Investigating the Spatio-Temporal Distribution of Gravity Wave Potential Energy over the Equatorial Region Using the ERA5 Reanalysis Data
Abstract
:1. Introduction
2. Data and Methods
2.1. ERA5 Reanalysis Data
2.2. Gravity Wave Potential Energy (EP)
2.3. Data Preprocessing and EP Calculation
3. The Longitude-Time Intensity of EP
4. The Time-Altitude Intensity of EP
5. Cyclic Variations of EP
5.1. Quasi-Biennial Variations
5.2. Annual and Semiannual Variations
6. The Longitude-Altitude Intensity of EP
7. Discussions
7.1. Correlation Analysis of the Lower Stratospheric and the Lower Mesospheric EP
7.2. Analysis Results and the Correlationship between the Lower Stratospheric and Lower Mesospheric EP–12
7.3. Modification of the Wave Energy Coupling under Warm Oceanic Conditions
7.4. The Lower Mesospheric EP during the 2015–2016 Anomalous QBO
8. Summary and Conclusions
- (1)
- EP is enhanced below the westerly shears and around the easterly shears of the stratospheric QBO, and the enhancements correspond to Kelvin waves and Rossby–gravity waves, respectively (Figure 2). EP is also high around the zero-wind shears below and above the westerly regime in the upper stratosphere and lower mesosphere (Figure 5). Wave activities can modify the thickness of this westerly SAO. While the westerly regime of the lower stratospheric QBO is the thickest at the beginning of a QBO cycle, most Kelvin waves are confined and not able to propagate upward, resulting in the decrease of westward acceleration in the upper stratosphere and lower mesosphere, and the thickness of the westerly SAO is thus reduced (Figure 4).
- (2)
- All the three peaks of EP values at 15 km, 45 km, and 65–70 km altitudes have longitudinal variability. The EP value at 15 km altitude peaks around the Maritime Continent, where the Walker circulation upwells under the non-El Niño condition. The EP at 45 km and 65–70 km peaks around 240° longitude, which is close to the upwelling of Walker circulation under El Niño condition (Figure 6).
- (3)
- The highest EP around the tropopause migrates with the Pacific warm pool, located at 155–205° longitude during El Niño months but 100–175° longitude during La Niña months (Figure 7). The stratospheric EP is higher during the westerly QBO and AO than the easterly QBO and AO. In contrast, the upper stratospheric EP is higher during the easterly SAO and La Niña months than the westerly SAO and El Niño months (Figure 8). In the lower mesosphere, EP is higher during the easterly phases than the westerly phases of all the three zonal wind oscillations (Figure 9).
- (4)
- The stratospheric zonal wind dominates the upward propagation of gravity waves (Figure 2 and Figure 4). Waves are either restrained in the stratosphere or able to propagate into the mesosphere further. The long-term (12-month smoothed) lower mesospheric EP is highly negatively correlated with the lower stratospheric EP. The former lags 4 months behind the latter while leaving their annual and semiannual variations aside (Figure 11). However, waves are very active under warm oceanic conditions, and the upward-propagating wave energy can exceed the limitation that the stratosphere can adjust to. The lower mesospheric EP is thus significantly enhanced during El Niño episodes.
- (5)
- During the 2015–2016 extreme El Niño and anomalous QBO event, not only the lower mesospheric EP was enhanced, but also the westerly was more strengthened than usual there.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hines, C.O. Internal Atmospheric Gravity Waves at Ionospheric Heights. Can. J. Phys. 1960, 38, 1441–1481. [Google Scholar] [CrossRef]
- Nappo, C.J. An Introduction to Atmospheric Gravity Waves; Academic Press: Amsterdam, The Netherlands, 2012; Volume 102. [Google Scholar]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef] [Green Version]
- Fritts, D.C.; Nastrom, G.D. Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci. 1992, 49, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Nastrom, G.D.; Fritts, D.C. Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci. 1992, 49, 101–110. [Google Scholar] [CrossRef]
- Durran, D.R. Mountain waves and downslope winds. In Atmospheric Processes over Complex Terrain; Blumen, W., Ed.; American Meteorological Society: Boston, MA, USA, 1990; pp. 59–81. [Google Scholar] [CrossRef]
- Eckermann, S.D.; Preusse, P. Global measurements of stratospheric mountain waves from space. Science 1999, 286, 1534–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, T.; Murayama, Y.; Wiryosumarto, H.; Harijono, S.W.B.; Kato, S. Radiosonde observations of equatorial atmosphere dynamics over indonesia: 2. Characteristics of gravity waves. J. Geophys. Res. Atmos. 1994, 99, 10507–10516. [Google Scholar] [CrossRef]
- Pfister, L.; Scott, S.; Loewenstein, M.; Bowen, S.; Legg, M. Mesoscale disturbances in the tropical stratosphere excited by convection: Observations and effects on the stratospheric momentum budget. J. Atmos. Sci. 1993, 50, 1058–1075. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology, 5th ed.; Academic Press: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Wang, B. Dynamical meteorology|Kelvin waves. In Encyclopedia of Atmospheric Sciences, 2nd ed.; North, G.R., Pyle, J., Zhang, F., Eds.; Academic Press: Oxford, UK, 2015; pp. 347–352. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Randel, W.J.; Holton, J.R.; Alexander, M.J.; Hirota, I.; Horinouchi, T.; et al. The quasi-biennial oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Dunkerton, T.J. The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res. Atmos. 1997, 102, 26053–26076. [Google Scholar] [CrossRef]
- Wallace, J.M.; Holton, J.R. A diagnostic numerical model of the quasi-biennial oscillation. J. Atmos. Sci. 1968, 25, 280–292. [Google Scholar] [CrossRef]
- Antonita, T.M.; Ramkumar, G.; Kumar, K.K.; Appu, K.S.; Nambhoodiri, K.V.S. A quantitative study on the role of gravity waves in driving the tropical stratospheric semiannual oscillation. J. Geophys. Res. Atmos. 2007, 112, D12115. [Google Scholar] [CrossRef] [Green Version]
- Hirota, I. Equatorial waves in the upper stratosphere and mesosphere in relation to the semiannual oscillation of the zonal wind. J. Atmos. Sci. 1978, 35, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Hitchman, M.H.; Leovy, C.B. Estimation of the Kelvin wave contribution to the semiannual oscillation. J. Atmos. Sci. 1988, 45, 1462–1475. [Google Scholar] [CrossRef] [Green Version]
- Shibata, T.; Sato, K.; Kobayashi, H.; Yabuki, M.; Shiobara, M. Antarctic polar stratospheric clouds under temperature perturbation by nonorographic inertia gravity waves observed by micropulse lidar at Syowa station. J. Geophys. Res. Atmos. 2003, 108, 4105. [Google Scholar] [CrossRef] [Green Version]
- Ratnam, M.V.; Tsuda, T.; Jacobi, C.; Aoyama, Y. Enhancement of gravity wave activity observed during a major southern hemisphere stratospheric warming by CHAMP/GPS measurements. Geophys. Res. Lett. 2004, 31, L16101. [Google Scholar] [CrossRef]
- Wang, L.; Alexander, M.J. Gravity wave activity during stratospheric sudden warmings in the 2007–2008 northern hemisphere winter. J. Geophys. Res. Atmos. 2009, 114, 114. [Google Scholar] [CrossRef]
- Thurairajah, B.; Collins, R.L.; Harvey, V.L.; Lieberman, R.S.; Gerding, M.; Mizutani, K.; Livingston, J.M. Gravity wave activity in the arctic stratosphere and mesosphere during the 2007–2008 and 2008–2009 stratospheric sudden warming events. J. Geophys. Res. Atmos. 2010, 115, 115. [Google Scholar] [CrossRef]
- Yamashita, C.; England, S.L.; Immel, T.J.; Chang, L.C. Gravity wave variations during elevated stratopause events using saber observations. J. Geophys. Res. Atmos. 2013, 118, 5287–5303. [Google Scholar] [CrossRef]
- Hitchman, M.H.; Gille, J.C.; Rodgers, C.D.; Brasseur, G. The separated polar winter stratopause: A gravity wave driven climatological feature. J. Atmos. Sci. 1989, 46, 410–422. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.R.; Solomon, S. The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res. Atmos. 1985, 90, 3850–3868. [Google Scholar] [CrossRef]
- Hauchecorne, A.; Chanin, M.L.; Wilson, R. Mesospheric temperature inversion and gravity wave breaking. Geophys. Res. Lett. 1987, 14, 933–936. [Google Scholar] [CrossRef]
- Yuan, T.; Pautet, P.-D.; Zhao, Y.; Cai, X.; Criddle, N.R.; Taylor, M.J.; Pendleton, W.R., Jr. Coordinated investigation of midlatitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah. J. Geophys. Res. Atmos. 2014, 119, 3756–3769. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Abdu, M.A.; Wrasse, C.M.; Fechine, J.; Batista, I.S.; Pancheva, D.; Lima, L.M.; Batista, P.P.; Clemesha, B.R.; Shiokawa, K.; et al. Possible influence of ultra-fast Kelvin wave on the equatorial ionosphere evening uplifting. Earth Planets Space 2009, 61, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Wrasse, C.M.; Fechine, J.; Pancheva, D.; Abdu, M.A.; Batista, I.S.; Lima, L.M.; Batista, P.P.; Clemesha, B.R.; Schuch, N.J.; et al. Signatures of ultra fast Kelvin waves in the equatorial middle atmosphere and ionosphere. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Hocke, K.; Schlegel, K. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. 1996, 14, 917–940. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. Atmos. 2002, 107, 4754. [Google Scholar] [CrossRef]
- Hagan, M.E.; Forbes, J.M. Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Immel, T.J.; Sagawa, E.; England, S.L.; Henderson, S.B.; Hagan, M.E.; Mende, S.B.; Frey, H.U.; Swenson, C.M.; Paxton, L.J. Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Holton, J.R.; Lindzen, R.S. An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci. 1972, 29, 1076–1080. [Google Scholar] [CrossRef] [Green Version]
- Barton, C.A.; McCormack, J.P. Origin of the 2016 QBO disruption and its relationship to extreme El Niño events. Geophys. Res. Lett. 2017, 44, 11150–11157. [Google Scholar] [CrossRef]
- Newman, P.A.; Coy, L.; Pawson, S.; Lait, L.R. The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett. 2016, 43, 8791–8797. [Google Scholar] [CrossRef]
- Scaife, A.A.; Athanassiadou, M.; Andrews, M.; Arribas, A.; Baldwin, M.; Dunstone, N.; Knight, J.; MacLachlan, C.; Manzini, E.; Müller, W.A.; et al. Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett. 2014, 41, 1752–1758. [Google Scholar] [CrossRef] [Green Version]
- Shikhovtsev, A.Y.; Bolbasova, L.A.; Kovadlo, P.G.; Kiselev, A.V. Atmospheric parameters at the 6-m Big Telescope Alt-azimuthal site. Mon. Not. R. Astron. Soc. 2020, 493, 723–729. [Google Scholar] [CrossRef]
- Criddle, N.R.; Pautet, P.-D.; Yuan, T.; Heale, C.; Snively, J.; Zhao, Y.; Taylor, M.J. Evidence for Horizontal Blocking and Reflection of a Small-Scale Gravity Wave in the Mesosphere. J. Geophys. Res. Atmos. 2020, 125, e2019JD031828. [Google Scholar] [CrossRef]
- Lu, X.; Liu, A.Z.; Swenson, G.R.; Li, T.; Leblanc, T.; McDermid, I.S. Gravity wave propagation and dissipation from the stratosphere to the lower thermosphere. J. Geophys. Res. Atmos. 2009, 114, 114. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Yuan, T.; Zhao, Y.; Pautet, P.-D.; Taylor, M.J.; Pendleton, W.R., Jr. A coordinated investigation of the gravity wave breaking and the associated dynamical instability by a Na lidar and an Advanced Mesosphere Temperature Mapper over Logan, UT (41.7°N, 111.8°W). J. Geophys. Res. Space Phys. 2014, 119, 6852–6864. [Google Scholar] [CrossRef]
- Cai, X.; Yuan, T.; Liu, H.L. Large-scale gravity wave perturbations in the mesopause region above Northern Hemisphere midlatitudes during autumnal equinox: A joint study by the USU Na lidar and Whole Atmosphere Community Climate Model. Ann. Geophys. 2017, 35, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Chu, X.; Fong, W.; Chen, C.; Yu, Z.; Roberts, B.R.; McDonald, A.J. Vertical evolution of potential energy density and vertical wave number spectrum of Antarctic gravity waves from 35 to 105 km at McMurdo (77.8°S, 166.7°E). J. Geophys. Res. Atmos. 2015, 120, 2719–2737. [Google Scholar] [CrossRef]
- Tsuda, T.; Nishida, M.; Rocken, C.; Ware, R.H. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res. Atmos. 2000, 105, 7257–7273. [Google Scholar] [CrossRef]
- Ratnam, M.V.; Tetzlaff, G.; Jacobi, C. Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/GPS satellite. J. Atmos. Sci. 2004, 61, 1610–1620. [Google Scholar] [CrossRef]
- De la Torre, A.; Tsuda, T.; Hajj, G.A.; Wickert, J. A global distribution of the stratospheric gravity wave activity from GPS occultation profiles with SAC-C and CHAMP. J. Meteorol. Soc. Jpn. 2004, 82, 407–417. [Google Scholar] [CrossRef] [Green Version]
- De la Torre, A.; Schmidt, T.; Wickert, J. A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP. Geophys. Res. Lett. 2006, 33, L24809. [Google Scholar] [CrossRef]
- Alexander, S.P.; Tsuda, T.; Kawatani, Y.; Takahashi, M. Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res. Atmos. 2008, 113, D24115. [Google Scholar] [CrossRef]
- Tsuda, T.; Ratnam, M.V.; Alexander, S.; Kozu, T.; Takayabu, Y. Temporal and spatial distributions of atmospheric wave energy in the equatorial stratosphere revealed by GPS radio occultation temperature data obtained with the CHAMP satellite during 2001–2006. Earth Planets Space 2009, 61, 525–533. [Google Scholar] [CrossRef] [Green Version]
- John, S.R.; Kumar, K.K. TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Clim. Dyn. 2012, 39, 1489–1505. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, J.; Liu, L.; Wan, W. A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data. J. Geophys. Res. Atmos. 2012, 117, D21101. [Google Scholar] [CrossRef]
- Yang, S.-S.; Pan, C.J.; Das, U.; Lai, H.C. Analysis of synoptic scale controlling factors in the distribution of gravity wave potential energy. J. Atmos. Sol. Terr. Phys. 2015, 135, 126–135. [Google Scholar] [CrossRef]
- Rapp, M.; Dörnbrack, A.; Kaifler, B. An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data. Atmos. Meas. Tech. 2018, 11, 1031–1048. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.M., III; Mlynczak, M.G.; Gordley, L.L.; Tansock, J.J.J.; Esplin, R.W. Overview of the SABER experiment and preliminary calibration results. In Proceedings of the Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 20 October 1999; Volume 3756, pp. 277–288. [Google Scholar]
- Pan, C.-J.; Yang, S.-S.; Das, U.; Chen, W.-S. Morphology of the wavenumber 1 and wavenumber 2 stratospheric Kelvin waves using the long-term ERA-Interim reanalysis dataset. Atmosphere 2020, 11, 421. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y. Space-time spectral analysis and its applications to atmospheric waves. J. Meteorol. Soc. Jpn. 1982, 60, 156–171. [Google Scholar] [CrossRef] [Green Version]
- ERA5: Data Documentation. Available online: https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation (accessed on 15 September 2019).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Copernicus Climate Data Store. Available online: https://cds.climate.copernicus.eu (accessed on 1 April 2020).
- L137 Model Level Definitions. 2020. Available online: https://www.ecmwf.int/en/forecasts/documentation-and-support/137-model-levels (accessed on 15 September 2019).
- Tsuda, T.; Murayama, Y.; Nakamura, T.; Vincent, R.A.; Manson, A.H.; Meek, C.E.; Wilson, R.L. Variations of the gravity wave characteristics with height, season and latitude revealed by comparative observations. J. Atmos. Sol. Terr. Phys. 1994, 56, 555–568. [Google Scholar] [CrossRef]
- De la Torre, A.; Alexander, P.; Giraldez, A. The kinetic to potential energy ratio and spectral separability from high-resolution balloon soundings near the Andes mountains. Geophys. Res. Lett. 1999, 26, 1413–1416. [Google Scholar] [CrossRef]
- VanZandt, T.E. A model for gravity wave spectra observed by Doppler sounding systems. Radio Sci. 1985, 20, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Shiotani, M.; Gille, J.G.; Roche, A.E. Kelvin waves in the equatorial lower stratosphere as revealed by cryogenic limb array etalon spectrometer temperature data. J. Geophys. Res. Atmos. 1997, 102, 26131–26140. [Google Scholar] [CrossRef]
- Tsai, H.-F.; Tsuda, T.; Hajj, G.A.; Wickert, J.; Aoyama, Y. Equatorial Kelvin waves observed with GPS occultation measurements (CHAMP and SAC-C). J. Meteorol. Soc. Jpn. 2004, 82, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Ern, M.; Preusse, P.; Krebsbach, M.; Mlynczak, M.G.; Russell, J.M., III. Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys. 2008, 8, 845–869. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.J.; Das, U.; Yang, S.S.; Wong, C.J.; Lai, H.C. Investigation of Kelvin waves in the stratosphere using FORMOSAT-3/COSMIC temperature data. J. Meteorol. Soc. Jpn. 2011, 89A, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, T.; Ratnam, M.V.; Kozu, T.; Mori, S. Characteristics of 10-day Kelvin wave observed with radiosondes and CHAMP/GPS occultation during the CPEA campaign (April–May, 2004). J. Meteorol. Soc. Jpn. 2006, 84A, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Hans, H.; de Rosnay, P.; Bill, B.; Dinand, S.; Adrian, S.; Cornel, S.; Saleh, A.; Magdalena, A.-B.; Gianpaolo, B.; Peter, B.; et al. Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP; European Centre for Medium Range Weather Forecasts: Reading, UK, 2018. [Google Scholar]
- Shepherd, T.G.; Polichtchouk, I.; Robin, H.; Simmons, A.J. Report on Stratosphere Task Force; ECMWF: Reading, UK, 2018. [Google Scholar]
- Historical El Nino/La Nina Episodes (1950-Present). Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 12 April 2020).
- Das, U.; Pan, C.J. Equatorial atmospheric Kelvin waves during El Niño episodes and their effect on stratospheric QBO. Sci. Total Environ. 2016, 544, 908–918. [Google Scholar] [CrossRef]
- Das, U.; Pan, C.J. Strong Kelvin wave activity observed during the westerly phase of QBO—A case study. Ann. Geophys. 2013, 31, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Plumb, R.A. The Interaction of Two Internal Waves with the Mean Flow: Implications for the Theory of the Quasi-Biennial Oscillation. J. Atmos. Sci. 1977, 34, 1847–1858. [Google Scholar] [CrossRef] [Green Version]
- Kuo, F.S.; Lee, K.E.; Lue, H.Y.; Liu, C.H. Measurement of vertical phase and group velocities of atmospheric gravity waves by VHF radar. J. Atmos. Terr. Phys. 1993, 55, 1193–1201. [Google Scholar] [CrossRef]
- Tsuda, T.; Kato, S.; Yokoi, T.; Inoue, T.; Yamamoto, M.; VanZandt, T.E.; Fukao, S.; Sato, T. Gravity waves in the mesosphere observed with the middle and upper atmosphere radar. Radio Sci. 1990, 25, 1005–1018. [Google Scholar] [CrossRef]
- Alexander, M.J.; Holton, J.R. On the spectrum of vertically propagating gravity waves generated by a transient heat source. Atmos. Chem. Phys. 2004, 4, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Gurubaran, S.; Rajaram, R.; Nakamura, T.; Tsuda, T. Interannual variability of diurnal tide in the tropical mesopause region: A signature of the El Nino-Southern Oscillation (ENSO). Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Liu, H.-L. Influence of the El Niño Southern Oscillation on the middle and upper atmosphere. J. Geophys. Res. Space Phys. 2013, 118, 2744–2755. [Google Scholar] [CrossRef]
- Liu, H. Thermospheric inter-annual variability and its potential connection to ENSO and stratospheric QBO. Earth Planets Space 2016, 68, 77. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-Y.; Liu, H.; Miyoshi, Y.; Chang, L.C.; Liu, L. El Niño–Southern oscillation effect on ionospheric tidal/SPW amplitude in 2007–2015 FORMOSAT-3/COSMIC observations. Earth Planets Space 2019, 71, 35. [Google Scholar] [CrossRef]
- García-Comas, M.; Funke, B.; Gardini, A.; López-Puertas, M.; Jurado-Navarro, A.; von Clarmann, T.; Stiller, G.; Kiefer, M.; Boone, C.D.; Leblanc, T.; et al. MIPAS temperature from the stratosphere to the lower thermosphere: Comparison of vM21 with ACE-FTS, MLS, OSIRIS, SABER, SOFIE and lidar measurements. Atmos. Meas. Tech. 2014, 7, 3633–3651. [Google Scholar] [CrossRef] [Green Version]
- Dou, X.; Li, T.; Xu, J.; Liu, H.-L.; Xue, X.; Wang, S.; Leblanc, T.; McDermid, I.S.; Hauchecorne, A.; Keckhut, P.; et al. Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Yang, G.; Xu, J.; Liu, X.; Li, Q. Gravity Wave Propagation from the Stratosphere into the Mesosphere Studied with Lidar, Meteor Radar, and TIMED/SABER. Atmosphere 2019, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- López-González, M.J.; García-Comas, M.; Rodríguez, E.; López-Puertas, M.; Shepherd, M.G.; Shepherd, G.G.; Sargoytchev, S.; Aushev, V.M.; Smith, S.M.; Mlynczak, M.G.; et al. Ground-based mesospheric temperatures at mid-latitude derived from O2 and OH airglow SATI data: Comparison with SABER measurements. J. Atmos. Sol. Terr. Phys. 2007, 69, 2379–2390. [Google Scholar] [CrossRef]
- Mertens, C.J.; Schmidlin, F.J.; Goldberg, R.A.; Remsberg, E.E.; Pesnell, W.D.; Russell, J.M., III; Mlynczak, M.G.; López-Puertas, M.; Wintersteiner, P.P.; Picard, R.H.; et al. SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Remsberg, E.E.; Marshall, B.T.; Garcia-Comas, M.; Krueger, D.; Lingenfelser, G.S.; Martin-Torres, J.; Mlynczak, M.G.; Russell, J.M., III; Smith, A.K.; Zhao, Y.; et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Dawkins, E.C.M.; Feofilov, A.; Rezac, L.; Kutepov, A.A.; Janches, D.; Höffner, J.; Chu, X.; Lu, X.; Mlynczak, M.G.; Russell, J., III. Validation of SABER v2.0 Operational Temperature Data With Ground-Based Lidars in the Mesosphere-Lower Thermosphere Region (75–105 km). J. Geophys. Res. Atmos. 2018, 123, 9916–9934. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.-S.; Pan, C.-J.; Das, U. Investigating the Spatio-Temporal Distribution of Gravity Wave Potential Energy over the Equatorial Region Using the ERA5 Reanalysis Data. Atmosphere 2021, 12, 311. https://doi.org/10.3390/atmos12030311
Yang S-S, Pan C-J, Das U. Investigating the Spatio-Temporal Distribution of Gravity Wave Potential Energy over the Equatorial Region Using the ERA5 Reanalysis Data. Atmosphere. 2021; 12(3):311. https://doi.org/10.3390/atmos12030311
Chicago/Turabian StyleYang, Shih-Sian, Chen-Jeih Pan, and Uma Das. 2021. "Investigating the Spatio-Temporal Distribution of Gravity Wave Potential Energy over the Equatorial Region Using the ERA5 Reanalysis Data" Atmosphere 12, no. 3: 311. https://doi.org/10.3390/atmos12030311
APA StyleYang, S. -S., Pan, C. -J., & Das, U. (2021). Investigating the Spatio-Temporal Distribution of Gravity Wave Potential Energy over the Equatorial Region Using the ERA5 Reanalysis Data. Atmosphere, 12(3), 311. https://doi.org/10.3390/atmos12030311