Assessing Health Impacts of Winter Smog in Lahore for Exposed Occupational Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
Variables 1 | Categories | Percentage |
---|---|---|
Gender | Male | 78 |
Female | 22 | |
Occupation group | Farmer | 19 |
Household | 16 | |
Labor | 18 | |
Shopkeeper | 18 | |
Driver | 14 | |
Office employee | 15 | |
Age (years) | 16–20 | 5 |
21–44 | 74 | |
45–64 | 17 | |
>65 | 4 | |
Literacy level | Illiterate | 30 |
Primary | 20 | |
High school | 24 | |
Higher | 26 | |
Smoking habit | Yes = 1 | 41 |
No = 0 | 59 | |
History of respiratory diseases | Yes = 1 | 22 |
No | 78 | |
Location | If location is Lahore = 1 | 17 |
Otherwise = 0 | 83 | |
Coping measures | Yes = 1 | 37 |
No = 0 | 63 |
Diseases | Farmer (n 1) | Unpaid Household Worker (n) | Labor (n) | Shopkeeper (n) | Office Goers (n) | Driver (n) | Total (n) | Prevalence (%) |
---|---|---|---|---|---|---|---|---|
Respiratory | 16 | 9 | 21 | 11 | 8 | 13 | 78 | 22.9 |
Allergy | 4 | 12 | 8 | 9 | 7 | 8 | 48 | 14.1 |
Cardiac | 3 | 3 | 1 | 1 | 1 | 2 | 11 | 3.2 |
Neural disorders | 0 | 1 | 1 | 0 | 1 | 1 | 4 | 1.1 |
Other non-respiratory diseases | 4 | 4 | 2 | 4 | 4 | 2 | 20 | 5.8 |
Total | 27 | 29 | 33 | 25 | 21 | 26 | 116 |
3. Results
3.1. Descriptive Results
3.2. Perception of Occupational Impacts of Winter Smog
3.3. Logistic Regression Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sui, X.; Zhang, J.; Zhang, Q.I.; Sun, S.; Lei, R.; Zhang, C.; Cheng, H.; Ding, L.; Ding, R.; Xiao, C.; et al. The short-term effect of PM2.5/O3 on daily mortality from 2013 to 2018 in Fefei, China. Environ. Geochem. Health 2021, 43, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Gauderman, W.J. Sample size requirements for matched case-control studies of gene–environment interaction. Stat. Med. 2002, 21, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., 3rd; Hansen, M.L.; Long, R.W.; Nielsen, K.R.; Eatough, N.L.; Wilson, W.E.; Eatough, D.J. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environ. Health Pers. 2004, 112, 339–345. [Google Scholar] [CrossRef]
- Liu, T.; Mickley, L.J.; Gautam, R.; Singh, M.K.; De Fries, R.S.; Marlier, M.E. Detection of delay in post-monsoon agricultural burning across Punjab, India: Potential drivers and consequences for air quality. Environ. Res. Let. 2021, 16, 014014. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human Health effects of Air Pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Arbex, M.A.; Santos, U.D.P.; Martins, L.C.; Saldiva, P.H.N.; Pereira, L.A.A.; Braga, A.L.F. Air pollution and the respiratory system. J. Bras. Pneumol. 2012, 38, 643–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khwaja, H.A.; Fatmi, Z.; Malashock, D.; Aminov, Z.; Kazi, A.; Siddique, A.; Qureshi, J.; Carpenter, D.O. Effect of air pollution on daily morbidity in Karachi, Pakistan. J. Local Glob. Health Sci. 2012, 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ebenstein, A.; Greenstone, M.; Li, H. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. USA 2013, 110, 12936–12941. [Google Scholar] [CrossRef]
- Janssen, B.G.; Godderis, L.; Pieters, N.; Poels, K.; Kiciński, M.; Cuypers, A.; Fierens, F.; Penders, J.; Plusquin, M.; Gyselaers, W.; et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part. Fibre Toxicol. 2013, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.R.; Lin, Y.T.; Hwang, B.F. Air pollution and newly diagnostic autism spectrum disorders: A population-based cohort study in Taiwan. PLoS ONE 2013, 8, e75510. [Google Scholar]
- Kloog, I.; Ridgway, B.; Koutrakis, P.; Coull, B.A.; Schwartz, J.D. Long-and short-term exposure to PM2.5 and mortality: Using novel exposure models. Epidemiology 2013, 24, 555. [Google Scholar] [CrossRef]
- Tsai, S.S.; Chang, C.C.; Yang, C.Y. Fine particulate air pollution and hospital admissions for chronic obstructive pulmonary disease: A case-crossover study in Taipei. Int. J. Environ. Res. Public Health 2013, 10, 6015–6026. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Myung, W.; Won, H.H.; Shim, S.; Jeon, H.J.; Choi, J.; Carroll, B.J.; Kim, D.K. Association between air pollution and suicide in South Korea: A nationwide study. PLoS ONE 2015, 10, e0117929. [Google Scholar] [CrossRef] [PubMed]
- Kioumourtzoglou, M.A.; Schwartz, J.D.; Weisskopf, M.G.; Melly, S.J.; Wang, Y.; Dominici, F.; Zanobetti, A. Long-term PM2.5 exposure and neurological hospital admissions in the northeastern United States. Environ. Health Perspect. 2016, 124, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Brasseur, G.P. The response in air quality to the reduction of Chinese economic activities during the COVID-19 outbreak. Geophys. Res. Lett. 2020, 47, e2020GL088070. [Google Scholar] [CrossRef]
- Tsai, S.; Cheng, M.; Chiu, H.; Wu, T.; Yang, C. Air Pollution and hospital admissions for asthma in a tropical city: Kaohsiung, Taiwan. Inhal. Toxicol. 2006, 18, 549–554. [Google Scholar] [CrossRef]
- Gurjar, B.R.; Ravindra, K.; Nagpure, A.S. Air pollution trends over Indian megacities and their local-to-global implication. Atmos. Environ. 2016, 142, 475–495. [Google Scholar] [CrossRef]
- Vega, E.; Eidels, S.; Ruiz, H.; Lopez-Veneroni, D.; Sosa, G.; Gonzalez, E.; Gasca, J.; Mora, V.; Reye, E.; Sanchez-Reyna, G.; et al. Particulate air pollution in Mexico City: A detailed view. Aerosol Air Qual. Res. 2010, 10, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Ali, K.; Acharja, P.; Trivedi, D.K.; Kulkarni, R.; Pithani, P.; Safai, P.D.; Chate, D.M.; Ghude, S.; Jenamani, R.K.; Rajeevan, M. Charecterization and source identification of PM2.5 and its chemical and carbonaceous constituents during winter fog experiment 2015-16 at Indira Gandhi International Airport, Delhi. Sci. Total Environ. 2019, 662, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Chen, L.; Xiong, X.; Zhang, M.; Ma, P.; Tao, J.; Wang, Z. Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate. Atmos. Environ. 2014, 98, 417–425. [Google Scholar] [CrossRef]
- Perez-Diaz, J.L.; Ivanov, O.; Peshev, Z.; Alvarez-Valenzuela, M.A.; Valiente-Blanco, I.; Evgenieva, T.; Dreischuh, T.; Gueorguiev, O.; Todorov, P.V.; Vaseashta, A. Fogs: Physical basis, characteristic properties, and impacts on the environment and human health. Water 2017, 9, 807. [Google Scholar] [CrossRef] [Green Version]
- WHO. Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe Caucasus and Central Asia; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Zeng, Y.; Cao, Y.; Qiao, X.; Seyler, B.C.; Tang, Y. Air pollution reduction in China: Recent success but great challenge for the future. Sci. Total Environ. 2019, 663, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Badyda, A.J.; Grellier, J.; Dąbrowiecki, P. Ambient PM2.5 exposure and mortality due to lung cancer and cardiopulmonary diseases in Polish cities. In Respiratory Treatment and Prevention. Advances in Experimental Medicine and Biology; Pokorski, M., Ed.; Springer: Cham, Switzerland, 2016; Volume 944, pp. 9–17. [Google Scholar]
- US EPA. Integrated Risk Information System, Methylmercury Oral Reference Dose; Environmental Protection Agency: Washington, DC, USA, 2003. Available online: http://www.epa.gov/iris/subst/0073.html (accessed on 21 August 2021).
- Daniels, M.J.; Dominici, F.; Samet, J.M.; Zeger, S.L. Estimating particulate matter-mortality dose-response curves and threshold levels: An analysis of daily time series for the 20 largest US cities. Am. J. Epidemiol. 2000, 152, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Kelly, F.J.; Fussell, J.C. Air Pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, S.; Chirkov, V.; Dentener, F.; Dingenen, R.V.; Pachauri, S.; Purohit, P.; Amann, M.; Heyes, C.; Kinney, P.; Kolp, P.; et al. Estimation of the Global Health Impacts of Air Pollution; IASA: Laxenburg, Austria, 2011. [Google Scholar]
- Lelieveld, J.; Evans, J.S.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to permanent mortality on global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Singh, D.P.; Gadi, R.; Mandal, T.K.; Dixit, C.K.; Singh, K.; Saud, T.; Singh, N.; Gupta, P.K. Study of temporal variation in ambient air quality during Diwali festival in India. Environ. Mon. Assess. 2010, 169, 1–13. [Google Scholar] [CrossRef]
- Khanum, F.; Chaudhry, M.N.; Kumar, P. Characterization of five-year observation data of fine particulate matter in the metropolitan area of Lahore. Air Qual. Atmos. Health 2017, 10, 725–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackney, J.D.; Linn, W.S.; Avol, E.L. Acid Fog: Effects on respiratory function and symptoms in healthy and asthmatic volunteers. Environ. Health Pres. 1989, 79, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Zivin, J.G.; Mulins, J.T.; Neideli, M. Early-life exposure to the great smog of 1952 and the development of asthma. Am. J. Respir. Crit. Care Med. 2016, 194, 1475–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenamani, R.K. Alarming rise in fog and pollution causing a fall in maximum temperature over Delhi. Cur. Sci. 2007, 93, 314–322. [Google Scholar]
- Shrestha, S.; Moore, G.A.; Peel, M.C. Trends in winter fog in Terai region of Nepal. Agric. For. Meteorol. 2018, 259, 118–130. [Google Scholar] [CrossRef]
- Hopke, P.K.; Cohen, D.D.; Begum, B.A.; Biswas, S.K.; Ni, B.; Pandit, G.G.; Santoso, M.; Chung, Y.; Davy, P.; Markwitz, A.; et al. Urban air quality in Asian region. Sci. Total Environ. 2008, 404, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Jin, X.; Zucker, N.; Kennedy, R.; Urpelainen, J. Transboundary air pollution from coal-fired power generation. J. Environ. Manag. 2020, 270, 110862. [Google Scholar] [CrossRef] [PubMed]
- WHO. Air Quality Guidelines Global Update 2005 Geneva; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Hameed, S.; Mirza, M.I.; Ghauri, B.M.; Siddiqui, Z.R.; Javed, R.; Khan, A.R.; Rattigan, O.V.; Qureshi, S.; Husain, L. On the widespread winter fog in Northeastern Pakistan and India. Geophy. Res. Lett. 2000, 27, 1891–1894. [Google Scholar] [CrossRef]
- Ahmad, N.; Hussain, K.; Ahmad, N.; Khaleeq-ur-Rahman, M.; Hussnainn, A. A study of concentration of Lahore (Pakistan) suspended particulates and their trace elemental loadings. World Appl. Sci. J. 2014, 32, 1952–1961. [Google Scholar]
- Bulbul, G.; Shahid, I.; Chishte, F.; Shahid, M.Z.; Hundal, R.A.; Zahra, F.; Shahzad, M.I. PM10 Sampling and AOD Trends during 2016 winter fog season in the Islamabad region. Aerosol Air Qual. Res. 2018, 18, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Athar, M. Impact of transport and industrial emissions on the ambient air quality of Lahore city, Pakistan. Environ. Monit. Assess. 2010, 171, 353–363. [Google Scholar] [CrossRef]
- Parveen, R.; Ahmad, A. Public Behavior in reducing urban air pollution: An application of the theory of planed behavior in Lahore. Environ. Sci. Pol. Res. 2020, 27, 17815–17830. [Google Scholar] [CrossRef]
- Aziz, A.; Bajwa, I.U. Minimizing human health effects of urban air pollution through quantification and control of motor vehicular carbon monoxide (CO) in Lahore. Environ. Monit. Assess. 2007, 135, 459–464. [Google Scholar] [CrossRef]
- Colbeck, I.; Nasir, Z.A.; Ali, Z. The state of ambient air quality in Pakistan—A review. Environ. Sci. Pollut. Res. 2010, 17, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, V.; Shridhar, V.; Choudhary, A. Investigation of the source, morphology, and trace elements associated with atmospheric PM10 and human health risks due to inhalation of carcinogenic elements at Dehradun, an Indo-Himalayan City. SN Appl. Sci. 2019, 1, 429. [Google Scholar] [CrossRef] [Green Version]
- Greven, S.; Dominici, F.; Zeger, S. An approach to the estimation of chronic air pollution effects using spatio-temporal information. J. Am. Stat. Assoc. 2011, 106, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Patankar, A.M.; Trivedi, P.L. Monetary burden of health impacts of air pollution in Mumbai, India: Implication for public health policy. Public Health 2011, 125, 157–164. [Google Scholar] [CrossRef]
- Romero-Lankao, P.; Qin, H.; Borbor-Cordova, M. Exploration of health risks related to air pollution and temperature in three Latin American cities. Soc. Sci. Med. 2013, 83, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Iqbal, R. Smog. Pak. J. Med. Res. 2016, 55, 98. [Google Scholar]
- Colbeck, I.; Nasir, Z.A.; Ahmad, S.; Ali, Z. Exposure to PM10, PM2.5, PM1 and carbon monoxide on roads in Lahore Pakistan. Aerosol Air Qual. Res. 2011, 11, 689–695. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, M.R.; Akter, T. An assessment of climatic change impacts on livelihood patterns: A case study at Bakergonj Upazila, Barisal. J. Health Environ. Res. 2017, 3, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Riaz, R.; Hamid, K. Existing smog in Lahore, Pakistan: An alarming health concern. Cureus 2018, 10, e2111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czechowski, P.O.; Dąbrowiecki, P.; Oniszczuk-Jastrząbek, A.; Bielawska, B.; Czermański, E.; Owczarek, T.; Rogula-Kopiec, P.; Badyda, A. A preliminary attempt at the identification and financial estimation of negative health effects of urban and industrial air pollution based on the agglomeration of Gdańsk. Sustainability 2019, 12, 42. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, M.F.; Mehdi, H.; Abbas, Z.; Javed, Z. Temporal assessment of NO2 pollution levels in urban centers of Pakistan by employing ground-based and satellite observations. Aerosol Air Qual. Res. 2016, 16, 1854–1867. [Google Scholar] [CrossRef]
- Stone, E.; Schauer, J.; Quraishi, T.A.; Mahmood, A. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmos. Environ. 2010, 44, 1062–1070. [Google Scholar] [CrossRef]
- Khan, M.M.; Zaman, K.; Irfan, D.; Awan, U.; Ali, G.; Kyophilavong, P.; Shahbaz, M.; Naseem, I. Triangular relationship among energy consumption, air pollution and water resources in Pakistan. J. Clean. Prod. 2016, 112, 1375–1385. [Google Scholar] [CrossRef]
- Nasir, Z.A.; Murtaza, F.; Colbeck, I. Role of poverty in fuel choice and exposure to indoor air pollution in Pakistan. J. Integ. Environ. Sci. 2015, 12, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.U.; Rashid, A.; Yousaf, B.; Kamal, A. Health outcomes of road-traffic pollution among exposed roadside-workers in the Rawalpindi city Pakistan. Hum. Ecol. Risk Assess. 2017, 23, 1330–1339. [Google Scholar] [CrossRef]
- Durand, M.; Grattan, J. Extensive respiratory health effects of volcanogenic dry fog in 1783 inferred from European documentary sources. Environ. Geochem. Health 1999, 21, 371–376. [Google Scholar] [CrossRef]
- Neidell, M.J. Air pollution, health, and socio-economic status: The effect of outdoor air quality on childhood asthma. J. Health Econ. 2004, 23, 1209–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, M.; Mhawish, A.; Nichol, J.E.; Qiu, Z.; Nazeer, M.; Ali, M.A.; de Leeuw, G.; Levy, R.C.; Wang, Y.; Chen, Y.; et al. Air pollution scenario over Pakistan: Characterization and ranking of extremely polluted cities using long-term concentrations of aerosol and trace gases. Remote Sens. Environ. 2021, 264, 112617. [Google Scholar] [CrossRef]
- Miri, M.; Derakhshan, Z.; Allahabadi, A.; Ahmadi, E.; Conti, G.O.; Ferrante, M.; Aval, H.E. Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis, Iran. The AirQ model approach. Environ. Res. 2016, 151, 451–457. [Google Scholar] [CrossRef]
- Badyda, A.J.; Dabrowiecki, P.; Czechowski, P.O.; Majewski, G. Risk of bronchi obstruction among non-smokers-Review of environmental factors affecting bronchoconstriction. Res. Physiol. Neurobiol. 2015, 209, 39–46. [Google Scholar] [CrossRef]
- Maji, S.; Ahmed, S.; Siddiqui, W.A.; Ghosh, S. Short term effects of criteria air pollutants in daily mortality in Delhi, India. Atmos. Environ. 2017, 150, 210–219. [Google Scholar] [CrossRef]
- Silva, R.A.; Adelman, Z.; Fry, M.M.; West, J.J. The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution. Environ. Health Pres. 2016, 124, 1776–1784. [Google Scholar] [CrossRef] [Green Version]
- Asl, F.B.; Leili, M.; Vaziri, Y.; Arian, S.S.; Cristaldi, A.; Conti, G.O.; Ferrante, M. Health impacts quantification of ambient air pollutants using AirQ model approach in Hamadan, Iran. Environ. Res. 2018, 161, 114–121. [Google Scholar]
- Rovira, J.; Domingo, J.L.; Schuhmacher, M. Air Quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Sci. Total Environ. 2020, 703, 135538. [Google Scholar] [CrossRef]
- Anjum, M.S.; Ali, S.M.; Subhani, M.A.; Anwar, M.N.; Nizami, A.S.; Ashraf, U.; Khokhar, M.F. An emerged challenge of air pollution and ever-increasing particulate matter in Pakistan; A critical review. J. Hazard. Mater. 2021, 402, 123943. [Google Scholar] [CrossRef] [PubMed]
- Badarinath, K.V.S.; Chand, T.K.; Prasad, V.K. Agriculture crop residue burning in the Indo-Gangetic Plains—A study using IRS-P6 AWiFS satellite data. Curr. Sci. 2006, 91, 1085–1089. [Google Scholar]
- Miao, Y.; Che, H.; Zhang, X.; Liu, S. Relationship between summertime concurring PM2.5 and O3 pollution and boundary layer height differs between Beijing and Shanghai, China. Environ. Pollut. 2021, 268, 115775. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Singh, R.P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 2020, 187, 109634. [Google Scholar] [CrossRef]
- Halder, R. Stubble burning in Punjab and Haryana back to foul up Delhi air. Times of India, 16 May 2019. [Google Scholar]
Indicators/Tools | Study Sites | ||||
---|---|---|---|---|---|
Nankana Sahib | Changa Manga | Kasur | Lahore | Sayed Wala | |
Sample distribution across gender | |||||
Total sample | 64 | 75 | 72 | 60 | 70 |
Male | 55 | 62 | 58 | 49 | 45 |
Female | 9 | 13 | 14 | 11 | 25 |
Sample distribution across different professions | |||||
Farmers | 14 | 10 | 20 | 10 | 9 |
Household workers | 10 | 13 | 9 | 10 | 12 |
Laborers | 12 | 13 | 16 | 10 | 10 |
Shopkeepers | 12 | 19 | 11 | 10 | 9 |
Office employees | 6 | 10 | 6 | 10 | 20 |
Drivers | 10 | 10 | 10 | 10 | 10 |
Focus group discussions (FGD) | |||||
Number of FGDs | 2 | 1 | 2 | 1 | 1 |
Number of participants | 35 | 30 | 25 | 6 | 16 |
Key informants | 1 (people’s representative) | 2 (people’s representative and government official) | 1 (people’s representative) | 2 (people’s representative and doctor) | 2 (people’s representative and doctor) |
Field observations (nonparticipants) | In all sites, observations were made to note field activities, nearest pollution sources, and safety measures. |
Variables | Multiple Symptoms * | Cough | Breathlessness | Eye Irritation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B ** | p-Value | Odds Ratio | B | p-Value | Odds Ratio | B | p-Value | Odds Ratio | B | p-Value | Odds Ratio | ||
Constant | −1.40 | 0.103 | 0.24 | −1.34 | 0.110 | 0.26 | −3.1 | 0.004 | 0.04 | −0.63 | 0.410 | 0.53 | |
Gender (reference: female) | Male | 0.13 | 0.760 | 1.14 | 0.13 | 0.780 | 1.14 | 0.43 | 0.430 | 1.54 | −0.24 | 0.590 | 0.78 |
Occupation groups (reference: office employee) | Farmer | −0.46 | 0.380 | 0.62 | −0.50 | 0.350 | 0.60 | 0.14 | 0.810 | 1.16 | 0.68 | 0.180 | 1.98 |
Household | 0.29 | 0.570 | 1.34 | 0.27 | 0.610 | 1.30 | 1.00 | 0.105 | 2.74 | 0.22 | 0.660 | 1.24 | |
Labor | −0.31 | 0.560 | 0.72 | −0.33 | 0.540 | 0.71 | −0.04 | 0.940 | 0.95 | 0.84 | 0.110 | 2.32 | |
Shopkeeper | −0.06 | 0.880 | 0.93 | −0.17 | 0.720 | 0.84 | 0.44 | 0.430 | 1.55 | 0.79 | 0.094 | 2.20 | |
Driver | −0.38 | 0.480 | 0.68 | −0.40 | 0.450 | 0.66 | −0.64 | 0.340 | 0.52 | 0.86 | 0.107 | 2.37 | |
Age (years) (reference: adolescents aged 16–20 years) | 21–44 | 0.52 | 0.400 | 1.69 | 0.52 | 0.410 | 1.67 | 0.66 | 0.420 | 1.93 | 0.99 | 0.079 | 2.70 |
45–64 | 1.74 | 0.010 | 5.73 | 1.75 | 0.010 | 5.77 | 0.85 | 0.330 | 2.34 | 1.04 | 0.097 | 2.85 | |
65 and above | 1.02 | 0.220 | 2.79 | 1.03 | 0.220 | 2.80 | 1.79 | 0.080 | 5.99 | 0.42 | 0.590 | 1.50 | |
Literacy level (reference: illiterate) | Primary | 0.58 | 0.099 | 1.79 | 0.58 | 0.090 | 1.79 | −0.15 | 0.700 | 0.85 | 0.52 | 0.140 | 1.69 |
High School | −0.18 | 0.580 | 0.83 | −0.18 | 0.580 | 0.83 | 0.26 | 0.470 | 1.30 | 0.2 | 0.530 | 1.22 | |
Higher | 0.06 | 0.870 | 1.06 | 0.008 | 0.980 | 1.00 | −0.23 | 0.610 | 0.79 | 0.14 | 0.710 | 1.15 | |
Smoking habit | −0.12 | 0.670 | 0.88 | −0.087 | 0.760 | 0.91 | 0.28 | 0.390 | 1.32 | −0.4 | 0.150 | 0.66 | |
History of respiratory diseases (yes = 1; no = 0) | 1.40 | 0.000 | 4.06 | 1.31 | 0.000 | 3.70 | 1.82 | 0.000 | 6.20 | −0.24 | 0.390 | 0.78 | |
Location (Lahore = 1; otherwise = 0) | 0.81 | 0.010 | 2.26 | 0.75 | 0.020 | 2.12 | 0.32 | 0.370 | 1.37 | −1.11 | 0.000 | 0.32 | |
Coping measures (yes = 1; no = 0) | 0.08 | 0.730 | 1.09 | 0.12 | 0.650 | 1.12 | 0.42 | 0.160 | 1.52 | 0.18 | 0.640 | 1.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabeen, F.; Ali, Z.; Maharjan, A. Assessing Health Impacts of Winter Smog in Lahore for Exposed Occupational Groups. Atmosphere 2021, 12, 1532. https://doi.org/10.3390/atmos12111532
Jabeen F, Ali Z, Maharjan A. Assessing Health Impacts of Winter Smog in Lahore for Exposed Occupational Groups. Atmosphere. 2021; 12(11):1532. https://doi.org/10.3390/atmos12111532
Chicago/Turabian StyleJabeen, Fatima, Zulfiqar Ali, and Amina Maharjan. 2021. "Assessing Health Impacts of Winter Smog in Lahore for Exposed Occupational Groups" Atmosphere 12, no. 11: 1532. https://doi.org/10.3390/atmos12111532
APA StyleJabeen, F., Ali, Z., & Maharjan, A. (2021). Assessing Health Impacts of Winter Smog in Lahore for Exposed Occupational Groups. Atmosphere, 12(11), 1532. https://doi.org/10.3390/atmos12111532