Cloud Cover over the Sahara during the Summer and Associated Circulation Features
Abstract
:1. Introduction
2. Data
2.1. Spinning Enhanced Visible and Infrared Imager (SEVIRI) Data and the Satellite Application Facility for Now-Casting (SAFNWC) Cloud Algorithm
2.2. Cloud Top Pressure and Cloud-Type Classification over Sahara
2.3. European Center for Medium-Range Weather Forecasting (ECMWF) Reanalysis (ERA) Interim Data
3. Cloud Cover and Cloud Cover Type Occurrence Observed with SEVIRI
3.1. General Features of Cloud Cover Occurrence over West Africa
3.1.1. Total and High-Top Cloud Cover
3.1.2. Mid-Top Cloud Cover
3.1.3. Low-Top Cloud Cover
3.2. Intra-Seasonal Evolution of Cloud Cover over the Hoggar and the West-Sahara
3.2.1. Monthly Mean Statistics
3.2.2. Intra-Seasonal and Seasonal Evolution of Daily Cloud Frequencies
4. Mid-Top Cloud and Regional Atmospheric Conditions
4.1. Intra-Seasonal Behavior of the Saharan Anticyclone (SAC), the Saharan Heat Low (SHL) and the Inter-Tropical Discontinuity (ITD) with Mid-Top Cloud
4.1.1. SHL and SAC Positions and Intensity
4.1.2. The Inter-Tropical Discontinuity (ITD) Position
4.2. Convergence of Mass and Humidity in the Saharan Atmospheric Boundary Layer (SABL)
4.2.1. The Three Main Types of Mass and Water Convergence Profiles
4.2.2. Intraseasonal Variations of Convergence Classes over West-Sahara and Hoggar
5. Discussion
6. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Pressure Thresholds for the Separation between Low-Top Clouds, Mid-Top Clouds and High-Tpop Clouds
Appendix B. Re-Classification of Partially Cloud Covered Pixels
Appendix C. Evaluation of SEVIRI Cloud Classification against CALIOP Light Detection and Ranging (Lidar) Data
References
- Chauvin, F.; Roehrig, R.; Lafore, J.P. Intraseasonal variability of the Saharan heat low and its link with midlatitudes. J. Clim. 2010, 23, 2544–2561. [Google Scholar] [CrossRef]
- Lavaysse, C.; Flamant, C.; Janicot, S.; Knippertz, P. Links between African easterly waves, midlatitude circulation and intraseasonal pulsations of the West African heat low. Q. J. R. Meteorol. Soc. 2010, 136, 141–158. [Google Scholar] [CrossRef]
- Janicot, S.; Thorncroft, C.D.; Ali, A.; Asencio, N.; Berry, G.; Bock, O.; Bourlès, B.; Caniaux, G.; Chauvin, F.; Deme, A.; et al. Large-scale overview of the summer monsoon over West Africa during the AMMA field experiment in 2006. Ann. Geophys. 2008, 26, 2569–2595. [Google Scholar] [CrossRef] [Green Version]
- Lavaysse, C.; Flamant, C.; Janicot, S.; Parker, D.J.; Lafore, J.P.; Sultan, B.; Pelon, J. Seasonal evolution of the West African heat low: A climatological perspective. Clim. Dyn. 2009, 33, 313–330. [Google Scholar] [CrossRef]
- Evan, A.T.; Flamant, C.; Lavaysse, C.; Kocha, C.; Saci, A. Water vapor-forced greenhouse warming over the Sahara Desert and the recent recovery from the Sahelian drought. J. Clim. 2015, 28, 108–123. [Google Scholar] [CrossRef]
- Chen, T.C. Maintenance of the midtropospheric North African summer circulation: Saharan high and African easterly jet. J. Clim. 2005, 18, 2943–2962. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A.S. Dust-storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Ann. Am. Assoc. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Parker, D.J.; Thorncroft, C.D.; Burton, R.R.; Diongue-Niang, A. Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Q. J. R. Meteorol. Soc. 2005, 131, 1461–1482. [Google Scholar] [CrossRef]
- Cuesta, J.; Dimitri, E.; Mimouni, M.; Flamant, P.H.; Loth, C.; Gibert, F.; Marnas, F.; Bouklila, A.; Kharef, M.; Bouziane, O.; et al. Multiplatform observations of the seasonal evolution of the Saharan atmospheric boundary layer in Tamanrasset, Algeria, in the framework of the African Monsoon Multidisciplinary Analysis field campaign conducted in 2006. J. Geophys. Res. 2008, 113, D00C07. [Google Scholar] [CrossRef] [Green Version]
- Messager, C.; Parker, D.; Reitebuch, O.; Agustí-Panareda, A.; Taylor, C.M.; Cuesta, J. Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006. Q. J. R. Meteorol. Soc. 2010, 136, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Carreras, L.; Parker, D.J.; Marsham, J.H.; Rosenberg, P.D.; Brooks, I.M.; Lock, A.P.; Marenco, F.; McQuaid, J.B.; Hobby, M. The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer. J. Atmos. Sci. 2015, 72, 693–713. [Google Scholar] [CrossRef] [Green Version]
- Marsham, J.H.; Parker, D.J.; Todd, M.C.; Banks, J.R.; Brindley, H.E.; Garcia-Carreras, L.; Roberts, A.J.; Ryde, C.L. The contrasting roles of water and dust in controlling daily variations in radiative heating of the summertime Saharan heat low. Atmos. Chem. Phys. 2016, 16, 3563–3575. [Google Scholar] [CrossRef] [Green Version]
- Roehrig, R.; Bouniol, D.; Guichard, F.; Hourdin, F.; Redelsperger, J.-L. The Present and Future of the West African Monsoon: A Process-Oriented Assessment of CMIP5 Simulations along the AMMA Transect. J. Clim. 2013, 26, 6471–6505. [Google Scholar] [CrossRef]
- Thorncroft, C.D.; Parker, D.J.; Burton, R.R.; Diop, M.; Ayers, J.H.; Barjat, H.; Devereau, S.; Diongue, A.; Dumelow, R.; Kindred, D.R.; et al. The JET2000 Project: Aircraft Observations of the African Easterly Jet and African Easterly Waves. Bull. Am. Meteorol. Soc. 2003, 84, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Lebel, T.; Cappelaere, C.; Galle, S.; Hanan, N.; Kergoat, L.; Levis, S.; Vieux, B.; Descroix, L.; Gosset, M.; Mougin, E.; et al. AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol. 2009, 375, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Washington, R.; Flamant, C.; Parker, D.; Marsham, J.; McQuaid, J.; Brindley, H.; Todd, M.; Highwood, E.; Ryder, C.; Chaboureau, J.; et al. Fennec–The Saharan Climate System. CLIVAR Exch. 2012, 60, 31–33. Available online: http://www.clivar.org/sites/default/files/documents/Exchanges60.pdf (accessed on 7 February 2021).
- Marsham, J.H.; Hobby, M.; Allen, C.J.T.; Banks, J.R.; Bart, M.; Brooks, B.J.; Cavazos-Guerra, C.; Engelstaedter, S.; Gascoyne, M.; Lima, A.R.; et al. Meteorology and dust in the central Sahara: Observationsfrom Fennec supersite-1 during the June 2011 Intensive Observation Period. J. Geophys. Res. Atmos. 2013, 118, 4069–4089. [Google Scholar] [CrossRef]
- Kealy, J.C.; Marenco, F.; Marsham, J.H.; Garcia-Carreras, L.; Francis, P.N.; Cooke, M.C.; Hocking, J. Clouds over the summertime Sahara: An evaluation of Met Office retrievals from Meteosat Second Generation using airborne remote sensing. Atmos. Chem. Phys. 2017, 17, 5789–5807. [Google Scholar] [CrossRef] [Green Version]
- Stein, T.H.; Parker, D.; Delanoë, J.; Dixon, N.; Hogan, R.J.; Knippertz, P.; Maidment, R.; Marsham, J. The vertical cloud structure of the West African monsoon: A 4 year climatology using CloudSat and CALIPSO. J. Geophys. Res. Atmos. 2011, 116, D22205. [Google Scholar] [CrossRef] [Green Version]
- Bouniol, D.; Couvreux, F.; Kamsu-Tamo, P.H.; Leplay, M.; Guichard, F.; Favot, F.; O’connor, E.J. Diurnal and seasonal cycles of cloud occurrences, types, and radiative impact over West Africa. J. Appl. Meteorol. Climatol. 2012, 51, 534–553. [Google Scholar] [CrossRef] [Green Version]
- Bourgeois, E.; Bouniol, D.; Couvreux, F.; Guichard, F.; Marsham, J.H.; Carreras, L.G.; Birch, C.E.; Parker, D.J. Characteristics of mid-level clouds over West Africa. Q. J. R. Meteorol. Soc. 2017, 144, 426–442. [Google Scholar] [CrossRef] [Green Version]
- Fink, A.H.; Engel, T.; Ermet, V.; Van der Linden, R.; Schneidewind, M.; Redl, R.; Afiesimana, E.; Thiaw, W.; Yorke, C.; Evans, M.; et al. Mean Climate and Seasonnal Cycle. In Meteorology of Tropical West Africa: The Forecasters; Parker, D.J., Diop-Kane, M., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2017; pp. 1–39. [Google Scholar]
- Roehrig, R.; Chauvin, F.; Lafore, J.P. 10-25-day intraseasonal variability of convection over the Sahel: A role of the Saharan heat low and midlatitudes. J. Clim. 2011, 24, 5863–5878. [Google Scholar] [CrossRef]
- Grams, C.M.; Jones, S.C.; Marsham, J.H.; Parker, D.J.; Haywood, J.M.; Heuveline, V. The Atlantic inflow to the Saharan heat low: Observations and modelling. Q. J. R. Meteorol. Soc. 2010, 136, 125–140. [Google Scholar] [CrossRef]
- Todd, M.C.; Allen, J.T.C.; Bart, M.; Bechir, M.; Bentefouet, J.; Brooks, B.J.; Cavazos-Guerra, C.; Clovis, T.; Deyane, S.; Dieh, M.; et al. Meteorological and dust aerosol conditions over the western Saharan region observed at Fennec Supersite-2 during the intensive observation period in June 2011. J. Geophys. Res. Atmos. 2013, 118, 8426–8447. [Google Scholar] [CrossRef]
- Derrien, M.; Gléau, H.L.; Fernandez, P. Algorithm Theoretical Basis Document for “Cloud Products” (CMa-PGE01 v3.2, CT-PGE02 v2.2 & CTTH-PGE03 v2.2). SAF/NWC/CDOP2/MFL/SCI /ATBD/01, Issue 3, Rev. 2.1. 2013. Available online: https://www.nwcsaf.org/AemetWebContents/ScientificDocumentation/Documentation/MSG/SAF-NWC-CDOP2-MFL-SCI-ATBD-01_v3.2.1.pdf (accessed on 23 March 2021).
- Derrien, M.; Le Gléau, H. MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens. 2005, 26, 4707–4732. [Google Scholar] [CrossRef]
- Derrien, M.; Le Gléau, H. Improvement of cloud detection near sunrise and sunset by temporal-differencing and region-growing techniques with real-time SEVIRI. Int. J. Remote Sens. 2010, 31, 1765–1780. [Google Scholar] [CrossRef]
- Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens. 1988, 9, 123–150. [Google Scholar] [CrossRef]
- Tanre, D.; Deroo, C.; Duhaut, P.; Herman, M.; Morcrette, J.J.; Perbos, J.; Deschamps, P.Y. Description of a computer code to simulate the satellite signal in the solar spectrum: The 5S code. Int. J. Remote Sens. 1990, 11, 659–668. [Google Scholar] [CrossRef]
- Schmetz, J.; Holmlund, K.; Hoffman, J.; Strauss, B.; Mason, B.; Gaertner, V.; Kock, A.; DeBerg, L.V. Operational cloud-motion winds from Meteosat infrared images. J. Appl. Meteorol. 1993, 32, 1206–1225. [Google Scholar] [CrossRef] [Green Version]
- Menzel, W.P.; Smith, W.L.; Stewart, T.R. Improved cloud motion wind vector and altitude assignment using VAS. J. Appl. Meteorol. 1983, 22, 377–384. [Google Scholar] [CrossRef]
- Sèze, G.; Pelon, J.; Derrien, M.; Le Gléau, H.; Six, B. Evaluation against CALIPSO lidar observations of the multigeostationary cloud cover and type dataset assembled in the framework of the Megha-Tropiques mission. Q. J. R. Meteorol. Soc. 2015, 141, 774–797. [Google Scholar] [CrossRef]
- Kerdraon, G.; Gléau, H.L. Validation Report for the Cloud Product Processors of the NWC/GEO.NWC/CDOP3/GEO/MF-CMS/SCI/VR/Cloud, Issue 1, Rev. 0. 2019. Available online: https://www.nwcsaf.org/Downloads/GEO/2018/Documents/Scientific_Docs/NWC-CDOP3-GEO-MF-CMS-SCI-VR-Cloud_v1.0.pdf (accessed on 24 March 2021).
- Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P.N.; Heidinger, A.; Joro, S.; Kniffka, A.; et al. Remote sensing of cloud top pressure/height from SEVIRI: Analysis of ten current retrieval algorithms. Atmos. Meas. Technol. 2014, 7, 2839–2867. [Google Scholar] [CrossRef] [Green Version]
- Dommo, A.; Philippon, N.; Seze, G.; Vondou, D.A. The June to September low cloud cover in western Central Africa: Mean diurnal and spatial patterns and associated atmospheric dynamics. J. Clim. 2018, 31, 9585–9603. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Parker, D.J.; Burton, R.R.; Diongue-Niang, A.; Ellis, R.J.; Felton, M.; Taylor, C.M.; Thorncroft, C.D.; Bessemoulin, P.; Tompkins, A.M. The diurnal cycle of the West African monsoon circulation. Q. J. R. Meteorol. Soc. 2005, 131, 2839–2860. [Google Scholar] [CrossRef]
- Bou Karam, D.; Flamant, C.; Tulet, P.; Chaboureau, J.P.; Dabas, A.; Todd, M.C. Estimate of Sahelian dust emissions in the Intertropical discontinuity region of the West African Monsoon. J. Geophys. Res. 2009, 114, D13106. [Google Scholar] [CrossRef] [Green Version]
- Pospichal, B.; Bou Karam, D.; Crewell, S.; Flamant, C.; Hunerbein, A.; Bock, O.; Saîd, F. Diurnal cycle of the intertropical discontinuity over West Africa analysed by remote sensing and mesoscale modeling. Q. J. R. Meteorol. Soc. 2009, 136, 92–106. [Google Scholar] [CrossRef]
- Buckle, C. Weather and Climate in Africa; Addison-Wesley Longman Ltd.: Harlow, UK, 1996. [Google Scholar]
- Flamant, C.; Chaboureau, J.P.; Parker, D.J.; Taylor, C.M.; Cammas, J.P.; Bock, O.; Timouk, F.; Pelon, J. Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African Monsoon. Q. J. R. Meteorol. Soc. 2007, 133, 1175–1189. [Google Scholar] [CrossRef]
- Knippertz, P.; Fink, A.H. Dry-season precipitation in tropical West Africa and its relation to forcing from the extratropics. Mon. Weather Rev. 2008, 136, 3579–3596. [Google Scholar] [CrossRef]
- Emmel, C.; Knippertz, P.; Schulz, O. Climatology of convective density currents in the southern foothills of the Atlas Mountains. J. Geophys. Res. 2010, 115, D11115. [Google Scholar] [CrossRef]
- Redl, R.; Fink, A.H.; Knippertz, P. An Objective Detection Method for Convective Cold Pool Events and Its Application to Northern Africa. Mon. Weather Rev. 2015, 143, 5055–5072. [Google Scholar] [CrossRef]
- Roberts, A.J.; Marsham, J.H.; Knippertz, P. Disagreements in low-level moisture between (Re)analyses over summertime West Africa. Mon. Weather Rev. 2015, 143, 1193–1211. [Google Scholar] [CrossRef] [Green Version]
- Trzeciak, T.M.; Garcia-Carreras, L.; Marsham, J.H. Cross-Saharan transport of water vapor via recycled cold pool outflows from moist convection. Geophys. Res. Lett. 2016, 44, 1554–1563. [Google Scholar] [CrossRef]
- Meynadier, R.; Bock, O.; Gervois, S.; Guichard, F.; Redelsperger, J.L.; Agustíì-Panareda, A.; Beljaars, A. West African Monsoon water cycle: 2. Assessment of numerical weather prediction water budgets. J. Geophys. Res. Atmos. 2010, 115, D19107. [Google Scholar] [CrossRef] [Green Version]
- Sultan, B.; Janicot, S. The West African monsoon dynamics. Part II: The “pre-onset” and “onset” of the summer monsoon. J. Clim. 2003, 16, 3407–3427. [Google Scholar] [CrossRef]
- Lélé, I.; Leslie, L.M.; Lamb, P. Analysis of Low-Level Atmospheric Moisture Transport Associated with the West African Monsoon. J. Clim. 2015, 28, 4414–4430. [Google Scholar] [CrossRef]
- Diedhiou, A.; Janicot, S.; Viltard, A.; De Felice, P.; Laurent, H. Easterly wave regimes and associated convection over West Africa and tropical Atlantic: Results from the NCEP/NCAR and ECMWF reanalyses. Clim. Dyn. 1999, 15, 795–822. [Google Scholar] [CrossRef]
- Tyrlis, E.; Lelieveld, J.; Steil, B. The summer circulation over the eastern Mediterranean and the Middle East: Influence of the South Asian monsoon. Clim. Dyn. 2013, 40, 1103–1123. [Google Scholar] [CrossRef] [Green Version]
- Knippertz, P.; Fink, A.H.; Reiner, A.; Speth, P. Three late summer/early autumn cases of tropical–extratropical interactions causing precipitation in northwest Africa. Mon. Weather Rev. 2003, 131, 116–135. [Google Scholar] [CrossRef]
- Skinner, C.B.; Poulsen, C.J. The role of fall season tropical plumes in enhancing Saharan rainfall during the African Humid Period. Geophys. Res. Lett. 2015, 43, 349–358. [Google Scholar] [CrossRef]
- Wu, M.; Reale, O.; Schubert, S.; Suarez, M.; Thorncroft, C. African Easterly Jet: Barotropic Instability, Waves, and Cyclogenesis. J. Clim. 2012, 25, 1489–1510. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Holle, R.L.; Simpson, J.; Leavitt, S.W. GATE B-scale cloudiness from whole-sky cameras on four U.S. Ships. Mon. Weather Rev. 1979, 107, 874–895. [Google Scholar] [CrossRef] [Green Version]
- Van der Linden, R.; Fink, A.H.; Redl, R. Satellite-based climatology of low-level continental clouds in southern West Africa during the summermonsoon season. J. Geophys. Res. Atmos. 2015, 120, 1186–1201. [Google Scholar] [CrossRef]
- Eastman, R.; Warren, S. Diurnal cycles of cumulus, cumulonimbus, stratus, stratocumulus, and fog from surface observations over land and ocean. J. Clim. 2013, 27, 2386–2404. [Google Scholar] [CrossRef] [Green Version]
- Dalu, G.A.; Gaetani, M.; Lavaysse, C.; Flamant, C.; Evan, A.T.; Baldi, M. Simple solutions for the summer shallow atmospheric circulation over North Africa. Q. J. R. Meteorol. Soc. 2018, 144, 765–779. [Google Scholar] [CrossRef] [Green Version]
- Thorncroft, C.D.; Blackburn, M. Maintenance of the African easterly jet. Q. J. R. Meteorol. Soc. 1999, 125, 763–786. [Google Scholar] [CrossRef]
- Knippertz, P. Tropical–extratropical interactions causing precipitation in northwest Africa: Statistical analysis and seasonal variations. Mon. Weather Rev. 2003, 131, 3069–3076. [Google Scholar] [CrossRef]
- Knippertz, P.; Martin, J.E. Tropical plumes and extreme precipitation in subtropical and tropical West Africa. Q. J. R. Meteorol. Soc. 2005, 131, 2337–2365. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, L.; Knippertz, P.; Fink, A.H.; Hohberger, E. An objective climatology of tropical plumes. J. Clim. 2013, 24, 5044–5060. [Google Scholar] [CrossRef] [Green Version]
- Cornforth, R.; Mumba, Z.; Parker, D.J.; Berry, G.; Chapelon, N.; Diakaria, K.; Diop-Kane, M.; Ermert, V.; Fink, A.H.; Knippertz, P.; et al. Synoptic systems. In Meteorology of Tropical West Africa: The Forecasters; Parker, D.J., Diop-Kane, M., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2017; pp. 40–89. [Google Scholar]
- Thorncroft, C.D.; Nguyen, H.; Zhang, C.; Peyrillé, P. Annual cycle of the West African monsoon: Regional circulations and associated water vapour transport. Q. J. R. Meteorol. Soc. 2011, 137, 129–147. [Google Scholar] [CrossRef]
- Lélé, I.; Lamb, P. Variability of the Intertropical Front (ITF) and Rainfall over the West African Sudan–Sahel Zone. J. Clim. 2010, 23, 3984–4004. [Google Scholar] [CrossRef]
- Lavaysse, C.; Eymard, L.; Flamant, C.; Karbou, F.; Mimouni, M.; Saci, A. Monitoring the West African heat low at seasonal and intra-seasonal timescales using AMSU-A sounder. Geophys. Res. Lett. 2013, 14, 263–271. [Google Scholar] [CrossRef]
- Couvreux, F.; Guichard, F.; Bock, O.; Campistron, B.; Lafore, J.-P.; Redelsperger, J.L. Synoptic variability of the monsoon flux over West Africa prior to the onset. Q. J. R. Meteorol. Soc. 2010, 136, 159–173. [Google Scholar] [CrossRef]
- Cau, P.; Methven, J.; Hoskins, B. Origins of dry air in the tropics and subtropics. J. Clim. 2007, 20, 2745–2759. [Google Scholar] [CrossRef]
- Birch, C.E.; Parker, D.J.; Marsham, J.H.; Devine, G.M. The effect of orography and surface albedo on stratification in the summertime Saharan boundary layer: Dynamics and implications for dust transport. J. Geophys. Res. Atmos. 2012, 117, D05105. [Google Scholar] [CrossRef] [Green Version]
- Engelstaedter, S.; Washington, R.; Flamant, C.; Parker, D.J.; Allen, C.J.T.; Todd, M.C. The Saharan heat low and moisture transport pathways in the central Sahara-Multiaircraft observations and Africa-LAM evaluation. J. Geophys. Res. Atmos. 2015, 120, 4417–4442. [Google Scholar] [CrossRef] [Green Version]
- Vizy, E.K.; Cook, K.H. A mechanism for african monsoon breaks: Mediterranean cold air surges. J. Geophys. Res. Atmos. 2009, 114, D01104. [Google Scholar] [CrossRef] [Green Version]
- Redl, R.; Knippertz, P.; Fink, A.H. Weakening and moistening of the summertime Saharan heat low through convective cold pools from the Atlas Mountains. J. Geophys. Res. Atmos. 2016, 121, 3907–3928. [Google Scholar] [CrossRef] [Green Version]
- Gaetani, M.; Fontaine, B.; Roucou, P.; Baldi, M. Influence of the Mediterranean Sea on the West African monsoon: Intraseasonal variability in numerical simulations. J. Geophys. Res. Atmos. 2010, 115, D24115. [Google Scholar] [CrossRef] [Green Version]
- Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef] [Green Version]
- Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; et al. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [Google Scholar] [CrossRef]
- Hocking, J.; Francis, P.N.; Saunders, R. Cloud detection in Meteosat second generation imagery at the Met Office. Meteorol. Appl. 2011, 18, 307–323. [Google Scholar] [CrossRef]
- Banks, J.R.; Brindley, H.E. Evaluation of MSG-SEVIRI mineral dust retrieval products over North Africa and the Middle East. Remote Sens. Environ. 2013, 128, 58–73. [Google Scholar] [CrossRef]
- Vaughan, M.; Pitts, M.; Trepte, C.; Winker, D.; Detweiler, P.; Garnier, A.; Getzewich, B.; Hunt, W.; Lambeth, J.; Lee, K.P.; et al. Cloud–Aerosol LIDAR Infrared Pathfinder Satellite Observations: Data Management System-Data Products Catalog, Rev. 4.92. Available online: https://www-calipso.larc.nasa.gov/products/CALIPSO_DPC_Rev4x92.pdf (accessed on 8 February 2021).
- Holz, R.E.; Ackerman, S.A.; Nagle, F.W.; Frey, R.; Dutcher, S.; Kuehn, R.E.; Vaughan, M.A.; Baum, B. Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Garnier, A.; Pelon, J.; Dubuisson, P.; Faivre, M.; Chomette, O.; Pascal, N.; Kratz, D.P. Retrieval of cloud properties using CALIPSO imaging infrared radiometer. Part I: Effective emissivity and optical depth. J. Appl. Meteorol. Clim. 2012, 51, 1407–1425. [Google Scholar] [CrossRef]
- Liu, Z.; Kar, J.; Zeng, S.; Tackett, J.; Vaughan, M.; Avery, M.; Pelon, J.; Getzewich, B.; Lee, K.-P.; Magill, B.; et al. Discriminating between clouds and aerosols in the CALIOP version 4.1 data products. Atmos. Meas. Technol. 2019, 12, 703–734. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selami, N.; Sèze, G.; Gaetani, M.; Grandpeix, J.-Y.; Flamant, C.; Cuesta, J.; Benabadji, N. Cloud Cover over the Sahara during the Summer and Associated Circulation Features. Atmosphere 2021, 12, 428. https://doi.org/10.3390/atmos12040428
Selami N, Sèze G, Gaetani M, Grandpeix J-Y, Flamant C, Cuesta J, Benabadji N. Cloud Cover over the Sahara during the Summer and Associated Circulation Features. Atmosphere. 2021; 12(4):428. https://doi.org/10.3390/atmos12040428
Chicago/Turabian StyleSelami, Nada, Geneviève Sèze, Marco Gaetani, Jean-Yves Grandpeix, Cyrille Flamant, Juan Cuesta, and Noureddine Benabadji. 2021. "Cloud Cover over the Sahara during the Summer and Associated Circulation Features" Atmosphere 12, no. 4: 428. https://doi.org/10.3390/atmos12040428
APA StyleSelami, N., Sèze, G., Gaetani, M., Grandpeix, J. -Y., Flamant, C., Cuesta, J., & Benabadji, N. (2021). Cloud Cover over the Sahara during the Summer and Associated Circulation Features. Atmosphere, 12(4), 428. https://doi.org/10.3390/atmos12040428