Characteristics and Health Risk Assessment of PM2.5-Bound PAHs during Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Pre-Treatment and Analysis
2.3. Quality Assurance and Quality Control
2.4. Data Processing
2.4.1. Human Health Risk Assessment
2.4.2. Source Identification of PAHs
3. Results and Discussions
3.1. Overview of Ambient Air Quality and Meteorological Conditions
3.2. Levels and Compositions of PAHs
3.3. Variations of PAHs
3.4. Health Risk Assessment of PAHs
3.5. Source Identification of PAHs
3.5.1. Ratio Method
3.5.2. PCA Source Identification
3.5.3. Backward Trajectory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Zhang, S.; Li, X.; Guo, X.; Wang, Y. Seasonal Varition and Source Identification of Polycyclic Aromatic Hydrocarbons(PAHs) in airborne Particulates of Beijing. Environ. Chem. 2010, 29, 369–375. [Google Scholar]
- Shi, C.; Qu, Y.; Mao, X. Analysis and pollution characteristics of polycyclic aromatic hydrocarbons(PAHs) in PM2.5. Environ. Chem. 2015, 34, 1417–1423. [Google Scholar]
- Zhang, T.; Peng, L.; Li, Y.; LIiu, H.; Wang, Y.; Wang, Y. Chemical Characteristics of PM2. 5 Emitted from Cooking Fumes. Res. Environ. Sci. 2016, 29, 183–191. [Google Scholar]
- Christian, E.; Markus, K.; Vera, S.; Renato, Z. High time resolution and size-segregated analysis of aerosol bound polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 2005, 39, 4213–4219. [Google Scholar] [CrossRef]
- Duan, F.; He, K.; Ma, Y. Concentrationand sources of atmospheric polycyclic aromatic hydrocarbons(PAHs) in PM2.5 in Beijing. Acta Sci. Circumstantiae 2009, 29, 1363–1371. [Google Scholar]
- Li, Z.; Porter, E.N.; Sjödin, A.; Needham, L.L.; Lee, S.; Russell, A.G.; Mulholland, J.A. Characterization of PM2.5-bound polycyclic aromatic hydrocarbons in Atlanta—Seasonal variations at urban, suburban, and rural ambient air monitoring sites. Atmos. Environ. 2009, 43, 4187–4193. [Google Scholar] [CrossRef]
- Topinka, J.; Schwarz, L.; Wiebel, F.; Cerna, M.; Wolff, T. Genotoxicity of urban air pollutants in the Czech Republic. Mutat. Res. Toxicol. Environ. Mutagen. 2000, 469, 83–93. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chiang, H.-C.; Hsu, C.-Y.; Yang, T.-T.; Lin, T.-Y.; Chen, M.-J.; Chen, N.-T.; Wu, Y.-S. Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environ. Pollut. 2016, 218, 372–382. [Google Scholar] [CrossRef]
- Liu, J.; Man, R.; Ma, S.; Li, J.; Wu, Q.; Peng, J. Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM 2.5 in Guangzhou, China. Mar. Pollut. Bull. 2015, 100, 134–143. [Google Scholar] [CrossRef]
- Panther, B.; Hooper, M.; Tapper, N. A comparison of air particulate matter and associated polycyclic aromatic hydrocarbons in some tropical and temperate urban environments. Atmos. Environ. 1999, 33, 4087–4099. [Google Scholar] [CrossRef]
- Mantis, J.; Chaloulakou, A.; Samara, C. PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece. Chemosphere 2005, 59, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Vasilakos, C.; Levi, N.; Maggos, T.; Hatzianestis, J.; Michopoulos, J.; Helmis, C. Gas–particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece. J. Hazard. Mater. 2007, 140, 45–51. [Google Scholar] [CrossRef]
- Finizio, A.; Mackay, D.; Bidleman, T.; Harner, T. Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmos. Environ. 1997, 31, 2289–2296. [Google Scholar] [CrossRef]
- Paasivirta, J.; Sinkkonen, S.; Mikkelson, P.; Rantio, T.; Wania, F. Estimation of vapor pressures, solubilities and Henry’s law constants of selected persistent organic pollutants as functions of temperature. Chemosphere 1999, 39, 811–832. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, Y.J. Source contributions to fine particulate matter in an urban atmosphere. Chemosphere 2005, 59, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Smith, A.D.J.T.; Luhana, L. Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environ. Sci. Technol. 1996, 30, 825–832. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Dao, X.; Lv, Y.; Teng, E.; Li, G. Pollution characteristics and source identification of polycyclic aromatic hydrocarbons in airborne particulates of Beijing-Tianjin-Hebei Region, China. China Environ. Sci. 2015, 35, 1–6. [Google Scholar]
- Li, X.; Guo, X.; Liu, X.; Wang, Y. Pollution Characteristics of PAHs in the Atmospheric Aerosols in winter time of Beijig. Environ. Chem. 2008, 27, 490–493. [Google Scholar]
- Feng, B.; Li, L.; Xu, H.; Wang, T.; Wu, R.; Chen, J.; Zhang, Y.; Liu, S.; Ho, S.S.H.; Cao, J.; et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. J. Environ. Sci. 2019, 77, 11–19. [Google Scholar] [CrossRef]
- Zeng, F.; Wang, G.; Tian, J.; Yu, T.; Zhang, H. Pollution characteristics and source apportionment of PAHs in atmospheric aerosols of some regions in Beijing. Acta Sci. Circumstantiae 2002, 22, 284–288. [Google Scholar]
- Zhang, D.; Ma, Y.; He, K.; Duan, F.; Jia, Y.; Okuda, T.; Tanaka, S. Characteristics of Polycycl ic Aromatic Hydrocarbons (PAHs) on Airborne Particulates in Beijing. Environ. Sci. 2006, 27, 1269–1275. [Google Scholar]
- Chang, J.; Shen, J.; Tao, J.; Li, N.; Xu, C.; Li, Y.; Liu, Z.; Wang, Q. The impact of heating season factors on eight PM2.5-bound polycyclic aromatic hydrocarbon (PAH) concentrations and cancer risk in Beijing. Sci. Total Environ. 2019, 688, 1413–1421. [Google Scholar] [CrossRef]
- Wang, H.; Zang, X.; Ma, L.; Li, J.; Yan, G.; Qu, L.; Zhao, M.Q. Health risk assessment of inhabitants exposed to polycyclic aromatic hydrocarbons and particulate matter in air in Changping district of Beijing. J. Environ. Health 2016, 33, 999–1002. [Google Scholar]
- Work Plan for Air Pollution Prevention and Control in Beijing-Tianjin-Hebei and Surrounding Areas in 2017. Available online: http://dqhj.mee.gov.cn/dtxx/201703/t20170323_408663.shtml (accessed on 6 March 2020).
- Beijing Ecology Environmental Statement. Available online: http://sthjj.beijing.gov.cn/bjhrb/resource/cms/2019/05/2019050915390769405.pdf (accessed on 7 March 2020).
- Chao, S.; Liu, J.; Chen, Y.; Cao, H.; Zhang, A. Implications of seasonal control of PM2.5-bound PAHs: An integrated approach for source apportionment, source region identification and health risk assessment. Environ. Pollut. 2019, 247, 685–695. [Google Scholar] [CrossRef]
- Gao, Y.; Ji, H. Characteristics of polycyclic aromatic hydrocarbons components in fine particle during heavy polluting phase of each season in urban Beijing. Chemosphere 2018, 212, 346–357. [Google Scholar] [CrossRef]
- Wang, X. Available online: http://beijingair.sinaapp.com/ (accessed on 6 March 2019).
- WunderGround. Available online: https://www.wunderground.com/history/monthly/cn/beijing/ZBNY/date/2018-3 (accessed on 15 March 2019).
- Li, J.; Wang, G.; Ren, Y.; Wang, J.; Wu, C.; Han, Y.; Zhang, L.; Cheng, C.; Meng, J. Identification of chemical compositions and sources of atmospheric aerosols in Xi’an, inland China during two types of haze events. Sci. Total Environ. 2016, 566, 230–237. [Google Scholar] [CrossRef]
- Ren, Y.; Li, H.; Meng, F.; Wang, G.; Zhang, H.; Yang, T.; Li, W.; Ji, Y.; Bi, F.; Wang, X. Impact of emission controls on air quality in Beijing during the 2015 China Victory Day Parade: Implication from organic aerosols. Atmos. Environ. 2019, 198, 207–214. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Meusel, H.; Huang, R.-J.; Ho, K.; Cao, J.; Hoffmann, T.; Wilcke, W. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Sci. Total Environ. 2014, 473-474, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.; Liu, M.; Li, X.; Meng, F.; Wang, J.; Yan, W.; Lin, X.; Zhu, J.; Qin, Y. Investigation into atmospheric PM2.5-borne PAHs in Eastern cities of China: Concentration, source diagnosis and health risk assessment. Environ. Sci. Process. Impacts 2016, 18, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Zhou, B.; Tao, J.; Cao, J.; Zhang, Z.; Wu, C.; Wang, J.; Li, J.; Zhang, L.; Han, Y.; et al. Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities. Atmos. Res. 2017, 183, 322–330. [Google Scholar] [CrossRef]
- Malcolm, H.M.; Dobson, S. The Calculation of an Environmental Assessment Level (EAL) for Atmospheric PAHs Using Relative Potencies; Department of the Environment: London, UK, 1994.
- Chen, Y.; Li, X.; Zhu, T.; Han, Y.; Lv, D. PM2.5-bound PAHs in three indoor and one outdoor air in Beijing: Concentration, source and health risk assessment. Sci. Total Environ. 2017, 586, 255–264. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guideline for Europe, 2nd ed.; WHO Regional Office: Copenhagen, Denmark, 2000. [Google Scholar]
- Duan, F.K.; He, K.B.; Ma, Y.L.; Yang, F.M.; Yu, X.C.; Cadle, S.H.; Chan, T.; Mulawa, P.A. Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001–2002. Sci. Total Environ. 2006, 355, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, M.-J.; Kang, Y.; Wang, H.-S.; Leung, A.O.; Cheung, K.C.; Wong, M.H. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Sci. Total Environ. 2011, 409, 4519–4527. [Google Scholar] [CrossRef]
- Khalili, N.R.; Scheff, P.A.; Holsen, T.M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 1995, 29, 533–542. [Google Scholar] [CrossRef]
- Hamid, N.; Syed, J.H.; Junaid, M.; Mahmood, A.; Li, J.; Zhang, G.; Malik, R.N. Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: Implications for changing energy demand. Sci. Total Environ. 2018, 165–175. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Shi, X.; Lu, X. Distribution Characteristics and Source Analysis of Polycyclic AromaticHydrocarbons(PAHs) in Surface Dust of Xian City, China. Environ. Sci. 2016, 37, 1279–1286. [Google Scholar]
- Fernández, P.; Grimalt, J.O.; Vilanova, R.M. Atmospheric Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons in High Mountain Regions of Europe. Environ. Sci. Technol. 2002, 36, 1162–1168. [Google Scholar] [CrossRef]
- De La Torre-Roche, R.J.; Lee, W.-Y.; Campos-Díaz, S.I. Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region. J. Hazard. Mater. 2009, 163, 946–958. [Google Scholar] [CrossRef] [Green Version]
- Air Resources Laboratory. Available online: http://ready.arl.noaa.gov/archives.php (accessed on 15 January 2020).
- Kalisa, E.; Nagato, E.; Bizuru, E.; Lee, K.; Tang, N.; Pointing, S.; Hayakawa, K.; Archer, S.; Lacap-Bugler, D. Pollution characteristics and risk assessment of ambient PM2.5-bound PAHs and NPAHs in typical Japanese and New Zealand cities and rural sites. Atmos. Pollut. Res. 2019, 10, 1396–1403. [Google Scholar] [CrossRef]
- Tolis, E.I.; Saraga, D.E.; Lytra, M.K.; Papathanasiou, A.C.; Bougaidis, P.N.; Prekas-Patronakis, O.E.; Ioannidis, I.I.; Bartzis, J.G. Concentration and chemical composition of PM2.5 for a one-year period at Thessaloniki, Greece: A comparison between city and port area. Atmos. Environ. 2015, 113, 197–207. [Google Scholar] [CrossRef]
- Villar-Vidal, M.; Lertxundi, A.; De Dicastillo, M.M.L.; Alvarez, J.; Marina, L.S.; Ayerdi, M.; Basterrechea, M.; Ibarluzea, J. Air Polycyclic Aromatic Hydrocarbons (PAHs) associated with PM2.5 in a North Cantabric coast urban environment. Chemosphere 2014, 99, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Dameng, L.; Shaopeng, G.; Xianghua, A. Distribution and Source Apportionment of Polycyclic Aromatic Hydrocarbons from Atmospheric Particulate Matter PM2.5 in Beijing. Adv. Atmos. Sci. 2008, 25, 297–305. [Google Scholar]
- Wu, Y.; Yang, L.; Zheng, X.; Zhang, S.; Song, S.; Li, J.; Hao, J. Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Sci. Total Environ. 2014, 470, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Wang, Q.; Yang, Y.; Liu, T.; Wang, Q.; Wu, Y.; Fang, J. Characterization of ambient PM2.5 and PAHs during 2017 Spring Festival in urban and suburb areas of Beijing. Environ. Chem. 2018, 37, 2191–2198. [Google Scholar]
- Kong, S.; Yan, Q.; Zheng, H.; Liu, H.; Wang, W.; Zheng, S.; Yang, G.; Zheng, M.; Wu, J.; Qi, S.; et al. Substantial reductions in ambient PAHs pollution and lives saved as a co-benefit of effective long-term PM2.5 pollution controls. Environ. Int. 2018, 114, 266–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Liu, D.; Lin, T.; Li, J.; Yu, Z.; Zhang, G. Concentration, source identification, and exposure risk assessment of PM2.5-bound PAHs and nitro-PAHs in the atmosphere of Taiyuan. Acta Sci. Circumstantiae 2018, 38, 1102–1108. [Google Scholar]
Compounds of PAHs | Abbreviation | Rings | TEF |
---|---|---|---|
Phenanthrene | Phe | 3 | 0.001 |
Anthracene | Ant | 3 | 0.01 |
Fluoranthene | Flt | 3 | 0.001 |
Pyrene | Pyr | 4 | 0.001 |
Benzo[a]anthracene | BaA | 4 | 0.1 |
Chrysene | Chr | 4 | 0.01 |
Benzo[b]fluoranthene | BbF | 5 | 0.1 |
Benzo[k]fluoranthene | BkF | 5 | 0.1 |
Benzo[e]pyrene | BeP | 5 | 0.01 |
Benzo[a]pyrene | BaP | 5 | 1 |
Perylene | Per | 5 | 0.001 |
Dibenz[a,h]anthracene | DBA | 5 | 1 |
Indeno[1,2,3-cd]pyrene | IP | 6 | 0.1 |
Benzo[ghi]perylene | Bghip | 6 | 0.01 |
Diagnostic Ratios | Value | Indicator Source | References |
---|---|---|---|
BaA/(Chr + BaA) | <0.20 | petroleum sources | [19] |
0.20–0.35 | mixed combustion sources | ||
>0.35 | combustion sources | ||
Flt/(Pyr + Flt) | <0.40 | petroleum sources | [43] |
0.40–0.50 | petroleum combustion sources | ||
>0.35 | coal and biomass combustion sources | ||
BaP/BghiP | <0.60 | non-traffic emission sources | [19] |
>0.60 | traffic emission sources | ||
IP/(IP + BghiP) | 0.20–0.50 | petroleum sources and gasoline combustion sources | [44] |
0.40–0.50 | diesel combustion sources |
Species | Daily Mean (n = 38) | Daytime (n = 19) | Nighttime (n = 19) | Episode 1 (n = 12) | Episode 2 (n = 14) |
---|---|---|---|---|---|
Phenanthrene Phe | 4.6 ± 1.3 2.3–6.8 | 4.4 ± 1.5 2.1–7.5 | 4.7 ± 1.3 2.4–7.1 | 5.3 ± 1.0 4.4–7.0 | 4.8 ± 0.65 4.1–5.6 |
Anthracene Ant | 0.23 ± 0.06 0.12–0.33 | 0.21 ± 0.07 0.11–0.35 | 0.24 ± 0.06 0.13–0.36 | 0.24 ± 0.05 0.18–0.31 | 0.25 ± 0.03 0.22–0.28 |
Fluoranthene Flt | 4.7 ± 1.2 2.6–6.3 | 4.3 ± 1.4 2.0–7.2 | 5.0 ± 1.2 3.0–6.7 | 5.2 ± 0.81 3.9–6.2 | 5.2 ± 0.60 4.3–6.3 |
Pyrene Pyr | 2.3 ± 0.57 1.3–3.3 | 1.9 ± 0.61 0.80–3.2 | 2.6 ± 0.77 1.6–4.1 | 2.5 ± 0.32 1.9–2.8 | 2.6 ± 0.43 2.0–3.3 |
Benzo[a]anthracene BaA | 0.84 ± 0.48 0.32–2.1 | 0.38 ± 0.20 0.07–0.79 | 1.3 ± 0.94 0.36–3.9 | 0.93 ± 0.43 0.57–1.7 | 1.0 ± 0.61 0.32–2.1 |
Chrysene Chr | 1.2 ± 0.57 0.50–2.6 | 0.81 ± 0.37 0.16–1.6 | 1.6 ± 1.0 0.69–4.3 | 1.3 ± 0.35 0.91–1.9 | 1.6 ± 0.69 0.76–2.6 |
Benzo[b]fluoranthene BbF | 2.4 ± 1.1 1.0–5.0 | 1.5 ± 0.77 0.19–3.0 | 3.3 ±2.0 0.96–8.6 | 2.5 ± 0.75 1.6–3.8 | 2.9 ± 1.4 1.1–5.1 |
Benzo[k]fluoranthene BkF | 0.49 ± 0.24 0.19–1.1 | 0.30 ± 0.14 0.04–0.58 | 0.67 ± 0.42 0.26–1.8 | 0.47 ± 0.13 0.31–0.70 | 0.66 ± 0.28 0.28–1.1 |
Benzo[a]fluoranthene BaF | 0.23 ± 0.12 0.08–0.60 | 0.10 ± 0.05 0.02–0.21 | 0.36 ± 0.24 0.11–1.1 | 0.24 ± 0.09 0.15–0.41 | 0.28 ± 0.16 0.09–0.60 |
Benzo[e]pyrene BeP | 0.84 ± 0.42 0.32–1.9 | 0.50 ± 0.26 0.07–1.0 | 1.2 ± 0.77 0.39– 3.4 | 0.87 ± 0.29 0.49–1.4 | 1.1 ± 0.52 0.40–2.0 |
Benzo[a]pyrene BaP | 0.82 ± 0.44 0.31–2.1 | 0.40 ± 0.21 0.06–0.82 | 1.2 ± 0.85 0.35–3.7 | 0.85 ± 0.33 0.12–1.5 | 1.0 ± 0.56 0.32–2.1 |
Perylene Per | 0.18 ± 0.09 0.06–0.42 | 0.07 ± 0.04 0.01–0.14 | 0.28 ± 0.18 0.09–0.77 | 0.18 ± 0.07 0.12–0.31 | 0.22 ± 0.12 0.06–0.42 |
Dibenz[a,h]anthracene DBA | 0.14 ± 0.07 0.04–0.31 | 0.09 ± 0.05 0.02–0.21 | 0.20 ± 0.13 0.02–0.55 | 0.14 ± 0.05 0.09–0.22 | 0.17 ± 0.10 0.04–0.31 |
Indeno[1,2,3-cd]pyrene IP | 1.1 ± 0.50 0.44–2.2 | 0.67 ± 0.37 0.09–1.6 | 1.5 ± 0.91 0.40–3.8 | 1.1 ± 0.37 0.67–1.7 | 1.3 ± 0.64 0.45–2.2 |
Benzo[ghi]perylene Bghip | 1.1 ± 0.54 0.45–2.5 | 0.67 ± 0.37 0.11–1.4 | 1.6 ± 1.0 0.40–4.4 | 1.1 ± 0.39 0.68–1.8 | 1.3 ± 0.71 0.45–2.5 |
15 PAHs | 21 ± 6.11 1–34 | 16 ± 5.5 5.9–27 | 26 ± 9.91 3–50 | 23 ± 2.62 0–28 | 24 ± 6.41 7–34 |
15PAHs/PM2.5 (‰) | 0.22 ± 0.08 0.11–0.38 | 0.17 ± 0.07 0.07–0.30 | 0.28 ± 0.10 0.14–0. 53 | 0.24 ± 0.10 0.14–0.38 | 0.19 ± 0.07 0.11–0.32 |
Compounds of PAHs | Rings | During the Monitoring Period | Daytime | Nighttime | |||
---|---|---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 1 | Factor 2 | Factor 1 | Factor 2 | ||
Phe | 3 | −0.028 | 0.980 | 0.194 | 0.962 | −0.062 | 0.977 |
Ant | 3 | 0.086 | 0.975 | 0.146 | 0.967 | 0.067 | 0.969 |
Flt | 3 | 0.301 | 0.940 | 0.280 | 0.951 | 0.344 | 0.926 |
Pyr | 4 | 0.615 | 0.743 | 0.467 | 0.870 | 0.627 | 0.711 |
BaA | 4 | 0.960 | 0.207 | 0.913 | 0.349 | 0.957 | 0.218 |
Chr | 4 | 0.957 | 0.251 | 0.873 | 0.444 | 0.962 | 0.238 |
BbF | 5 | 0.971 | 0.154 | 0.937 | 0.294 | 0.981 | 0.161 |
BkF | 5 | 0.977 | 0.176 | 0.909 | 0.270 | 0.962 | 0.189 |
BaF | 4 | 0.966 | 0.177 | 0.950 | 0.252 | 0.972 | 0.134 |
BeP | 5 | 0.979 | 0.152 | 0.937 | 0.245 | 0.979 | 0.153 |
BaP | 5 | 0.984 | 0.145 | 0.973 | 0.218 | 0.984 | 0.137 |
Per | 5 | 0.972 | 0.178 | 0.934 | 0.204 | 0.976 | 0.191 |
DBA | 5 | 0.945 | 0.135 | 0.734 | 0.176 | 0.960 | 0.103 |
IP | 6 | 0.981 | 0.121 | 0.956 | 0.220 | 0.988 | 0.083 |
Bghip | 6 | 0.988 | 0.105 | 0.976 | 0.117 | 0.990 | 0.085 |
% of variance | 72 | 24 | 64 | 28 | 73 | 23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Ji, Y.; Ren, Y.; Gao, F.; Zhang, H.; Zhang, L.; Yu, Y.; Li, H. Characteristics and Health Risk Assessment of PM2.5-Bound PAHs during Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China. Atmosphere 2021, 12, 323. https://doi.org/10.3390/atmos12030323
Luo M, Ji Y, Ren Y, Gao F, Zhang H, Zhang L, Yu Y, Li H. Characteristics and Health Risk Assessment of PM2.5-Bound PAHs during Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China. Atmosphere. 2021; 12(3):323. https://doi.org/10.3390/atmos12030323
Chicago/Turabian StyleLuo, Mei, Yuanyuan Ji, Yanqin Ren, Fuhong Gao, Hao Zhang, Lihui Zhang, Yanqing Yu, and Hong Li. 2021. "Characteristics and Health Risk Assessment of PM2.5-Bound PAHs during Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China" Atmosphere 12, no. 3: 323. https://doi.org/10.3390/atmos12030323
APA StyleLuo, M., Ji, Y., Ren, Y., Gao, F., Zhang, H., Zhang, L., Yu, Y., & Li, H. (2021). Characteristics and Health Risk Assessment of PM2.5-Bound PAHs during Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China. Atmosphere, 12(3), 323. https://doi.org/10.3390/atmos12030323