Reduction in Indoor Airborne Endotoxin Concentration by the Use of Air Purifier and Its Relationship with Respiratory Health: A Randomized Crossover Intervention Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Indoor Endotoxin Measurements
2.3. Spirometry and Exhaled Nitric Oxide Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PM | particulate matter |
PM2.5 | fine particulate matter ≤2.5 µm in aerodynamic diameter |
PM10–2.5 | coarse particulate matter between 2.5 and 10 µm in aerodynamic diameter |
FEV1.0 | forced expiratory volume in one second |
FVC | forced vital capacity |
MMEF | maximal mid-expiratory flow |
PEF | peak expiratory flow rate |
25 | the ratio of the maximum expiratory flow rate at 50% of the FVC to the maximum expiratory flow rate at 25% of the FVC |
FeNO | fractional exhaled nitric oxide |
GM | geometric mean |
SD | standard deviation |
BMI | body mass index |
CI | confidence interval |
References
- Reisman, R.E.; Mauriello, P.M.; Davis, G.B.; Georgitis, J.W.; DeMasi, J.M. A double-blind study of the effectiveness of a high-efficiency particulate air (HEPA) filter in the treatment of patients with perennial allergic rhinitis and asthma. J. Allergy Clin. Immunol. 1990, 85, 1050–1057. [Google Scholar] [CrossRef]
- Cui, X.; Li, Z.; Teng, Y.; Barkjohn, K.J.; Norris, C.L.; Fang, L.; Daniel, G.N.; He, L.; Lin, L.; Wang, Q.; et al. Association Between Bedroom Particulate Matter Filtration and Changes in Airway Pathophysiology in Children with Asthma. JAMA Pediatr. 2020, 174, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Batterman, S.; Parker, E.; Godwin, C.; Chin, J.-Y.; O’Toole, A.; Robins, T.; Brakefield-Caldwell, W.; Lewis, T. Particle concentrations and effectiveness of free-standing air filters in bedrooms of children with asthma in Detroit, Michigan. Build. Environ. 2011, 46, 2303–2313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batterman, S.; Godwin, C.; Jia, C. Long Duration Tests of Room Air Filters in Cigarette Smokers’ Homes. Environ. Sci. Technol. 2005, 39, 7260–7268. [Google Scholar] [CrossRef] [PubMed]
- Ciuzas, D. Indoor Air Quality Management by Combined Ventilation and Air Cleaning: An Experimental Study. Aerosol Air Qual. Res. 2016, 16, 2550–2559. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, J.; Zhao, Q.; Song, X.; Shao, D.; Meliefste, K.; Du, Y.; Wang, J.; Wang, M.; Wang, T.; et al. Cardiovascular benefits of short-term indoor air filtration intervention in elderly living in Beijing: An extended analysis of BIAPSY study. Environ. Res. 2018, 167, 632–638. [Google Scholar] [CrossRef]
- Li, H.; Cai, J.; Chen, R.; Zhao, Z.; Ying, Z.; Wang, L.; Chen, J.; Hao, K.; Kinney, P.L.; Chen, H.; et al. Particulate matter exposure and stress hormone levels: A randomized, double-blind, crossover trial of air purification. Circulation 2017, 136, 618–627. [Google Scholar] [CrossRef]
- Jia-Ying, L.; Zhao, C.; Jia-Jun, G.; Zi-Jun, G.; Xiao, L.; Bao-Qing, S. Efficacy of air purifier therapy in allergic rhinitis. Asian Pac. J. Allergy Immunol. 2018, 36, 217–221. [Google Scholar] [CrossRef]
- James, C.; Bernstein, D.I.; Cox, J.; Ryan, P.; Wolfe, C.; Jandarov, R.; Newman, N.; Indugula, R.; Reponen, T. HEPA filtration improves asthma control in children exposed to traffic-related airborne particles. Indoor Air 2020, 30, 235–243. [Google Scholar] [CrossRef]
- Ulevitch, R.J.; Tobias, P.S. Receptor-Dependent Mechanisms of Cell Stimulation by Bacterial Endotoxin. Annu. Rev. Immunol. 1995, 13, 437–457. [Google Scholar] [CrossRef]
- Thorne, P.S. Inhalation toxicology models of endotoxin- and bioaerosol-induced inflammation. Toxicology 2000, 152, 13–23. [Google Scholar] [CrossRef]
- Poole, J.A.; Romberger, D.J. Immunological and inflammatory responses to organic dust in agriculture. Curr. Opin. Allergy Clin. Immunol. 2012, 12, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, M.; Milton, D.; Larsson, L.; Ford, T. Airborne environmental endotoxin: A cross-validation of sampling and analysis techniques. Appl. Environ. Microbiol. 1994, 60, 996–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, Y.-C.; Yang, C.-Y.; Wang, T.-N.; Yen, P.-C.; Ho, C.-K.; Mena, K.D.; Lee, T.-C.; Chen, K.-S.; Lin, Y.-C.; Chen, P.-S. Household airborne endotoxin associated with asthma and allergy in elementary school-age children: A case–control study in Kaohsiung, Taiwan. Environ. Sci. Pollut. Res. 2020, 27, 19502–19509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kljaic-Bukvic, B.; Blekic, M.; Aberle, N.; Curtin, J.A.; Hankinson, J.; Semic-Jusufagic, A.; Belgrave, D.; Simpson, A.; Custovic, A. Genetic variants in endotoxin signalling pathway, domestic endotoxin exposure and asthma exacerbations. Pediatr. Allergy Immunol. 2014, 25, 552–557. [Google Scholar] [CrossRef]
- Khan, M.S.; Coulibaly, S.; Matsumoto, T.; Yano, Y.; Miura, M.; Nagasaka, Y.; Shima, M.; Yamagishi, N.; Wakabayashi, K.; Watanabe, T. Association of airborne particles, protein, and endotoxin with emergency department visits for asthma in Kyoto, Japan. Environ. Health Prev. Med. 2018, 23, 41. [Google Scholar] [CrossRef]
- Lai, P.S.; Sheehan, W.J.; Gaffin, J.M.; Petty, C.R.; Coull, B.A.; Gold, D.R.; Phipatanakul, W. School Endotoxin Exposure and Asthma Morbidity in Inner-city Children. Chest 2015, 148, 1251–1258. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Gold, D.R.; Spiegelman, D.L.; Burge, H.A.; Milton, D.K. House Dust Endotoxin and Wheeze in the First Year of Life. Am. J. Respir. Crit. Care Med. 2001, 163, 322–328. [Google Scholar] [CrossRef]
- Smit, L.A.; Heederik, D.; Doekes, G.; Lammers, J.-W.J.; Wouters, I.M. Occupational Endotoxin Exposure Reduces the Risk of Atopic Sensitization but Increases the Risk of Bronchial Hyperresponsiveness. Int. Arch. Allergy Immunol. 2010, 152, 151–158. [Google Scholar] [CrossRef]
- O’Shaughnessy, P.; Peters, T.; Donham, K.; Taylor, C.; Altmaier, R.; Kelly, K. Assessment of Swine Worker Exposures to Dust and Endotoxin during Hog Load-Out and Power Washing. Ann. Occup. Hyg. 2012, 56, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Nonnenmann, M.W.; de Porras, D.G.R.; Levin, J.; Douphrate, D.; Boggaram, V.; Schaeffer, J.; Ms, M.G.; Ms, M.H.; Reynolds, S. Pulmonary function and airway inflammation among dairy parlor workers after exposure to inhalable aerosols. Am. J. Ind. Med. 2017, 60, 255–263. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, M.M.T.; Smit, L.A.M.; Erbrink, H.J.; Hagenaars, T.J.; Hoek, G.; Ogink, N.; Winkel, A.; Heederik, D.J.; Wouters, I. Endotoxin and particulate matter emitted by livestock farms and respiratory health effects in neighboring residents. Environ. Int. 2019, 132, 105009. [Google Scholar] [CrossRef] [PubMed]
- Ghani, N.; Khalid, A.; Tahir, A. Cross-sectional study on the endotoxin exposure and lung function impairment in the workers of textile industry near Lahore, Pakistan. J. Pak. Med. Assoc. 2016, 66, 803–814. [Google Scholar] [PubMed]
- Paudyal, P.; Semple, S.; Gairhe, S.; Steiner, M.F.; Niven, R.; Ayres, J.G. Respiratory symptoms and cross-shift lung function in relation to cotton dust and endotoxin exposure in textile workers in Nepal: A cross-sectional study. Occup. Environ. Med. 2015, 72, 870–876. [Google Scholar] [CrossRef] [Green Version]
- Frankel, M.; Bekö, G.; Timm, M.; Gustavsen, S.; Hansen, E.W.; Madsen, A.M. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate. Appl. Environ. Microbiol. 2012, 78, 8289–8297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delfino, R.J.; Staimer, N.; Tjoa, T. Personal endotoxin exposure in a panel study of school children with asthma. Environ. Health 2011, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Yoda, Y.; Tamura, K.; Shima, M. Airborne endotoxin concentrations in indoor and outdoor particulate matter and their predictors in an urban city. Indoor Air 2017, 27, 955–964. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, A.J.; Gibson, M.D.; MacNeill, M.; Ward, T.J.; Wallace, L.A.; Kuchta, J.; Seaboyer, M.; Dabek-Zlotorzynska, E.; Guernsey, J.R.; Stieb, D.M. Impacts of Air Cleaners on Indoor Air Quality in Residences Impacted by Wood Smoke. Environ. Sci. Technol. 2014, 48, 12157–12163. [Google Scholar] [CrossRef]
- Ma, H.; Shen, H.; Shui, T.; Li, Q.; Zhou, L. Experimental Study on Ultrafine Particle Removal Performance of Portable Air Cleaners with Different Filters in an Office Room. Int. J. Environ. Res. Public Health 2016, 13, 102. [Google Scholar] [CrossRef] [Green Version]
- Fermo, P.; Comite, V.; Falciola, L.; Guglielmi, V.; Miani, A. Efficiency of an Air Cleaner Device in Reducing Aerosol Particulate Matter (PM) in Indoor Environments. Int. J. Environ. Res. Public Health 2019, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Lee, T.J.; Park, M.J.; Oh, H.N.; Jo, Y.M. Effects of air cleaners and school characteristics on classroom concentrations of particulate matter in 34 elementary schools in Korea. Build. Environ. 2020, 167, 106437. [Google Scholar] [CrossRef] [PubMed]
- Yoda, Y.; Tamura, K.; Adachi, S.; Otani, N.; Nakayama, S.F.; Shima, M. Effects of the Use of Air Purifier on Indoor Environment and Respiratory System among Healthy Adults. Int. J. Environ. Res. Public Health 2020, 17, 3687. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Belvisi, M.G. Nitric oxide and lung disease. Thorax 1993, 48, 1034–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maziak, W.; Loukides, S.; Culpitt, S.; Sullivan, P.; Kharitonov, S.A.; Barnes, P.J. Exhaled Nitric Oxide in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1998, 157, 998–1002. [Google Scholar] [CrossRef] [Green Version]
- Clini, E.; Bianchi, L.; Pagani, M.; Ambrosino, N. Endogenous nitric oxide in patients with stable COPD: Correlates with severity of disease. Thorax 1998, 53, 881–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.R.; Crapo, R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. General considerations for lung function testing. Eur. Respir. J. 2005, 26, 153–161. [Google Scholar] [CrossRef] [Green Version]
- American Thoracic Society; European Respiratory Society. ATS/ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005. Am. J. Respir. Crit. Care Med. 2005, 171, 912–930. [Google Scholar] [CrossRef]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.-C.; Plummer, A.L.; Taylor, D.R. An Official ATS Clinical Practice Guideline: Interpretation of Exhaled Nitric Oxide Levels (FeNO) for Clinical Applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, J.; Pitz, M.; Bischof, W.; Krug, N.; Borm, P.J.A. Endotoxin in fine (PM2.5) and coarse (PM2.5–10) particle mass of ambient aerosols. A temporo-spatial analysis. Atmos. Environ. 2003, 37, 3659–3667. [Google Scholar] [CrossRef]
- Monn, C.; Becker, S. Cytotoxicity and Induction of Proinflammatory Cytokines from Human Monocytes Exposed to Fine (PM2.5) and Coarse Particles (PM10–2.5) in Outdoor and Indoor Air. Toxicol. Appl. Pharmacol. 1999, 155, 245–252. [Google Scholar] [CrossRef]
- Padhi, B.K.; Adhikari, A.; Satapathy, P.; Patra, A.K.; Chandel, D.; Panigrahi, P. Predictors and respiratory depositions of airborne endotoxin in homes using biomass fuels and LPG gas for cooking. J. Expo. Sci. Environ. Epidemiol. 2016, 27, 112–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, M.; Shen, F.; Zhou, F.; Zhu, T.; Zheng, Y.; Yang, Y.; Sun, Y.; Li, X.; Wu, Y.; Fu, P.; et al. Indoor air filtration could lead to increased airborne endotoxin levels. Environ. Int. 2020, 142, 105878. [Google Scholar] [CrossRef]
- Tran, T.N.; Tran, T.T.T.; Nguyen, D.K.T.; Doyen, V.; Michel, O.; Bouland, C. An unequal endotoxin distribution in typical house types of Ho Chi Minh city. Asian Pac. J. Allergy Immunol. 2020. [Google Scholar] [CrossRef]
- Thorne, P.S.; Cohn, R.D.; Mav, D.; Arbes, S.J.; Zeldin, D.C. Predictors of Endotoxin Levels in U.S. Housing. Environ. Health Perspect. 2009, 117, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Mendy, A.; Wilkerson, J.; Salo, P.M.; Cohn, R.D.; Zeldin, D.; Thorne, P.S. Exposure and Sensitization to Pets Modify Endotoxin Association with Asthma and Wheeze. J. Allergy Clin. Immunol. Pract. 2018, 6, 2006–2013. [Google Scholar] [CrossRef]
- Rabinovitch, N.; Liu, A.H.; Zhang, L.; Rodes, C.E.; Foarde, K.; Dutton, S.J.; Murphy, J.R.; Gelfand, E.W. Importance of the personal endotoxin cloud in school-age children with asthma. J. Allergy Clin. Immunol. 2005, 116, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Pattenden, S.; Willers, S.; Antova, T.; Fabianova, E.; Braun-Fahrländer, C.; Forastiere, F.; Gehring, U.; Luttmann-Gibson, H.; Grize, L.; et al. PM10, and children’s respiratory symptoms and lung function in the PATY study. Eur. Respir. J. 2012, 40, 538–547. [Google Scholar] [CrossRef] [Green Version]
- Yen, Y.-C.; Yang, C.-Y.; Ho, C.-K.; Yen, P.-C.; Cheng, Y.-T.; Mena, K.D.; Lee, T.-C.; Chen, P.-S. Indoor ozone and particulate matter modify the association between airborne endotoxin and schoolchildren’s lung function. Sci. Total. Environ. 2020, 705, 135810. [Google Scholar] [CrossRef]
- Hwang, S.H.; Park, D.J.; Park, W.M.; Ahn, J.K.; Yoon, C.S.; Park, D.U. Seasonal variation in airborne endotoxin levels in indoor environments with different micro-environmental factors in Seoul, South Korea. Environ. Res. 2016, 145, 101–108. [Google Scholar] [CrossRef]
Characteristics | (n = 31) | |
---|---|---|
Sex | ||
male | 9 | |
female | 22 | |
Age (years) | ||
mean ± SD | 41.1 ± 7.6 | |
range | 31–60 | |
BMI (kg/m2) | ||
mean ± SD | 21.8 ± 3.2 | |
range | 16.6–31.6 | |
Household members | ||
One | 10 | |
Two or more | 21 | |
Presence of pet | ||
Yes | 5 | |
No | 26 | |
Structure of house | ||
Reinforced concrete | 25 | |
Wood | 6 | |
Architectural style | ||
Apartment | 21 | |
Detached house | 10 | |
Type of floor | ||
Wooden flooring | 21 | |
Others | 10 |
True Air Purifiers | Sham Air Purifiers | ||||
---|---|---|---|---|---|
n | GM (95% CI) | n | GM (95% CI) | p | |
Endotoxin (EU/m3) | data | data | |||
PM2.5 | 115 | 0.13 (0.12, 0.15) | 119 | 0.17 (0.15, 0.19) | 0.002 |
PM10–2.5 | 118 | 0.09 (0.07, 0.10) | 119 | 0.10 (0.09, 0.12) | 0.297 |
Endotoxin (EU/mg PM) | |||||
PM2.5 | 109 | 18.5 (16.7, 20.4) | 117 | 19.1 (17.2, 21.1) | 0.663 |
PM10–2.5 | 110 | 44.2 (37.6, 51.8) | 116 | 46.8 (39.6, 55.4) | 0.619 |
PM2.5 Endotoxin | PM10−2.5 Endotoxin | |||
---|---|---|---|---|
Percent Change (95%CI) | p | Percent Change (95%CI) | p | |
Air purifier (true/sham) | −14.0 (−18.8, −9.3) | <0.001 | −3.8 (−9.4, 1.7) | 0.177 |
Household members (one/two or more) | −2.8 (−20.7, 15.0) | 0.748 | −29.2 (−52.2, −6.1) | 0.015 |
Presence of pet (yes/no) | 6.4 (−19.1, 31.8) | 0.611 | 41.6 (12.4, 70.7) | 0.007 |
Structure of house (reinforced concrete/wood) | 34.1 (6.9, 61.2) | 0.016 | 1.6 (−31.6, 34.9) | 0.920 |
Architectural style (apartment/house) | −12.9 (−40.6, 14.8) | 0.348 | 14.4 (−19.8, 48.6) | 0.395 |
Type of floor (others/wooden flooring) | −4.4 (−20.1, 11.4) | 0.576 | 6.9 (−11.7, 25.6) | 0.453 |
Temperature (°C) | 0.7 (−0.9, 2.2) | 0.394 | −0.3 (−2.1, 1.5) | 0.759 |
Relative humidity (%) | 0.3 (−0.2, 0.9) | 0.190 | 0.4 (−0.2, 1.0) | 0.188 |
1st Term | 2nd Term | |||
---|---|---|---|---|
Male | Female | Male | Female | |
FVC (L) | 3.79 ± 0.38 | 3.02 ± 0.34 | 3.85 ± 0.43 | 3.01 ± 0.33 |
FEV1.0 (L) | 3.17 ± 0.44 | 2.46 ± 0.29 | 3.21 ± 0.43 | 2.45 ± 0.29 |
FEV1.0/FVC (%) | 83.4 ± 6.0 | 82.0 ± 7.1 | 83.3 ± 4.8 | 81.6 ± 7.0 |
MMEF (L/s) | 3.43 ± 1.01 | 2.71 ± 0.80 | 3.52 ± 1.03 | 2.73 ± 0.88 |
PEF (L/s) | 7.95 ± 2.56 | 5.13 ± 1.22 | 8.72 ± 2.15 | 5.29 ± 1.19 |
50/25 | 2.75 ± 0.89 | 3.70 ± 2.98 | 2.82 ± 0.89 | 3.48 ± 1.26 |
FeNO (ppb) * | 13.0 ± 2.5 | 10.3 ± 2.1 | 14.5 ± 2.5 | 10.6 ± 2.6 |
PM2.5 Endotoxin | PM10−2.5 Endotoxin | |||
---|---|---|---|---|
Percent Change (95%CI) | p | Percent Change (95%CI) | p | |
FVC (L) | −0.02 (−0.11, 0.07) | 0.671 | −0.02 (−0.07, 0.04) | 0.509 |
FEV1.0 (L) | −0.04 (−0.11, 0.03) | 0.297 | −0.01 (−0.06, 0.03) | 0.607 |
FEV1.0/FVC (%) | 1.58 (−0.45, 3.16) | 0.127 | 0.16 (−1.05, 1.38) | 0.788 |
MMEF (L/s) | 0.12 (−0.12, 0.35) | 0.325 | 0.01 (−0.13, 0.16) | 0.840 |
PEF (L/s) | 0.27 (−0.25, 0.79) | 0.307 | −0.21 (−0.58, 0.16) | 0.263 |
50/25 | −0.16 (−0.64, 0.32) | 0.516 | −0.24 (−0.51, 0.03) | 0.078 |
LogFeNO | −0.12 (−0.27, 0.03) | 0.123 | −0.07 (−0.19, 0.04) | 0.216 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoda, Y.; Tamura, K.; Otani, N.; Hasunuma, H.; Nakayama, S.F.; Shima, M. Reduction in Indoor Airborne Endotoxin Concentration by the Use of Air Purifier and Its Relationship with Respiratory Health: A Randomized Crossover Intervention Study. Atmosphere 2021, 12, 1523. https://doi.org/10.3390/atmos12111523
Yoda Y, Tamura K, Otani N, Hasunuma H, Nakayama SF, Shima M. Reduction in Indoor Airborne Endotoxin Concentration by the Use of Air Purifier and Its Relationship with Respiratory Health: A Randomized Crossover Intervention Study. Atmosphere. 2021; 12(11):1523. https://doi.org/10.3390/atmos12111523
Chicago/Turabian StyleYoda, Yoshiko, Kenji Tamura, Naruhito Otani, Hideki Hasunuma, Shoji F. Nakayama, and Masayuki Shima. 2021. "Reduction in Indoor Airborne Endotoxin Concentration by the Use of Air Purifier and Its Relationship with Respiratory Health: A Randomized Crossover Intervention Study" Atmosphere 12, no. 11: 1523. https://doi.org/10.3390/atmos12111523
APA StyleYoda, Y., Tamura, K., Otani, N., Hasunuma, H., Nakayama, S. F., & Shima, M. (2021). Reduction in Indoor Airborne Endotoxin Concentration by the Use of Air Purifier and Its Relationship with Respiratory Health: A Randomized Crossover Intervention Study. Atmosphere, 12(11), 1523. https://doi.org/10.3390/atmos12111523