Astroclimatic Conditions at the Hoa Lac and Nha Trang Astronomical Observatories
Abstract
:1. Introduction
2. Wind Speed Statistics in the Upper Atmospheric Layer
3. Energy Spectra of the Air Temperature Fluctuations at the Sites of Nha Trang and Hoa Lac Observatories
- (i)
- from = 66.6 × 1/h to = 13.3 × 1/h;
- (ii)
- from = 0.36 1/h to = 0.5 1/h.
4. Energy Spectra of Air Temperature Fluctuations at the Sites of Nha Trang and Hoa Lac Observatories
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hagelin, S.; Masciadri, E.; Lascaux, F. Optical turbulence simulations at Mt Graham using the Meso-NH model. Mont. Not. R. Astron. Soc. 2011, 412, 2695–2706. [Google Scholar] [CrossRef] [Green Version]
- Ullwer, C.; Sprung, D.; Sucher, E.; Kociok, T.; Grossmann, P.; van Eijk, A.M.J.; Stein, K. Global simulations of using the weather research and forecast model WRF and comparison to experimental results. Proc. SPIE 2019, 11133, 11330I. [Google Scholar] [CrossRef]
- Abahamid, A.; Vernin, J.; Benkhaldoun, Z.; Jabiri, A.; Azouit, M.; Agabi, A. Seeing, outer scale of optical turbulence, and coherence outer scale at different astronomical sites using instruments on meteorological balloons. Astron. Astrophys. 2004, 422, 1123–1127. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Shao, S.; Weng, N.; Zhou, L.; Liu, Q.; Zhao, Y. Atmospheric Optical Turbulence Characteristics over the Ocean Relevant to Astronomy and Atmospheric Physics. Appl. Sci. 2021, 11, 10548. [Google Scholar] [CrossRef]
- García, R.C.; Richer, M.G.; Martínez, R.G.; Avila, R. Estimating local seeing at Observatorio Astronómico Nacional in San Pedro Mártir using CFD simulations of the atmospheric boundary layer. Mont. Not. R. Astron. Soc. 2020, 496, 5552–5563. [Google Scholar] [CrossRef]
- Nosov, V.V.; Lukin, V.P.; Nosov, E.V.; Torgaev, A.V.; Afanas’ev, V.L.; Balega, Y.U.; Vlasyuk, V.V.; Panchuk, V.E.; Yakopov, G.V. Astroclimate Studies in the Special Astrophysical Observatory of the Russian Academy of Sciences. Atmos. Ocean. Opt. Vol. 2019, 32, 8–18. [Google Scholar] [CrossRef]
- Kornilov, V.G.; Kornilov, M.V.; Shatsky, N.I.; Vozyakova, O.V.; Gorbunov, I.A.; Safonov, B.S.; Potanin, S.A.; Cheryasov, D.V.; Senik, V.A. Meteorological conditions at the Caucasus Observatory of the SAI MSU from the results of the 2007–2015 campaign. Astron. Lett. 2016, 42, 616–630. [Google Scholar] [CrossRef]
- Masciadri, E.; Vernin, J.; Bougeault, P. 3D mapping of optical turbulence using an atmospheric numerical model. I. A useful tool for the ground-based astronomy. Astron. Astrophys. Suppl. Ser. 1999, 137, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Bounhir, A.; Benkhaldoun, Z.; Carrasco, E.; Sarazin, M. High-altitude wind velocity at Oukaimeden observatory. MNRAS 2009, 398, 862–872. [Google Scholar] [CrossRef] [Green Version]
- Chueca, S.; García-Lorenzo, B.; Muñoz-Tuñón, C.; Fuensalida, J.J. Statistics and analysis of high-altitude wind above the Canary Islands observatories. Mont. Not. R. Astron. Soc. 2004, 349, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Yao, Y.; Wang, H.; Zou, L.; Li, Y. Statistics and analysis of high-altitude wind above the western Tibetan Plateau. Mon. Not. R. Astron. Soc. 2020, 498, 5786–5797. [Google Scholar] [CrossRef]
- Garcia-Lorenzo, B.; Fuensalida, J.J.; Munoz-Tunon, C.; Mendizabal, E. Astronomical Site Ranking Based on Tropospheric Wind Statistics. Mon. Not. R. Astron. Soc. 2005, 356, 849–858. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, S.L.; Muñoz-Tuñón, C.; Castro-Almazán, J.A.; Varela, A.M. Canarian Observatories Meteorology; Comparison of OT and ORM using Regional Climate Reanalysis. Publ. Astron. Soc. Pac. 2021, 133, 105002. [Google Scholar] [CrossRef]
- García-Lorenzo, B.; Eff-Darwich, A.; Fuensalida, J.J.; Castro-Almazán, J. Adaptive optics parameters connection to wind speed at the Teide Observatory. Mon. Not. R. Astron. Soc. 2009, 397, 1633–1646. [Google Scholar] [CrossRef] [Green Version]
- Hach, Y.; Jabiri, A.; Ziad, A.; Bounhir, A.; Sabil, M.; Abahamid, A.; Benkhaldoun, Z. Meteorological profiles and optical turbulence in the free atmosphere with NCEP/NCAR data at Oukaimenden—I. Meteorological parameters analysis and tropospheric wind regimes. Mon. Not. R. Astron. Soc. 2012, 420, 637–650. [Google Scholar] [CrossRef] [Green Version]
- Kovadlo, P.G.; Lukin, V.P.; Shikhovtsev, A.Y. Development of the Model of Turbulent Atmosphere at the Large Solar Vacuum Telescope Site as Applied to Image Adaptation. Atmos. Ocean. Opt. 2019, 32, 202–206. [Google Scholar] [CrossRef]
- Shikhovtsev, A.; Kovadlo, P.; Lukin, V. Temporal Variations of the Turbulence Profiles at the Sayan Solar Observatory Site. Atmosphere 2019, 10, 499. [Google Scholar] [CrossRef] [Green Version]
- Thao, N.T.; Dung, M.T.; Loc, P.V. The 50 cm telescope of Hoa Lac observatory: An introduction. Vietnam J. Sci. Technol. Eng. 2019, 61, 14–28. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 730–1999. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Q.; Liu, N.; Zhang, K.; Qing, C.; Li, X.; Wu, X.; Luo, T. Analysis of wind-speed profiles and optical turbulence above Gaomeigu and the Tibetan Plateau using ERA5 data. Mon. Not. R. Astron. Soc. 2021, 501, 4692–4701. [Google Scholar] [CrossRef]
- Gualtieri, G. Reliability of ERA5 Reanalysis Data for Wind Resource Assessment: A Comparison against Tall Towers. Energies 2021, 14, 4169. [Google Scholar] [CrossRef]
- Virman, M.; Bister, M.; Räisänen, J.; Sinclair, V.A.; Järvinen, H. Radiosonde comparison of ERA5 and ERA-Interim reanalysis datasetsover tropical oceans. Tellus A Dyn. Meteorol. Oceanogr. 2021, 73, 1–7. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Bolbasova, L.A.; Kovadlo, P.G.; Kiselev, A.V. Atmospheric parameters at the 6-m Big Telescope Alt-azimuthal site. Mon. Not. R. Astron. Soc. 2020, 493, 723–729. [Google Scholar] [CrossRef]
- Nastrom, G.D.; Gage, K.S. A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft. J. Atmos. Sci. 1985, 42, 950–960. [Google Scholar] [CrossRef] [Green Version]
- Cheynet, E.; Jakobsen, J.B.; Reuder, J. Velocity Spectra and Coherence Estimates in the Marine Atmospheric Boundary Layer. Bound.-Layer Meteorol. 2018, 169, 429–460. [Google Scholar] [CrossRef]
- Larsén, X.G.; Larsen, S.E.; Petersen, E.L. Full-Scale Spectrum of Boundary-Layer Winds. Bound.-Layer Meteorol. 2016, 159, 349–371. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-X.; Yang, Q.-S.; Sun, L.; Li, B.; Liu, M. Analysis of the wind speed spectrum in the urban area of Beijing based on the measured data of the Ma Dian Qiao Bei meteorological tower in 2013. Gongcheng Lixue/Eng. Mech. 2020, 37, 250–256. [Google Scholar] [CrossRef]
- Mikkelson, T.; Larsen, S.E.; Jørgensen, H.E.; Astrup, P.; Larsén, H.G. Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface. Phys. Scr. 2017, 92, 124002. [Google Scholar] [CrossRef] [Green Version]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Kopylov, E.A.; Ibrahimov, M.A.; Ehgamberdiev, S.A.; Tillayev, Y.A. Energy spectra of atmospheric turbulence for calculating parameter. I. Maidanak and Suffa observatories in Uzbekistan. Atmosphere 2021, 12, 1614. [Google Scholar] [CrossRef]
Season | Median, m/s | Skewness Coefficient | Kurtosis Coefficient |
---|---|---|---|
Winter | 12.4 | 0.59 | −0.35 |
Spring | 9.1 | 0.88 | 0.34 |
Summer | 24.0 | 0.01 | −0.48 |
Autumn | 15.5 | 0.34 | −0.57 |
Season | Median, m/s | Skewness Coefficient | Kurtosis Coefficient |
---|---|---|---|
Winter | 31.7 | 0.39 | 0.29 |
Spring | 24.9 | 0.08 | −0.72 |
Summer | 11.1 | 0.81 | 0.26 |
Autumn | 11.8 | 0.85 | 0.27 |
Level, hPa | Season | , | , |
---|---|---|---|
Surface | Winter | 0.29 | 0.16 |
Spring | 0.32 | 0.30 | |
Summer | 0.16 | 0.30 | |
Autumn | 0.42 | 0.34 | |
900 | Winter | 0.57 | 0.18 |
Spring | 0.54 | 0.18 | |
Summer | 0.09 | 0.10 | |
Autumn | 0.33 | 0.15 | |
875 | Winter | 0.66 | 0.17 |
Spring | 0.64 | 0.15 | |
Summer | 0.06 | 0.08 | |
Autumn | 0.25 | 0.15 | |
850 | Winter | 0.59 | 0.17 |
Spring | 0.55 | 0.13 | |
Summer | 0.05 | 0.08 | |
Autumn | 0.22 | 0.15 | |
775 | Winter | 0.47 | 0.13 |
Spring | 0.33 | 0.10 | |
Summer | 0.06 | 0.09 | |
Autumn | 0.20 | 0.17 | |
750 | Winter | 0.47 | 0.13 |
Spring | 0.30 | 0.10 | |
Summer | 0.09 | 0.10 | |
Autumn | 0.23 | 0.16 | |
700 | Winter | 0.54 | 0.10 |
Spring | 0.29 | 0.09 | |
Summer | 0.11 | 0.09 | |
Autumn | 0.23 | 0.16 | |
650 | Winter | 0.47 | 0.08 |
Spring | 0.30 | 0.06 | |
Summer | 0.09 | 0.08 | |
Autumn | 0.23 | 0.17 | |
500 | Winter | 0.16 | 0.07 |
Spring | 0.17 | 0.06 | |
Summer | 0.04 | 0.10 | |
Autumn | 0.18 | 0.18 | |
300 | Winter | 0.17 | 0.04 |
Spring | 0.10 | 0.03 | |
Summer | 0.09 | 0.04 | |
Autumn | 0.24 | 0.10 | |
200 | Winter | 0.14 | 0.04 |
Spring | 0.09 | 0.05 | |
Summer | 0.11 | 0.05 | |
Autumn | 0.22 | 0.08 | |
100 | Winter | 1.3 | 0.23 |
Spring | 0.51 | 0.10 | |
Summer | 0.61 | 0.24 | |
Autumn | 1.34 | 0.51 | |
30 | Winter | 0.91 | 0.22 |
Spring | 1.61 | 0.56 | |
Summer | 1.40 | 0.33 | |
Autumn | 0.70 | 0.54 |
Level, hPa | Season | , | , |
---|---|---|---|
Surface | Winter | 4.28 | 0.55 |
Spring | 3.65 | 1.14 | |
Summer | 0.78 | 0.42 | |
Autumn | 1.31 | 0.65 | |
900 | Winter | 3.58 | 0.42 |
Spring | 4.15 | 0.87 | |
Summer | 0.39 | 0.21 | |
Autumn | 1.02 | 0.28 | |
875 | Winter | 3.68 | 0.32 |
Spring | 4.50 | 0.68 | |
Summer | 0.26 | 0.16 | |
Autumn | 0.75 | 0.24 | |
850 | Winter | 3.72 | 0.26 |
Spring | 4.15 | 0.59 | |
Summer | 0.19 | 0.11 | |
Autumn | 0.50 | 0.21 | |
775 | Winter | 1.83 | 0.27 |
Spring | 1.30 | 0.19 | |
Summer | 0.12 | 0.15 | |
Autumn | 0.35 | 0.17 | |
750 | Winter | 1.49 | 0.32 |
Spring | 0.72 | 0.16 | |
Summer | 0.11 | 0.16 | |
Autumn | 0.26 | 0.17 | |
700 | Winter | 1.22 | 0.31 |
Spring | 0.53 | 0.18 | |
Summer | 0.08 | 0.15 | |
Autumn | 0.21 | 0.20 | |
650 | Winter | 0.85 | 0.30 |
Spring | 0.70 | 0.26 | |
Summer | 0.05 | 0.14 | |
Autumn | 0.17 | 0.16 | |
500 | Winter | 1.86 | 0.24 |
Spring | 0.38 | 0.19 | |
Summer | 0.05 | 0.18 | |
Autumn | 0.36 | 0.21 | |
300 | Winter | 0.87 | 0.14 |
Spring | 0.82 | 0.16 | |
Summer | 0.10 | 0.08 | |
Autumn | 0.22 | 0.08 | |
200 | Winter | 0.50 | 0.08 |
Spring | 0.38 | 0.12 | |
Summer | 0.13 | 0.08 | |
Autumn | 0.20 | 0.09 | |
100 | Winter | 0.75 | 0.16 |
Spring | 0.75 | 0.35 | |
Summer | 0.27 | 0.15 | |
Autumn | 0.53 | 0.28 | |
30 | Winter | 0.23 | 0.28 |
Spring | 0.47 | 0.46 | |
Summer | 0.58 | 0.53 | |
Autumn | 0.26 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikhovtsev, A.Y.; Kovadlo, P.G.; Kopylov, E.A.; Ibrahimov, M.A.; Le Xuan, H. Astroclimatic Conditions at the Hoa Lac and Nha Trang Astronomical Observatories. Atmosphere 2021, 12, 1680. https://doi.org/10.3390/atmos12121680
Shikhovtsev AY, Kovadlo PG, Kopylov EA, Ibrahimov MA, Le Xuan H. Astroclimatic Conditions at the Hoa Lac and Nha Trang Astronomical Observatories. Atmosphere. 2021; 12(12):1680. https://doi.org/10.3390/atmos12121680
Chicago/Turabian StyleShikhovtsev, Artem Y., Pavel G. Kovadlo, Evgeniy A. Kopylov, Mansur A. Ibrahimov, and Huy Le Xuan. 2021. "Astroclimatic Conditions at the Hoa Lac and Nha Trang Astronomical Observatories" Atmosphere 12, no. 12: 1680. https://doi.org/10.3390/atmos12121680
APA StyleShikhovtsev, A. Y., Kovadlo, P. G., Kopylov, E. A., Ibrahimov, M. A., & Le Xuan, H. (2021). Astroclimatic Conditions at the Hoa Lac and Nha Trang Astronomical Observatories. Atmosphere, 12(12), 1680. https://doi.org/10.3390/atmos12121680