Future Projection of Drought Vulnerability over Northeast Provinces of Iran during 2021–2100
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area and Period of Study
2.2. Data
2.3. Statistical Downscaling
2.4. Exposure (E)
2.5. Sensitivity (S)
2.6. Adaptive Capacity (AC)
2.7. Drought Vulnerability Index (DVI)
3. Results
3.1. Observed Vulnerability
3.2. Future Vulnerability
4. Discussion
4.1. Observation Vulnerability
4.2. Future Vulnerability
4.3. Uncertainty
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Code Availability
Ethics Approval
Consent to Participate
Consent for Publication
References
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Adaawen, S. Understanding Climate Change and Drought Perceptions, Impact and Responses in the Rural Savannah, West Africa. Atmosphere 2021, 12, 594. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Y.; Li, T.; Chen, W.; Ding, Y. Projections of South Asian Summer Monsoon under Global Warming from 1.5 °C to 5 °C. J. Clim. 2021, 34, 7913–7926. [Google Scholar] [CrossRef]
- Angélil, O.; Stone, D.; Wehner, M.; Paciorek, C.J.; Krishnan, H.; Collins, W. An Independent Assessment of Anthropogenic Attribution Statements for Recent Extreme Temperature and Rainfall Events. J. Clim. 2017, 30, 5–16. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Stott, P.A.; Christidis, N.; Otto, F.E.L.; Sun, Y.; Vanderlinden, J.P.; van Oldenborgh, G.J.; Vautard, R.; von Storch, H.; Walton, P.; Yiou, P.; et al. Attribution of extreme weather and climate-related events. WIREs Clim. Chang. 2016, 7, 23–41. [Google Scholar] [CrossRef]
- Babaeian, I.; Najafinik, Z.; Zabol-Abbasi, F.; Habibi-Nokhandan, M.; Adab, H.; Malbusi, S. Climate change assessment over Iran during 2010–2019 using downscaling of ECHO-G GCM model. Geogr. Dev. 2010, 7, 135–152. [Google Scholar]
- Ghahreman, N.; Gharakhni, A. Trend analysis of mean wind speed in different climatic regions of Iran. Iran. J. Lrrigation Drain. 2010, 4, 31–43. [Google Scholar]
- Yueyue, H.; Changchun, Z.; Tanveer, A. Vulnerability assessment of rural social-ecological system to climate change: A case study of Yunnan Province, China. Intl. J. Clim. Chang. Strateg. Manag. 2021, 13, 162–180. [Google Scholar]
- Buda, S.; Jinlong, H.; Sanjit, K.M.; Jianqing, Z.; Yanjun, W.; Shanshan, W.; Miaoni, G.; Yanran, L.; Shan, J.; Tong, J.; et al. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375. [Google Scholar]
- Shanshan, W.; Anqian, W.; Hui, T.; Khalid, M.; Jinlong, H.; Jianqing, Z.; Cheng, J.; Ghulam, R.; Buda, S. Population exposed to drought under the 1.5 °C and 2.0 °C warming in the Indus River Basin. Atmos. Res. 2019, 218, 296–305. [Google Scholar]
- Emadodin, I.; Reinsch, T.; Taube, F. Drought and Desertification in Iran. Hydrology 2019, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, F.; Kuhi, M.; Javanshiri, Z.; Malbusi, S.; Falamarzi, Y.; Babaeian, I.; Habibi-Nokhandan, M. Climate change detection update over weather stations of Iran. J. Clim. Res. 2020, 11, 46. [Google Scholar]
- Babaeian, I.; Karimian, M.; Modirian, R.; Mirzaei, E. Future Climate Change Projection over Iran using CMIP5 Data during 2020–2100. Nivar 2019, 43, 62–71. [Google Scholar]
- Saburi, G.; Musavi-Baygi, M.; Babaeian, I. Study of changes in Iran’s climatic zones until 2100 under the Global Warming using statistical downscaling of GCM models. In Proceeding of the Fifth Regional Climate Change Conference, Tehran, Iran, 25 February 2016. [Google Scholar]
- Mosadegh, E.; Babaeian, I.; Baygi, M. Uncertainty Assessment of GCM Models in Predicting Temperature, Precipitation and Solar Radiation Under Climate Change Impact in Tehran, Iran. In Proceedings of the Climate Change Impacts on Water Resources, Belgrade, Serbia, 17–18 October 2013. [Google Scholar]
- Bannayan, B.; Mohamadian, A.; Alizadeh, A. On Climate Variability in North-East of Iran. J. Water Soil 2010, 24, 118–131. [Google Scholar]
- Babaeian, I.; Karimian, M.; Modiriyan, R.; Falamarzi, Y.; Koohi, M. Future Precipitation and Temperature Projection over Eastern Provinces of Iran using Combined Dynamical–Statistical Downscaling Technique. Clim. Chang. Res. 2021, 2, 41–58. [Google Scholar]
- Salimi-Fard, M.; Sanaei-Nejad, H.; Jabari-Noghabi, M.; Sabet-Dizavandi, L. Detecting the effect of climate change on extreme temperature events in Khorasan Razavi province Case study: 1990–2015. J. Clim. Res. 2017, 29, 111–124. [Google Scholar]
- Kouzegaran, S.; Mousavi-Baygi, M. Investigation of Meteorological Extreme Events in the North-East of Iran. J. Water Soil 2015, 29, 750–764. [Google Scholar]
- Babaeian, I.; Koohi, M. Agroclimatic Indices Assessment over Some Selected Weather Stations of Khorasan Razavi Province Under Climate Change Scenarios. J. Water Soil 2012, 26, 953–967. [Google Scholar]
- Engström, J.; Jafarzadegan, K.; Moradkhani, H. Drought Vulnerability in the United States: An Integrated Assessment. Water 2020, 12, 2033. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Env. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Kristie, L.; Kathryn-Bowen, E. Extreme events as sources of health vulnerability: Drought as an example. Weather. Clim. Extrem. 2016, 11, 95–102. [Google Scholar]
- Dai, A. Drought under global warming: A review. Wiley Interdiscipl. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Spinonia, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new global database of meteorological drought events from 1951. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Chen, J.; Pan, C. Assessment on Agricultural Drought Vulnerability and Spatial Heterogeneity Study in China. Int. J. Environ. Res. Public Health 2021, 18, 4449. [Google Scholar] [CrossRef]
- Duong, H.; Thuc, H.; Ribbe, T. Assessing and Calculating a Climate Change Vulnerability Index for Agriculture Production in the Red River Delta, Vietnam. Redefining Divers. Dyn. Nat. Resour. Manag. Asia 2017, 2, 27–40. [Google Scholar]
- Tsesmelis, D.E.; Karavitis, C.A.; Oikonomou, P.D.; Alexandris, S.; Kosmas, C. Assessment of the Vulnerability to Drought and Desertification Characteristics Using the Standardized Drought Vulnerability Index (SDVI) and the Environmentally Sensitive Areas Index (ESAI). Resources 2019, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Gaucin, D.; Bartolón, J.C.; Bahena, H.V.C. Drought Vulnerability Indices in Mexico. Water 2018, 10, 1671. [Google Scholar] [CrossRef] [Green Version]
- Dabanli, I. Drought Risk Assessment by Using Drought Hazard and Vulnerability Indexes. Nat. Hazards Earth Syst. Sci. Discuss. 2018. [CrossRef]
- Noorisameleh, Z.; Khaledi, S.; Shakiba, A.; Zeaiean-Firouzabadi, P.; Gough, W.A.; Qader-Mirza, M. Comparative evaluation of impacts of climate change and droughts on river flow vulnerability in Iran. Water Sci. Eng. 2020, 13, 265–274. [Google Scholar] [CrossRef]
- Zarafshani, K.; Sharafi, L.; Azadi, H.; Van Passel, S. Vulnerability assessment models to drought: Toward a conceptual framework. Sustainability 2016, 8, 588. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, E.; Hejazizadeh, Z.; Alijani, B.; Saligheh, M.; Danaiefard, H. A New Climate Vulnerability Index Sistan and Baluchistan province. Res. Geogr. Sci. 2015, 15, 73–96. [Google Scholar]
- Ekrami, M.; Fatehimarj, A.; Barkhordaeu, J. Assessment Agricultural Drought Vulnerability in Arid and S-arid climates using GIS and AHP, A Case Study for Taft Township: Yazd Province-Iran. Irrig. Water J. 2015, 5, 107–117. [Google Scholar]
- Hoseini, S.S.; Nazari, M.R.; Araghinejad, S. Investigating the impacts of climate on agricultural sector with emphasis on the role of adaptation strategies in this sector. Iran. J. Agric. Econ. Dev. Res. 2013, 44, 1–16. [Google Scholar]
- Fatehimarj, A.; Hassaniabadi, F. Developing an Agricultural Drought Risk Management Plan: Pilot Project for Alamut-Ghazvin; Final Project Report; Soil Conservation and Watershed Management Research Institute: Tehran, Iran, 2012. [Google Scholar]
- Raziei, T.; Sotoudeh, F. Investigation of the accuracy of the European Center for Medium Range Weather Forecasts (ECMWF) in forecasting observed precipitation in different climates of Iran. J. Earth Space Phys 2017, 43, 133–147. [Google Scholar]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, 1–34. [Google Scholar] [CrossRef]
- Themeßl, M.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31, 1531–1544. [Google Scholar]
- Sarr, M.A.; Seidou, O.; Tramblay, Y.; El Adlouni, S. Comparison of downscaling methods for mean and extreme precipitation in Senegal. J. Hydrol. Reg. Stud. 2015, 4, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Xuewei, F.; Jiang, L.; Jiaojiao, G. Statistical downscaling and projection of future temperatures across the Loess Plateau, China. Weather. Clim. Extrem. 2021, 32, 100328. [Google Scholar]
- Smid, M.; Cristina-Costa, A. Climate projections and downscaling techniques: A discussion for impact studies in urban systems. Int. J. Urban Sci. 2018, 22, 277–307. [Google Scholar] [CrossRef] [Green Version]
- Ruti, P.; Ruti, P.M.; Somot, S.; Giorgi, F.; Dubois, C.; Flaounas, E.; Obermann, A.; Dell’Aquila, A.; Pisacane, G.; Harzallah, A.; et al. MED-CORDEX initiative for Mediterranean Climate studies. Bull. Amer. Met. Soc. 2016, 97, 1187–1208. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Begueria, S.; Lopezmoreno, J.L. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- UNDP. Calculating the Human Development Indices; Technical Note 1 in Human Development Report; UNDP: New York, NY, USA, 2002; 253p. [Google Scholar]
- Purtaheri, M.; Eftekhari, R.; Kazemi, N. Level and degree of drought vulnerability in rural areas of Iran from farmers views. J. Geogr. Res. 2016, 48, 19–31. [Google Scholar]
- Masoudi, M.; Hakimi, S. A new model for vulnerability assessment of drought in Iran using Percent of Normal Precipitation Index (PNPI). Iran. J. Sci. Technol. Trans. A Sci. 2014, 38, 435–440. [Google Scholar]
- Carrao, H.; Naumann, G.; Barbosa, P. Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. J. Glob. Environ. Chang. 2016, 39, 108–124. [Google Scholar] [CrossRef]
- Zhao, T.; Dai, A. The Magnitude and Causes of Global Drought Changes in the Twenty-First Century under a Low–Moderate Emissions Scenario. J. Clim. 2015, 28, 4490–4512. Available online: https://journals.ametsoc.org/view/journals/clim/28/11/jcli-d-14-00363.1.xml (accessed on 18 November 2021). [CrossRef]
- Lu, J.; Carbone, G.J.; Grego, J.M. Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models. Sci. Rep. 2019, 9, 4922. [Google Scholar] [CrossRef]
- Vaghefi, S.A.; Keykhai, M.; Jahanbakhshi, F.; Sheikholeslami, J.; Ahmadi, A.; Yang, H.; Abbaspour, K.C. The future of extreme climate in Iran. Sci. Rep. 2019, 9, 1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khazanedari, L.; Zabol-abbasi, F.; Ghandhari, S.; Kuhi, M.; Malbusi, S. Drought conditions in the next thirty years in Iran. J. Geograpgy Reg. Dev. 2009, 7, 83–98. [Google Scholar] [CrossRef]
Model | Institute | Resolution (Longitude × Latitude) |
---|---|---|
CanESM2 | Canadian Centre for Climate Modelling and Analysis (CCCMA) | 2.77 × 2.8125 |
GFDL-ESM2M | NOAA Geophysical Fluid Dynamics Laboratory (GFDL) | 2.02 × 2.5 |
CNRM-CM5 | Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation | 1.40 × 1.40 |
Category | SPEI Classification |
---|---|
Extremely Dry | ≤2 |
Severely Dry | −1.99 to −1.5 |
Moderately Dry | −1.49 to −1.0 |
Near Normal | −0.99 o 0.99 |
Moderate Wet | 1.0 to 1.49 |
Severely Wet | 1.5 to 1.99 |
Extremely Wet | ≥2 |
Indicator | Sub-Indicator | Relationship |
---|---|---|
Population | Vulnerable peoples (age ≥ 64 or age ≤ 15) | ↑ |
Population of female-headed households | ↑ | |
Illiterate population | ↑ | |
people working in agriculture | ↑ | |
Residential | Population living in villages | ↑ |
Population living on the outskirts of megacities | ↑ | |
Households with dirt floor | ↑ | |
Employment | Employment rate | ↓ |
Number of industrial workshops | ↓ | |
Number of technical and vocational centers | ↓ |
Indicator | Sub-Indicator | Relationship |
---|---|---|
Vegetation Cover | Forest area | ↑ |
Rangland area | ↑ | |
Poor rangeland area | ↑ | |
Desert area | ↑ | |
Water resources | Water withdrawal from deep and semi-deep wells | ↑ |
Infrastructure | Railway length | ↓ |
Metro length | ↓ | |
Freeway length | ↓ | |
Length of the main road | ↓ | |
Airports | ↓ | |
Education | Literate population | ↓ |
Ratio of higher education to total literacy | ↓ | |
Health | Availability of health insurance | ↓ |
Per capita treatment bed | ↓ | |
Per capita health care centers | ↓ | |
Economy | Per capita general income | ↓ |
Revenue to urban cost ratio | ↓ | |
Revenue to rural cost ratio | ↓ | |
Inactive population percentage | ↑ | |
Percentage of unemployed population | ↑ | |
Percentage of public sector employees | ↓ | |
Public services | Household without heat source (gas and electricity) | ↑ |
Household without drinking water network | ↑ |
Degree of Vulnerability | Values of Vulnerability |
---|---|
Very low | 0 < V ≤ 20 |
Low | 20 < V ≤ 40 |
Moderate | 40 < V ≤ 60 |
High | 60 < V ≤ 80 |
Very high | 80 < V ≤ 100 |
CanESM | CNRM-CM5 | GFDL-ESM2M | Multi-Model | |
---|---|---|---|---|
SPEI | 0.63 | 0.59 | 0.58 | 0.59 |
Correlation | 0.14 | 0.36 | 0.26 | 0.41 |
Bias | 0.12 | 0.08 | 0.08 | 0.09 |
RMSE | 14.9 | 10.38 | 12.18 | 7.48 |
Weighs | − | 0.35 | 0.47 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babaeian, I.; Rahmatinia, A.E.; Entezari, A.; Baaghideh, M.; Aval, M.B.; Habibi, M. Future Projection of Drought Vulnerability over Northeast Provinces of Iran during 2021–2100. Atmosphere 2021, 12, 1704. https://doi.org/10.3390/atmos12121704
Babaeian I, Rahmatinia AE, Entezari A, Baaghideh M, Aval MB, Habibi M. Future Projection of Drought Vulnerability over Northeast Provinces of Iran during 2021–2100. Atmosphere. 2021; 12(12):1704. https://doi.org/10.3390/atmos12121704
Chicago/Turabian StyleBabaeian, Iman, Atefeh Erfani Rahmatinia, Alireza Entezari, Mohammad Baaghideh, Mohammad Bannayan Aval, and Maral Habibi. 2021. "Future Projection of Drought Vulnerability over Northeast Provinces of Iran during 2021–2100" Atmosphere 12, no. 12: 1704. https://doi.org/10.3390/atmos12121704
APA StyleBabaeian, I., Rahmatinia, A. E., Entezari, A., Baaghideh, M., Aval, M. B., & Habibi, M. (2021). Future Projection of Drought Vulnerability over Northeast Provinces of Iran during 2021–2100. Atmosphere, 12(12), 1704. https://doi.org/10.3390/atmos12121704