The Impact of Air Pollution (PM2.5) on Atherogenesis in Modernizing Southern versus Northern China
Abstract
:1. Introduction
2. Subjects and Methods
2.1. PM2.5 Air Pollution Exposure
2.2. Arterial Ultrasound Studies
2.3. Statistical Analyses
3. Results
3.1. Vascular Parameters
3.2. Determinants of Risk Factors for Impaired Brachial FMD
4. Discussion
4.1. Limitations
4.2. General Remarks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lloyd-Jones, D.; Adams, R.; Carnethon, M.; de Simone, G.; Ferguson, T.B.; Flegal, K.; Ford, E.; Furie, K.; Go, A.; Greenlund, K.; et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2009 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009, 119, 480–486. [Google Scholar] [PubMed]
- Roth, G.A.; Johnson, C.; Abajobir, A.; Abd-Allah, F.; Abera, S.F.; Abyu, G.; Ahmed, M.; Aksut, B.; Alam, T.; Alam, K.; et al. Global regional and national burden of cardiovascular diseases for 10 causes, 1990-2015. J. Am. Coll. Cardiol. 2017, 70, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Danaei, G.; Ding, E.L.; Mozaffarian, D.; Taylor, B.; Rehm, J.; Murray, C.J.L.; Ezzati, M. The preventable causes of death in the United States: Comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009, 6, e1000058. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.; Al-Kini, S.G.; Brook, R.D. Air pollution and cardiovascular disease. J. Am. Coll. Cardiol. 2018, 72, 2054–2070. [Google Scholar] [CrossRef] [PubMed]
- Liang, F.; Liu, F.; Huang, K.; Yang, X.; Li, J.; Xiao, Q.; Chen, J.; Liu, X.; Cao, J.; Shen, C.; et al. Longterm exposure to fine particulate matter and cardiovascular disease in China. J. Am. Coll. Cardiol. 2020, 75, 707–717. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar]
- Jasarevic, T.; Thomas, G.; Osseiran, N. 7 Million Premature Deaths Annually Lined to Air Pollution. WHO Media Centre 2014. Available online: https://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ (accessed on 25 March 2014).
- Arden Pope, C., 3rd; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular mortality and long-term exposure to particular air pollution – Epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Pepine, C.J. The effects of angiotensin-converting enzyme inhibition on endothelial dysfunction: Potential role in myocardial ischemia. Am. J. Cardiol. 1998, 82, 23S–27S. [Google Scholar] [CrossRef]
- Roux, A.V.D.; Auchincloss, A.H.; Franklin, T.G.; Raghunathan, T.; Barr, R.G.; Kaufman, J.; Astor, B.; Keeler, J. Long-term exposure to ambient particulate matter and prevalence of subclinical atherosclerosis in the Multi-Ethnic Study of Atherosclerosis. Am. J. Epidemiol. 2008, 167, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Moebus, S.; Möhlenkamp, S.; Dragano, N.; Nonnemacher, M.; Fuchsluger, M.; Kessler, C.; Jakobs, H.; Memmesheimer, M.; Erbel, R.; et al. HNR Study Investigative Group. Urban particulate matter air pollution is associated with subclinical atherosclerosis: Results from the HNR (Heinz Nixdorf Recall) study. J. Am. Coll. Cardiol. 2010, 56, 1803–1808. [Google Scholar] [CrossRef] [Green Version]
- Woo, K.S.; Chook, P.; Hu, Y.J.; Lao, X.Q.; Lin, C.Q.; Lee, P.; Kwok, C.; Wei, A.N.; Guo, D.S.; Yin, Y.H.; et al. The Impact of Particulate Matter Air Pollution (PM2.5) on Atherosclerosis in Modernizing China: The report from CATHAY Study. Int. J. Epid. 2020, 50, 1–11. [Google Scholar] [CrossRef]
- Yang, J.; Siri, J.G.; Remais, J.V.; Cheng, Q.; Zhang, H.; Chan, K.K.Y.; Sun, Z.; Zhao, Y.; Cong, N.; Li, X.; et al. The Tsinghua-lancet commission on healthy cities in China: Unlocking the power of cities for a healthy China. Lancet 2018, 391, 2140–2184. [Google Scholar] [CrossRef] [Green Version]
- Woo, K.S.; Robinson, J.T.; Chook, P.; Adams, M.R.; Yip, G.; Mai, Z.J.; Lam, C.W.; Sorensen, K.E.; Deanfield, J.E.; Celermajer, S.D. Differences in the effect of cigarette smoking on endothelial function in Chinese and white adults. Ann. Int. Med. 1997, 127, 372–375. [Google Scholar] [CrossRef]
- Woo, K.S.; Chook, P.; Raitakari, O.T.; McQuillan, B.; Feng, J.Z.; Celermajer, D.S. Westernization of Chinese adults and increased subclinical atherosclerosis. Arter. Thromb. Vasc. Biol. 1999, 19, 2487–2493. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.N.; Chook, P.; Qiao, M.; Huang, X.S.; Leong, H.C.; Celermajer, D.S.; Woo, K.S. Deleterious impact of “high normal” glucose levels and other metabolic syndrome components on arterial endothelial function and intima-media thickness in apparently healthy Chinese subject: The CATHAY study. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 739–743. [Google Scholar] [CrossRef] [Green Version]
- Woo, K.S.; Chook, P.; Yu, C.W.; Sung, R.Y.T.; Qiao, M.; Leung, S.S.F.; Lam, C.W.K.; Metreweli, C.; Celermajer, D.S. Effects of diet and exercise on obesityrelated vascular dysfunction in children. Circulation 2004, 109, 1981–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, K.S.; Timothy, K.C.Y.; Chook, P.; Hu, Y.J.; Yin, Y.H.; Lin, C.Q.; Lau, K.H.A.; Lee, P.W.A.; Celermajer, D.S. Independent Effects of Metabolic Syndrome and Air Pollution (PM2.5) on Atherosclerosis in Modernizing China. Austin J. Public Health Epidemiol. 2021, 8, 1097. [Google Scholar]
- Zimmet, P.; Alberti, K.; George, M.M.; Rios, M.S. A new International Diabetes Federation (IDF) worldwide definition of the metabolic syndrome: The rationale and the results. Rev. Esp. Cardiol. 2005, 58, 1371–1376. [Google Scholar] [CrossRef]
- Woo, K.S.; Hu, Y.J.; Chook, P.; Wei, A.N.; Chan, R.; Yin, Y.H.; Celermajer, D.S. A Tale of Three Gorges in the Yangtze River: Comparing the Prevalence of Metabolic Syndrome According to ATP III, WHO, and IDF Criteria and the Association with Vascular Health in Modernizing China. Metab. Syndr. Relat. Disord. 2019, 17, 137–142. [Google Scholar] [CrossRef]
- Li, C.; Lau, A.K.H.; Mao, J.; Chu, D.A. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2650–2658. [Google Scholar]
- Lin, C.Q.; Li, Y.; Yuan, Z.B.; Lau, A.K.H.; Li, C.C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- Lin, C.Q.; Liu, G.; Lau, A.K.H.; Li, Y.; Li, C.C.; Fung, J.C.H.; Lao, X.Q. High-resolution satellite remote sensing of provincial PM2.5 trends in China from 2001 to 2015. Atmos. Environ. 2018, 180, 110–116. [Google Scholar] [CrossRef]
- Celermajer, D.S.; Sorensen, K.; Gooch, V.; Spiegelhalter, D.J.; Miller, O.I.; Sullivan, I.D.; Lloyd, J.K.; Deanfield, J.E. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992, 340, 1111–1115. [Google Scholar] [CrossRef]
- Woo, K.S.; Chook, P.; Yu, C.W.; Sung, R.Y.T.; Qiao, M.; Leung, S.S.F.; Lam, C.W.K.; Metreweli, C.; Celermajer, D.S. Overweight in children is associated with arterial endothelial dysfunction and intima-media thickening. Int. J. Obes. 2004, 28, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Salonen, J.T.; Salonen, R. Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 1991, 11, 1245–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bots, M.L.; Hoes, A.W.; Koudstaal, P.J.; Hofman, A.; Grobbee, D.E. Common carotid intima-media thickness and risk of stroke and myocardial infarction: The Rotterdam Study. Circulation 1997, 96, 1432–1437. [Google Scholar] [CrossRef] [Green Version]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Desvarieux, M.; Ebrahim, S.; Fatar, M.; Hernandez Hernandez, R.; Kownator, S.; et al. Advisory Board of the 3rd Watching the Risk Symposium 2004, 13th European Stroke Conference. Mannheim intima-media thickness consensus. Cereb. Dis. 2004, 18, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.F.; Grimes, D.A. Sample size calculations in randomised trials: Mandatory and mystical. Lancet 2005, 365, 1348–1353. [Google Scholar] [CrossRef]
- Li, H.; Cai, J.; Chen, R.; Zhao, Z.; Ying, Z.; Wang, L.; Chen, J.; Hao, K.; Kinney, P.L.; Chen, H.; et al. Particulate matter exposure and stress hormone levels: A randomized, double-blind, crossover trial of air purification. Circulation 2017, 136, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Maloberti, A.; Bombelli, M.; Vallerio, P.; Milani, M.; Cartella, I.; Tavecchia, G.; Tognola, C.; Grasso, E.; Sun, J.; de Chiara, B.; et al. Metabolic syndrome is related to vascular structural alterations but not to functional ones both in hypertensives and healthy subjects. Nutr. Metab. Cardiovas. Dis. 2021, 31, 1044–1052. [Google Scholar] [CrossRef]
- Woo, K.S.; Kwok, T.C.Y.; Celermajer, D.S. Vegan diet, subnormal vitamin B-12 status and cardiovascular health. Nutrients 2014, 6, 3259–3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, D.H.; Polak, J.F.; Kronmal, R.A.; Manolio, T.A.; Burke, G.L.; Wolfson, S.K., Jr. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N. Engl. J. Med. 1999, 340, 14–22. [Google Scholar] [CrossRef]
- Baumgartner, J.; Smith, K.R.; Chockalingam, A. Reducing CVD through improvements in household energy - Implications for policy-relevant research. Global. Heart 2012, 7, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langrish, J.; Mills, N.; Chan, J.; Leseman, D.; Aitken, R.; Fokkens, P.; Cassee, F.; Li, J.; Donaldson, K.; Newby, D.; et al. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part. Fibre Toxicol. 2009, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.W.; Carlsten, C.; Karlen, B.; Leckie, S.; van Eeden, S.; Vedal, S.; Wong, I.; Brauer, M. An air filter intervention study of endothelial function among healthy adults in a woodsmoke-impacted community. Am. J. Respir. Crit. Care Med. 2011, 183, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, S.; Brook, R.D. Indoor-outdoor air pollution continuum and CVD burden–An opportunity for improving global health. Glob. Heart 2012, 7, 207–213. [Google Scholar] [CrossRef] [Green Version]
Southern China (n = 395) | Northern China (n = 928) | p-Value (Bonferroni Adjusted) | |
---|---|---|---|
Male Gender (%) | 48 | 47 | 0.719 (>0.99) |
Age (yr) | 46.8 ± 12.8 | 47.4 ± 9.5 | 0.340 (>0.99) |
Smoking Status (%) | 15 | 35 | <0.0001 (0.0015) |
BMI | 23.0 ± 4.0 | 23.4 ± 3.4 | <0.203 (>0.99) |
SBP (mmHg) | 119.0 ± 15.7 | 123.7 ± 17.6 | <0.0001 (0.0015) |
DBP (mmHg) | 75.9 ± 9.3 | 80.2 ± 11.0 | <0.0001 (0.0015) |
PM2.5 (µg/m3) | 44.0 ± 6.8 | 71.1 ± 15.8 | <0.0001 (0.0015) |
Creatinine (μmol/L) | 81.7 ± 16.1 | 63.2 ± 16.7 | <0.0001 (0.0015) |
Glucose (mmol/L) | 5.6 ± 1.2 | 5.4 ± 6.0 | 0.004 (0.06) |
LDL-C | 3.4 ± 1.0 | 2.56 ± 0.82 | <0.0001 (0.0015) |
Metabolic Syndrome (%) | 15.0 | 24.5 | <0.0001 (0.0015) |
B12 (pmol/L) | 411.7 ± 249.4 | 156.5 ± 90.6 | <0.0001 (0.0015) |
Folate (nmol/L) | 31.1 ± 15.6 | 13.1 ± 5.6 | <0.0001 (0.0015) |
Homocysteine (umol/L) | 9.6 ± 4.5 | 25.0 ± 21.0 | <0.0001 |
Location | |||
---|---|---|---|
Southern | Northern | p-Value | |
Hyperemia (%) | 655 ± 289 | 715 ± 217 | 0.006 |
(95% CI) | (623–686) | (687–743) | |
GTN (%) | 18.1 ± 4.8 | 18.2 ± 3.0 | 0.912 |
(95% CI) | (17.6–18.7) | (17.8–18.6) | |
FMD (%) | 8.1 ± 3.0 | 7.5 ± 1.8 † | 0.001 |
(95% CI) | (7.8–8.5) | (7.3–7.7) | |
Carotid IMT (mm) | 0.57 ± 0.13 | 0.68 ± 0.13 †† | 0.0001 |
(95% CI) | (0.56–0.58) | (0.67–0.69) |
Southern Chinese * | Northern Chinese ** | Overall Cohort *** | ||||
---|---|---|---|---|---|---|
Risk Factors | Beta Value | p-Value | Beta Value | p-Value | Beta-Value | p-Value |
Age (yr) | −0.238 | 0.005 | −0.163 | 0.062 | −0.210 | <0.0001 |
Gender | −0.174 | 0.050 | −0.329 | 0.009 | −0.163 | 0.013 |
Smoking status | −0.154 | 0.077 | 0.029 | 0.802 | −0.118 | 0.075 |
BMI | −0.036 | 0.674 | −0.040 | 0.415 | 0.005 | 0.938 |
MS | −0.067 | 0.436 | −0.032 | 0.741 | −0.051 | 0.403 |
Homocysteine | 0.076 | 0.374 | −0.196 | 0.066 | −0.025 | 0.725 |
LDL-C | −0.058 | 0.473 | −0.057 | 0.502 | −0.090 | 0.206 |
MTHFR | −0.097 | 0.201 | 0.158 | 0.114 | −0.014 | 0.822 |
PM2.5 | −0.274 | 0.001 | 0.011 | 0.892 | −0.022 | 0.862 |
Location | - | - | - | - | −0.325 | 0.005 |
Southern Chinese * | Northern Chinese ** | Overall Cohort *** | ||||
---|---|---|---|---|---|---|
Risk Factors | Beta Value | p-Value | Beta Value | p-Value | Beta-Value | p-Value |
Age (yr) | 0.393 | <0.0001 | 0.385 | <0.0001 | 0.396 | <0.0001 |
Gender | 0.146 | 0.043 | 0.058 | 0.357 | 0.127 | 0.006 |
Smoking status | 0.061 | 0.388 | 0.157 | 0.010 | 0.091 | 0.053 |
BMI | 0.074 | 0.299 | 0.088 | 0.103 | 0.121 | 0.005 |
MS | 0.119 | 0.095 | 0.110 | 0.039 | 0.099 | 0.019 |
Homocysteine | 0.048 | 0.501 | 0.137 | 0.014 | 0.121 | 0.010 |
LDL-C | 0.084 | 0.204 | 0.145 | 0.003 | 0.136 | 0.004 |
MTHFR | 0.046 | 0.463 | −0.065 | 0.223 | −0.026 | 0.554 |
PM2.5 | 0.334 | <0.0001 | 0.033 | 0.471 | 0.368 | <0.0001 |
Location | - | - | - | - | −0.206 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, K.; Lin, C.; Yin, Y.; Guo, D.; Chook, P.; Kwok, T.C.Y.; Celermajer, D.S. The Impact of Air Pollution (PM2.5) on Atherogenesis in Modernizing Southern versus Northern China. Atmosphere 2021, 12, 1552. https://doi.org/10.3390/atmos12121552
Woo K, Lin C, Yin Y, Guo D, Chook P, Kwok TCY, Celermajer DS. The Impact of Air Pollution (PM2.5) on Atherogenesis in Modernizing Southern versus Northern China. Atmosphere. 2021; 12(12):1552. https://doi.org/10.3390/atmos12121552
Chicago/Turabian StyleWoo, Kamsang, Changqing Lin, Yuehui Yin, Dongshuang Guo, Ping Chook, Timothy C. Y. Kwok, and David S. Celermajer. 2021. "The Impact of Air Pollution (PM2.5) on Atherogenesis in Modernizing Southern versus Northern China" Atmosphere 12, no. 12: 1552. https://doi.org/10.3390/atmos12121552
APA StyleWoo, K., Lin, C., Yin, Y., Guo, D., Chook, P., Kwok, T. C. Y., & Celermajer, D. S. (2021). The Impact of Air Pollution (PM2.5) on Atherogenesis in Modernizing Southern versus Northern China. Atmosphere, 12(12), 1552. https://doi.org/10.3390/atmos12121552