Elevation-Dependent Trend in Diurnal Temperature Range in the Northeast China during 1961–2015
Abstract
:1. Introduction
2. Method and Data
3. Results
3.1. Temperature Characteristics
3.2. Relationship between Temperature and Elevation
4. Discussion
4.1. Comparison with Previous Studies
4.2. Possible Causes for Elevation-Dependent DTR Trend
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Lin, P.; He, Z.; Du, J.; Chen, L.; Zhu, X.; Li, J. Recent changes in daily climate extremes in an arid mountain region, a case study in northwestern China’s Qilian Mountains. Sci. Rep. 2017, 7, 2245. [Google Scholar] [CrossRef] [Green Version]
- Braganza, K.; Karoly, D.J.; Arblaster, J.M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 2004, 31, L13217. [Google Scholar] [CrossRef]
- Horton, B. Geographical distribution of changes in maximum and minimum temperatures. Atmos. Res. 1995, 37, 101–117. [Google Scholar] [CrossRef]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; Salinger, M.J.; Razuvayev, V.; Plummer, N.; Jamason, P.; et al. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.E.; Hondula, D.M.; Sharif, H. Examining the diurnal temperature range enigma: Why is human health related to the daily change in temperature? Int. J. Biometeorol. 2020, 64, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Price, C.; Michaelides, S.; Pashiardis, S.; Alpert, P. Long term changes in diurnal temperature range in Cyprus. Atmos. Res. 1999, 51, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Sang, Y.-F. Spatial and temporal variability of daily temperature in the Yangtze River Delta, China. Atmos. Res. 2012, 112, 12–24. [Google Scholar] [CrossRef]
- Liu, B.; Henderson, M.; Wang, L.; Shen, X.; Zhou, D.; Chen, X. Climatology and trends of air and soil surface temperatures in the temperate steppe region of North China. Int. J. Climatol. 2017, 37, 1199–1209. [Google Scholar] [CrossRef]
- Vose, R.S.; Easterling, D.R.; Gleason, B. Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett. 2005, 277, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Liu, B.; Jiang, M.; Lu, X. Marshland Loss Warms Local Land Surface Temperature in China. Geophys. Res. Lett. 2020, 47, e2020GL087648. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Kukla, G.; Razuvayev, V.N.; Changery, M.J.; Ouayle, R.G.; Richard, R.; Helm, J.; Easterling, D.R.; Fu, C.B. Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 1991, 18, 2253–2256. [Google Scholar] [CrossRef]
- Shahid, S.; Harun, S.B.; Katimon, A. Changes in Diurnal Temperature Range in Bangladesh during the Time Period 1961–2008. Reg. Environ. Chang. 2012, 12, 595–606. [Google Scholar] [CrossRef] [Green Version]
- Plummer, N.; Lin, Z.; Torok, S. Trends in the diurnal temperature range over Australia since 1951. Atmos. Res. 1995, 37, 79–86. [Google Scholar] [CrossRef]
- Lauritsen, R.G.; Rogers, J.C. U.S. Diurnal Temperature Range Variability and Regional Causal Mechanisms, 1901–2002. J. Clim. 2012, 25, 7216–7231. [Google Scholar] [CrossRef]
- Kumar, K.R.; Kumar, K.K.; Pant, G.B. Diurnal asymmetry of surface temperature trends over India. Geophys. Res. Lett. 1994, 21, 677–680. [Google Scholar] [CrossRef]
- Ren, G.; Ding, Y.; Zhao, Z.; Tang, G.; Xu, Y.; Zheng, J. Recent progress in studies of climate change in China. Adv. Atmos. Sci. 2012, 29, 958–977. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Ren, G.; Zwiers, F.; Hu, T. Contribution of urbanization to warming in China. Nat. Clim. Chang. 2016. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Yang, X.; Chen, F.; Wang, E. The effects of past climate change on the northern limits of maize planting in Northeast China. Clim. Chang. 2013, 117, 891–902. [Google Scholar] [CrossRef]
- Mwagona, P.C.; Yao, Y.; Shan, Y.; Yu, H.; Zhang, Y. Trend and abrupt regime shift of temperature extreme in Northeast China, 1957–2015. Adv. Meteorol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Liu, B.; Li, G.; Wu, Z.; Jin, Y.; Yu, P.; Zhou, D. Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J. Geophys. Res. Atmos. 2014, 119, 13163–13179. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, G.; Zeng, G.; Li, Z. Changes in extreme low temperature events over Northern China under 1.5 °C and 2.0 °C warmer future scenarios. Atmosphere 2019. [Google Scholar]
- Sun, X.; Zhang, P.; Ren, G.; Ren, Y.; Fang, Y.; Liu, Y.; Xue, X. A remarkable climate warming hiatus over Northeast China since 1998. Theor. Appl. Climatol. 2018, 133, 579–594. [Google Scholar] [CrossRef]
- Pepin, N.C.; Lundquist, J.D. Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett. 2008, 35, L14701. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Chen, A.; Ciais, P.; Li, Y.; Li, L.Z.X.; Vautard, R.; Zhou, L.; Yang, H.; Huang, M.; Piao, S. Regional air pollution brightening reverses the greenhouse gases induced warming-elevation relationship. Geophys. Res. Lett. 2015, 42, 4563–4572. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Z.; Yan, L.; Yin, Z.-Y. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Chang. 2009, 68, 164–174. [Google Scholar] [CrossRef]
- Thakuri, S.; Dahal, S.; Shrestha, D.; Guyennon, N.; Romano, E.; Colombo, N.; Salerno, F. Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos. Res. 2019, 228, 261–269. [Google Scholar] [CrossRef]
- Dong, D.; Huang, G.; Qu, X.; Tao, W.; Fan, G. Temperature trend–altitude relationship in China during 1963–2012. Theor. Appl. Climatol. 2015, 122, 285–294. [Google Scholar] [CrossRef]
- Xu, F.; Jia, Y.; Peng, H.; Niu, C.; Liu, J. Temperature and precipitation trends and their links with elevation in the Hengduan Mountain region, China. Clim. Res. 2018, 75, 163–180. [Google Scholar] [CrossRef]
- Dimri, A.P.; Kumar, D.; Choudhary, A.; Maharana, P. Future changes over the Himalayas: Maximum and minimum temperature. Glob. Planet. Chang. 2018, 162, 212–234. [Google Scholar] [CrossRef]
- Shen, D.; Varis, O. Climate Change in China. Ambio 2001, 30, 381–383. [Google Scholar] [CrossRef]
- Liu, B.; Henderson, M.; Xu, M.; Zhang, Y. Observed changes in precipitation on the wettest days of the year in China, 1960–2000. Int. J. Climatol. 2011, 31, 487–503. [Google Scholar] [CrossRef]
- Liu, B.; Henderson, M.; Zhang, Y.; Xu, M. Spatiotemporal change in China’s climatic growing season: 1955–2000. Clim. Chang. 2009, 99, 93–118. [Google Scholar] [CrossRef]
- Sun, L.; Shen, B.; Gao, Z.; Sui, B.; Bai, L.; Wang, S.-H.; An, G.; Li, J. The impacts of moisture transport of East Asian Monsoon on summer precipitation in Northeast China. Adv. Atmos. Sci. 2007, 24, 606–618. [Google Scholar] [CrossRef]
- Wang, J.X.L.; Gaffen, D.J. Late-Twentieth-Century Climatology and Trends of Surface Humidity and Temperature in China. J. Clim. 2001, 14, 2833–2845. [Google Scholar] [CrossRef]
- Nawaz, Z.; Li, X.; Chen, Y.; Guo, Y.; Wang, X.; Nawaz, N. Temporal and spatial characteristics of precipitation and temperature in Punjab, Pakistan. Water 2019, 11, 1916. [Google Scholar] [CrossRef] [Green Version]
- Kattel, D.B.; Yao, T. Recent temperature trends at mountain stations on the southern slope of the central Himalayas. J. Earth Sci. 2013, 122, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Ren, G.; Zhao, Z.; Xu, Y.; Luo, Y.; Li, Q.; Zhang, J. Detection, causes and projection of climate change over china: An overview of recent progress. Adv. Atmos. Sci. 2007, 24, 954–971. [Google Scholar] [CrossRef]
- Ye, J.; Li, F.; Sun, G.; Guo, A. Solar dimming and its impact on estimating solar radiation from diurnal temperature range in China, 1961–2007. Theor. Appl. Climatol. 2010, 101, 137–142. [Google Scholar] [CrossRef]
- Chen, J.-L.; Li, G.-S. Evaluation of support vector machine for estimation of solar radiation from measured meteorological variables. Theor. Appl. Climatol. 2014, 115, 627–638. [Google Scholar] [CrossRef]
- Philipona, R.; Behrens, K.; Ruckstuhl, C. How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys. Res. Lett. 2009, 36, L02806. [Google Scholar] [CrossRef] [Green Version]
- Stanhill, G.; Cohen, S. Solar radiation changes in the United States during the twentieth century: Evidence from sunshine duration measurements. J. Clim. 2004, 18, 1503–1512. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E.; Wild, M.; Liang, S. Atmospheric impacts on climatic variability of surface incident solar radiation. Atmos. Chem. Phys. 2012, 12, 9581–9592. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.; Zhou, T.; Zhang, L.; Zou, L. Detecting human influence on the temperature changes in Central Asia. Clim. Dyn. 2019, 53, 4553–4568. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.; Yin, Y.Y.; Huang, G.H.; Huang, Y.F. Uncertainty Analysis for Distribution of Greenhouse Gases Concentration in Atmosphere. J. Environ. Inform. 2004, 3, 89–94. [Google Scholar] [CrossRef]
DTR | Tmax | Tmin | |
---|---|---|---|
Spring | 55 | 19 | 68 |
Summer | 40 | 41 | 67 |
Autumn | 40 | 51 | 67 |
Winter | 57 | 21 | 58 |
Annual | 61 | 64 | 68 |
Tmax | Tmin | DTR | |
---|---|---|---|
Spring | 0.189 | 0.506 ** | −0.317 ** |
Summer | 0.195 ** | 0.368 ** | −0.173 ** |
Autumn | 0.224 * | 0.417 ** | −0.193 ** |
Winter | 0.230 | 0.526 ** | −0.297 ** |
Tmax | Tmin | DTR | ||||
---|---|---|---|---|---|---|
R | Slope (°C/decade/km) | R | Slope (°C/decade/km) | R | Slope (°C/decade/km) | |
Spring | 0.551 ** | 0.205 | −0.209 | −0.142 | 0.438 ** | 0.348 |
Summer | 0.572 ** | 0.254 | 0.042 | 0.028 | 0.389 ** | 0.226 |
Autumn | 0.384 ** | 0.100 | −0.16 | −0.109 | 0.303 * | 0.209 |
Winter | 0.194 | 0.095 | −0.322 ** | −0.299 | 0.425 ** | 0.392 |
Tmax | Tmin | DTR | |
---|---|---|---|
Spring | 0.305 * | 0.234 | 0.148 |
Summer | 0.497 ** | 0.014 | 0.364 ** |
Autumn | 0.24 * | −0.096 | 0.185 |
Winter | 0.081 | −0.311 ** | 0.355 ** |
Annual | 0.398 ** | −0.214 | 0.345 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shen, X.; Fan, G. Elevation-Dependent Trend in Diurnal Temperature Range in the Northeast China during 1961–2015. Atmosphere 2021, 12, 319. https://doi.org/10.3390/atmos12030319
Zhang Y, Shen X, Fan G. Elevation-Dependent Trend in Diurnal Temperature Range in the Northeast China during 1961–2015. Atmosphere. 2021; 12(3):319. https://doi.org/10.3390/atmos12030319
Chicago/Turabian StyleZhang, Yanyu, Xiangjin Shen, and Gaohua Fan. 2021. "Elevation-Dependent Trend in Diurnal Temperature Range in the Northeast China during 1961–2015" Atmosphere 12, no. 3: 319. https://doi.org/10.3390/atmos12030319