 ± 0.01 | 863.3 ± 0.04 | 879.3 | |
Tap water | 1204.9 ± 0.01 | 1191.7 ± 0.03 | 1198.3 | 1131.2 ± 0.03 | 1041.0 ± 0.06 | 1086.1 | ||
K at 1.25% | 1371.2 ± 0.02 | 1382.0 ± 0.01 | 1376.6 | 1273.8 ± 0.01 | 1177.7 ± 0.03 | 1225.7 | ||
B at 0.2% | 1592.2 ± 0.01 | 1492.0 ± 0.02 | 1542.1 | 1379.1 ± 0.01 | 1279.3 ± 0.02 | 1329.2 | ||
K + B | 1738.7 ± 0.01 | 1676.3 ± 0.03 | 1707.5 | 1493.2 ± 0.01 | 1380.7 ± 0.01 | 1437.0 | ||
Mean | 1381.9 | 1343.8 | 1234.5 | 1148.4 |
Parameter | Years | Statistical Significance | Factor-Wise Effect | Interaction Effect of All Factors | |||||
---|---|---|---|---|---|---|---|---|---|
D | S | F | D × S | D × F | S × F | D × S × F | |||
Dry matter accumulation at harvest maturity | 2020 | SEM (±) | 0.68 | 1.27 | 2.01 | 1.80 | 2.85 | 2.85 | 4.03 |
LSD | 4.21 | 3.65 | 5.78 | 5.17 | 8.17 | NS | 11.55 | ||
2021 | SEM (±) | 1.96 | 1.75 | 2.30 | 2.48 | 3.26 | 3.26 | 4.61 | |
LSD | 12.07 | 6.85 | 6.64 | 6.94 | 9.55 | 9.55 | 13.64 | ||
Seed yield | 2020 | SEM (±) | 8.69 | 6.42 | 10.15 | 9.08 | 14.36 | 14.36 | 20.31 |
LSD | 53.61 | 18.43 | 29.13 | 26.06 | 43.02 | 43.02 | 56.27 | ||
2021 | SEM (±) | 9.89 | 7.01 | 11.80 | 9.91 | 16.69 | 16.69 | 23.60 | |
LSD | 61.06 | 27.37 | 34.00 | 23.60 | 48.09 | 48.00 | 71.03 |
Treatment | Dry Matter Accumulation at Harvest Maturity (g/m−2) | Seed Yield (kg/ha−1) | |
---|---|---|---|
Date of sowing (D) | |||
First week of March | 282.24 ± 5.56 | 1251.92 ± 7.07 | |
Third week of March | 252.08 ± 3.96 | 1120.67 ± 1.92 | |
LSD (0.05) | 4.59 | 17.94 | |
Soil application (S) | |||
RDF | 253.01 ± 3.90 | 1095.42 ± 6.48 | |
RDF + Co at 4 kg/ha−1 | 281.31 ± 2.72 | 1277.17 ± 0.86 | |
LSD (0.05) | 3.58 | 16.59 | |
Foliar spray (F) | |||
No spray | 200.90 ± 2.20 | 858.56 ± 9.18 | |
Tap water | 238.10 ± 0.73 | 1048.43 ± 5.08 | |
K at 1.25% | 270.82 ± 0.93 | 1200.22 ± 4.59 | |
B at 0.2% | 299.44 ± 0.13 | 1342.85 ± 1.42 | |
K + B | 326.55 ± 1.45 | 1481.40 ± 11.40 | |
LSD (0.05) | 4.34 | 26.13 | |
Interaction | |||
DXS | SEM (±) | 1.30 | 6.01 |
LSD (0.05) | 5.07 | 23.46 | |
DXF | SEM (±) | 2.13 | 12.82 |
LSD (0.05) | 6.14 | 35.87 | |
SXF | SEM (±) | 2.13 | 12.82 |
LSD (0.05) | 6.14 | 35.87 | |
DXSXF | SEM (±) | 3.01 | 18.13 |
LSD (0.05) | 10.21 | 52.25 |
Thermal Use Efficiency | Soil Application | Foliar Spray | First Week of March | Third Week of March | ||||
---|---|---|---|---|---|---|---|---|
2020 | 2021 | Mean | 2020 | 2021 | Mean | |||
TUE for dry matter accumulation (g/m−2/°C/day−1) | RDF (20:40:40, N/P2O5/K2O kg/ha−1) | No spray | 0.14 | 0.13 | 0.14 | 0.13 | 0.11 | 0.12 |
Tap water | 0.17 | 0.15 | 0.16 | 0.16 | 0.13 | 0.15 | ||
K at 1.25% | 0.19 | 0.16 | 0.18 | 0.18 | 0.14 | 0.16 | ||
B at 0.2% | 0.21 | 0.18 | 0.20 | 0.20 | 0.16 | 0.18 | ||
K + B | 0.23 | 0.19 | 0.21 | 0.22 | 0.17 | 0.20 | ||
RDF + Co at 4 kg/ha−1 | No spray | 0.16 | 0.15 | 0.16 | 0.14 | 0.12 | 0.13 | |
Tap water | 0.19 | 0.17 | 0.18 | 0.17 | 0.14 | 0.16 | ||
K at 1.25% | 0.21 | 0.18 | 0.20 | 0.19 | 0.16 | 0.18 | ||
B at 0.2% | 0.24 | 0.19 | 0.22 | 0.20 | 0.17 | 0.19 | ||
K + B | 0.27 | 0.21 | 0.24 | 0.22 | 0.18 | 0.20 | ||
Mean | 0.20 | 0.17 | 0.19 | 0.18 | 0.15 | 0.16 | ||
TUE for seed yield (g/m−2/°C/day−1) | RDF (20:40:40, N/P2O5/K2O kg/ha−1) | No spray | 0.06 | 0.05 | 0.06 | 0.05 | 0.05 | 0.05 |
Tap water | 0.07 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | ||
K at 1.25% | 0.08 | 0.07 | 0.08 | 0.08 | 0.07 | 0.07 | ||
B at 0.2% | 0.09 | 0.08 | 0.09 | 0.09 | 0.07 | 0.08 | ||
K + B | 0.10 | 0.08 | 0.09 | 0.10 | 0.08 | 0.09 | ||
RDF + Co at 4 kg/ha−1 | No spray | 0.07 | 0.06 | 0.07 | 0.06 | 0.06 | 0.06 | |
Tap water | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.07 | ||
K at 1.25% | 0.09 | 0.09 | 0.09 | 0.09 | 0.07 | 0.08 | ||
B at 0.2% | 0.11 | 0.09 | 0.10 | 0.09 | 0.08 | 0.08 | ||
K + B | 0.12 | 0.10 | 0.11 | 0.10 | 0.09 | 0.10 | ||
Mean | 0.09 | 0.07 | 0.08 | 0.08 | 0.07 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, P.; Mukherjee, B.; Venugopalan, V.K.; Nath, R.; Chandran, M.A.S.; Dessoky, E.S.; Ismail, I.A.; El-Hallous, E.I.; Hossain, A. Thermal Response of Spring–Summer-Grown Black Gram (Vigna mungo L. Hepper) in Indian Subtropics. Atmosphere 2021, 12, 1489. https://doi.org/10.3390/atmos12111489
Banerjee P, Mukherjee B, Venugopalan VK, Nath R, Chandran MAS, Dessoky ES, Ismail IA, El-Hallous EI, Hossain A. Thermal Response of Spring–Summer-Grown Black Gram (Vigna mungo L. Hepper) in Indian Subtropics. Atmosphere. 2021; 12(11):1489. https://doi.org/10.3390/atmos12111489
Chicago/Turabian StyleBanerjee, Purabi, Bishal Mukherjee, Visha Kumari Venugopalan, Rajib Nath, Malamal Alickal Sarath Chandran, Eldessoky S. Dessoky, Ismail A. Ismail, Ehab I. El-Hallous, and Akbar Hossain. 2021. "Thermal Response of Spring–Summer-Grown Black Gram (Vigna mungo L. Hepper) in Indian Subtropics" Atmosphere 12, no. 11: 1489. https://doi.org/10.3390/atmos12111489
APA StyleBanerjee, P., Mukherjee, B., Venugopalan, V. K., Nath, R., Chandran, M. A. S., Dessoky, E. S., Ismail, I. A., El-Hallous, E. I., & Hossain, A. (2021). Thermal Response of Spring–Summer-Grown Black Gram (Vigna mungo L. Hepper) in Indian Subtropics. Atmosphere, 12(11), 1489. https://doi.org/10.3390/atmos12111489