Wind Energy Assessment during High-Impact Winter Storms in Southwestern Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Data
2.2. Methodologies for Calculating the Wind Potential
2.3. Energy Data
3. Results
3.1. The Wind Resource
3.2. The Wind Energy Potential (WEP)
3.3. The Anomalies of Wind Energy Potential (WEP)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ravestein, P.; van der Schrier, G.; Haarsma, R.; Scheele, R.; van den Broek, M. Vulnerability of European intermittent renewable energy supply to climate change and climate variability. Renew. Sustain. Energy Rev. 2018, 97, 497–508. [Google Scholar] [CrossRef]
- Davy, R.; Gnatiuk, N.; Pettersson, L.; Bobylev, L. Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea. Renew. Sustain. Energy Rev. 2018, 81, 1652–1659. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Korpås, M.; Botterud, A. Power system decarbonization: Impacts of energy storage duration and interannual renewables variability. Renew. Energy 2020, 156, 1171–1185. [Google Scholar] [CrossRef]
- Lledó, L.; Torralba, V.; Soret, A.; Ramon, J.; Doblas-Reyes, F.J. Seasonal forecasts of wind power generation. Renew. Energy 2019, 143, 91–100. [Google Scholar] [CrossRef]
- El Khchine, Y.; Sriti, M.; Elyamani, N.E. Evaluation of wind energy potential and trends in Morocco. Heliyon 2019, 5, e01830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tizpar, A.; Satkin, M.; Roshan, M.B.; Armoudli, Y. Wind resource assessment and wind power potential of Mil-E Nader region in Sistan and Baluchestan Province, Iran—Part 1: Annual energy estimation. Energy Convers. Manag. 2014, 79, 273–280. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Tee, K.F.; Li, Q.; Wu, X.P. Comparative study of onshore and offshore wind characteristics and wind energy potentials: A case study for southeast coastal region of China. Sustain. Energy Technol. Assess. 2020, 39. [Google Scholar] [CrossRef]
- Nogueira, M.; Soares, P.M.M.; Tomé, R.; Cardoso, R.M. High-resolution multi-model projections of onshore wind resources over Portugal under a changing climate. Theor. Appl. Climatol. 2019, 136, 347–362. [Google Scholar] [CrossRef]
- Wind Energy in Europe in 2019. Available online: https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2019.pdf (accessed on 7 September 2020).
- European Wind Energy Association. Available online: https://www.ewea.org/fileadmin/files/library/publications/reports/EWEA-Wind-energy-scenarios-2030.pdf (accessed on 7 September 2020).
- European Commission. Available online: https://ec.europa.eu/info/research-and-innovation/research-area/energy-research-and-innovation/wind-energy_en (accessed on 7 September 2020).
- Tobin, I.; Jerez, S.; Vautard, R.; Thais, F.; Van Meijgaard, E.; Prein, A.; Déqué, M.; Kotlarski, S.; Maule, C.F.; Nikulin, G.; et al. Climate change impacts on the power generation potential of a European mid-century wind farms scenario. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Santos, J.A.; Rochinha, C.; Liberato, M.L.R.; Reyers, M.; Pinto, J.G. Projected changes in wind energy potentials over Iberia. Renew. Energy 2015, 75, 68–80. [Google Scholar] [CrossRef]
- Emeis, S. Current issues in wind energy meteorology. Meteorol. Appl. 2014, 21, 803–819. [Google Scholar] [CrossRef]
- Hoogwijk, M.; de Vries, B.; Turkenburg, W. Assessment of the global and regional geographical, technical, and economic potential of onshore wind energy. Energy Econ. 2004, 26, 889–919. [Google Scholar] [CrossRef]
- Frank, C.W.; Pospichal, B.; Wahl, S.; Keller, J.D.; Hense, A.; Crewell, S. The added value of high-resolution regional reanalyses for wind power applications. Renew. Energy 2020, 148, 1094–1109. [Google Scholar] [CrossRef]
- Henderson-Sellers, B. Plume rise modelling: The effect of including a wind shear and a variable surface roughness. Ecol. Model. 1987, 37, 269–286. [Google Scholar] [CrossRef]
- Strataridakis, C.J.; White, B.R.; Greis, A. Turbulence measurements for wind-turbine siting on a complex terrain. In Proceedings of the 37th Aerospace Sciences Meeting and Exhibit, Davis, CA, USA, 11–14 January 1999; pp. 253–268. [Google Scholar] [CrossRef] [Green Version]
- Ritter, M.; Shen, Z.; López Cabrera, B.; Odening, M.; Deckert, L. Designing an index for assessing wind energy potential. Renew. Energy 2015, 83, 416–424. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; Gómez-Gesteira, M.; deCastro, M.; Añel, J.A.; Carvalho, D.; Costoya, X.; Dias, J.M. On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean. Appl. Energy 2018, 228, 289–300. [Google Scholar] [CrossRef]
- Costoya, X.; deCastro, M.; Santos, F.; Sousa, M.C.; Gómez-Gesteira, M. Projections of wind energy resources in the Caribbean for the 21st century. Energy 2019, 178, 356–367. [Google Scholar] [CrossRef]
- Rogers, T.; Ashtine, M.; Koon Koon, R.; Atherley-Ikechi, M. Onshore wind energy potential for Small Island Developing States: Findings and recommendations from Barbados. Energy Sustain. Dev. 2019, 52, 116–127. [Google Scholar] [CrossRef]
- Ryberg, D.; Caglayan, D.; Schmitt, S.; Linßen, J.; Stolten, D.; Robinius, M. The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs. Energy 2019, 182, 1222–1238. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Lima, D.C.A.; Semedo, A.; Cabos, W. Climate change impact on Northwestern African offshore wind energy resources. Environ. Res. Lett. 2019, 14, 124065. [Google Scholar] [CrossRef]
- Boudia, S.; Santos, J.A. Assessment of large-scale wind resource features in Algeria. Energy 2019, 189, 116299. [Google Scholar] [CrossRef]
- Gul, M.; Tai, N.; Huang, W.; Nadeem, M.H.; Yu, M. Assessment of wind power potential and economic analysis at Hyderabad in Pakistan: Powering to local communities using wind power. Sustainability 2019, 11, 1391. [Google Scholar] [CrossRef] [Green Version]
- Campos, R.M.; Guedes Soares, C. Spatial distribution of offshore wind statistics on the coast of Portugal using Regional Frequency Analysis. Renew. Energy 2018, 123, 806–816. [Google Scholar] [CrossRef]
- Gualtieri, G.; Secci, S. Comparing methods to calculate atmospheric stability-dependent wind speed profiles: A case study on coastal location. Renew. Energy 2011, 36, 2189–2204. [Google Scholar] [CrossRef]
- Gualtieri, G.; Secci, S. Extrapolating wind speed time series vs. Weibull distribution to assess wind resource to the turbine hub height: A case study on coastal location in Southern Italy. Renew. Energy 2014, 62, 164–176. [Google Scholar] [CrossRef]
- Gualtieri, G. A comprehensive review on wind resource extrapolation models applied in wind energy. Renew. Sustain. Energy Rev. 2019, 102, 215–233. [Google Scholar] [CrossRef]
- Sharma, P.K.; Warudkar, V.; Ahmed, S. Effect of atmospheric stability on the wind resource extrapolating models for large capacity wind turbines: A comparative analysis of power law, log law, Deaves and Harris model. Energy Procedia 2019, 158, 1235–1240. [Google Scholar] [CrossRef]
- Masters, G.M. Renewable and Efficient Electric Power Systems; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Weber, J.; Wohland, J.; Reyers, M.; Moemken, J.; Hoppe, C.; Pinto, J.G.; Witthaut, D. Impact of climate change on backup energy and storage needs in wind-dominated power systems in Europe. PLoS ONE 2018, 13, e0201457. [Google Scholar] [CrossRef] [PubMed]
- Moemken, J.; Reyers, M.; Feldmann, H.; Pinto, J.G. Future Changes of Wind Speed and Wind Energy Potentials in EURO-CORDEX Ensemble Simulations. J. Geophys. Res. Atmos. 2018, 123, 6373–6389. [Google Scholar] [CrossRef]
- Catto, J.L.; Ackerley, D.; Booth, J.F.; Champion, A.J.; Colle, B.A.; Pfahl, S.; Pinto, J.G.; Quinting, J.F.; Seiler, S. The Future of Midlatitude Cyclones. Curr. Clim. Chang. Rep. 2019, 5, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Hueging, H.; Haas, R.; Born, K.; Jacob, D.; Pinto, J.G. Regional changes in wind energy potential over Europe using regional climate model ensemble projections. J. Appl. Meteorol. Climatol. 2013, 52, 903–917. [Google Scholar] [CrossRef] [Green Version]
- Pryor, S.C.; Barthelmie, R.J. Climate change impacts on wind energy: A review. Renew. Sustain. Energy Rev. 2010, 14, 430–437. [Google Scholar] [CrossRef]
- Botterud, A. Forecasting Renewable Energy for Grid Operations. In Renewable Energy Integration: Practical Management of Variability, Uncertainty, and Flexibility in Power Grids; Academic Press: Cambridge, MA, USA, 2014; pp. 137–147. [Google Scholar] [CrossRef]
- Botterud, A.; Abdel-Karim, N.; Ilić, M. Generation Planning Under Uncertainty with Variable Resources; Springer: Boston, MA, USA, 2013; pp. 535–552. [Google Scholar] [CrossRef]
- Jafari, M.; Botterud, A.; Sakti, A. Estimating revenues from offshore wind-storage systems: The importance of advanced battery models. Appl. Energy 2020, 276, 115417. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jézéquel, A.; Mahecha, M.D.; et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- Cutululis, N.A.; Litong-Palima, M.; Sørensen, P. Offshore wind power production in critical weather conditions. In Proceedings of the European Wind Energy Conference and Exhibition 2012, EWEC, Copenhagen, Denmark, 16–19 April 2012; Volume 1, pp. 74–81. [Google Scholar]
- Zhang, D.; Xu, Z.; Li, C.; Yang, R.; Shahidehpour, M.; Wu, Q.; Yan, M. Economic and sustainability promises of wind energy considering the impacts of climate change and vulnerabilities to extreme conditions. Electr. J. 2019, 32, 7–12. [Google Scholar] [CrossRef]
- van der Wiel, K.; Bloomfield, H.C.; Lee, R.W.; Stoop, L.P.; Blackport, R.; Screen, J.A.; Selten, F.M. The influence of weather regimes on European renewable energy production and demand. Environ. Res. Lett. 2019, 14, 094010. [Google Scholar] [CrossRef]
- Añel, J.A.; Fernández-González, M.; Labandeira, X.; López-Otero, X.; de la Torre, L. Impact of cold waves and heat waves on the energy production sector. Atmosphere 2017, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Cronin, J.; Anandarajah, G.; Dessens, O. Climate change impacts on the energy system: A review of trends and gaps. Clim. Chang. 2018, 151, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Tobin, I.; Greuell, W.; Jerez, S.; Ludwig, F.; Vautard, R.; van Vliet, M.T.H.; Bréon, F.-M. Vulnerabilities and resilience of European power generation to 1.5 °C, 2 °C and 3 °C warming. Environ. Res. Lett. 2018, 13, 044024. [Google Scholar] [CrossRef]
- Instituto Português do Mar e da Atmosfera—IPMA. 2020. Available online: https://www.ipma.pt/en/index.html (accessed on 15 September 2020).
- Agencia Estatal Meteorología-AEMet. Borrascas Con Gran Impacto: Información Divulgativa y de Otras Temporadas. 2020. Available online: http://www.aemet.es/es/conocermas/borrascas (accessed on 15 September 2020).
- Météo France. 2020. Available online: http://www.meteofrance.com/accueil (accessed on 15 September 2020).
- Institut für Meteorologie. Met.fu-berlin. 2020. Available online: http://www.met.fu-berlin.de/adopt-a-vortex/historie/ (accessed on 15 September 2020).
- Met Office. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/interesting/2018/storm-deirdre---met-office.pdf (accessed on 9 September 2020).
- Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. Ecmwf Newsl. 2019, 159, 17–24. [Google Scholar] [CrossRef]
- ENERCON—Energy for the World. Available online: https://www.all-energy.co.uk/en-gb.html?v=636572338170430000 (accessed on 9 September 2020).
- Enercon. Enercon Wind Turbine—Product Overview. 2015; pp. 1–19. Available online: http://www.enercon.de/fileadmin/Redakteur/Medien-Portal/broschueren/pdf/en/ENERCON_Produkt_en_06_2015.pdf (accessed on 9 September 2020).
- Bañuelos-Ruedas, F.; Angeles-Camacho, C.; Rios-Marcuello, S. Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renew. Sustain. Energy Rev. 2010, 14, 2383–2391. [Google Scholar] [CrossRef]
- Peterson, E.W.; Hennessey, J.P., Jr. On use of Power Laws for Estimates of Wind Power Potential. J. Appl. Meteorol. 1978, 17, 390–394. [Google Scholar] [CrossRef]
- IEC. Wind Turbines Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines; IEC 61400-12-1; International Electrotechnical Commission: Geneva, Switzerland, 2005. [Google Scholar]
- Devis, A.; Van Lipzig, N.P.M.; Demuzere, M. Should future wind speed changes be taken into account in wind farm development? Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Libii, J.N. Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330 kw and 7500 kw. World Trans. Eng. Technol. Educ. 2013, 11, 36–40. [Google Scholar]
- Martin, S.; Jung, S.; Vanli, A. Impact of near-future turbine technology on the wind power potential of low wind regions. Appl. Energy 2020, 272, 115251. [Google Scholar] [CrossRef]
- Wind Energy in Europe in 2017. Available online: https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2017.pdf (accessed on 9 November 2020).
- Wind Energy in Europe in 2018. Available online: https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2018.pdf (accessed on 9 November 2020).
- Guarda World. Netherlands: Flight Delays and Cancelations Reported at AMS December 8. 2021. Available online: https://www.garda.com/crisis24/news-alerts/183151/netherlands-flight-delays-and-cancelations-reported-at-ams-december-8. (accessed on 10 November 2020).
- Associação de Energias Renováveis—APREN. Available online: https://www.apren.pt/contents/publicationsreportcarditems/12-boletim-energias-renovaveis--dezembro.pdf (accessed on 8 September 2020).
- Rede Eléctrica de España—REE. Available online: https://www.ree.es/sites/default/files/11_PUBLICACIONES/Documentos/InformesSistemaElectrico/2017/inf_sis_elec_ree_2017.pdf (accessed on 8 September 2020).
- Associação de Energias Renováveis—APREN. Available online: https://www.apren.pt/contents/publicationsreportcarditems/12-boletim-energias-renovaveis-2018.pdf (accessed on 8 September 2020).
- Rede Eléctrica de España—REE. Available online: https://www.ree.es/sites/default/files/11_PUBLICACIONES/Documentos/ree_diciembre_2018.pdf (accessed on 8 September 2020).
- Rede Elétrica Nacional—REN. Available online: https://www.ren.pt/pt-PT/media/comunicados/detalhe/producao_renovavel_abastece_51__do_consumo_em_2019_2 (accessed on 8 September 2020).
- Associação de Energias Renováveis—APREN. Available online: https://www.apren.pt/contents/publicationsreportcarditems/boletim-energias-renovaveis-dezembro-2019-vf.pdf (accessed on 8 September 2020).
- Rede Eléctrica de España—REE. Available online: https://www.ree.es/sites/default/files/11_PUBLICACIONES/Documentos/InformesSistemaElectrico/2019/inf_sis_elec_ree_2019.pdf (accessed on 8 September 2020).
- Wind Europe. Available online: https://windeurope.org/ (accessed on 9 November 2020).
- Liu, Y.; Chen, D.; Yi, Q.; Li, S. Wind profiles and wave spectra for potential wind farms in South China Sea. Part I: Wind speed profile model. Energies 2017, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Kent, C.W.; Grimmond, C.S.B.; Gatey, D.; Barlow, J.F. Assessing methods to extrapolate the vertical wind-speed profile from surface observations in a city centre during strong winds. J. Wind Eng. Ind. Aerodyn. 2018, 173, 100–111. [Google Scholar] [CrossRef]
- Hadi, F.A. Diagnosis of the Best Method for Wind Speed Extrapolation. Int. J. Adv. Res. Electr. 2015, 4, 8176–8183. [Google Scholar] [CrossRef]
Turbine Characteristics | |
---|---|
Rated power | 4000 kW |
Wind rated speed | 13 m·s−1 |
Rotor diameter | 127 m |
Cut-in velocity | 3 m·s−1 |
Cut-out velocity | 25 m·s−1 |
Cut-out velocity storm | 28–34 m·s−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.; Liberato, M.L.R.; Nieto, R. Wind Energy Assessment during High-Impact Winter Storms in Southwestern Europe. Atmosphere 2021, 12, 509. https://doi.org/10.3390/atmos12040509
Gonçalves A, Liberato MLR, Nieto R. Wind Energy Assessment during High-Impact Winter Storms in Southwestern Europe. Atmosphere. 2021; 12(4):509. https://doi.org/10.3390/atmos12040509
Chicago/Turabian StyleGonçalves, Ana, Margarida L. R. Liberato, and Raquel Nieto. 2021. "Wind Energy Assessment during High-Impact Winter Storms in Southwestern Europe" Atmosphere 12, no. 4: 509. https://doi.org/10.3390/atmos12040509
APA StyleGonçalves, A., Liberato, M. L. R., & Nieto, R. (2021). Wind Energy Assessment during High-Impact Winter Storms in Southwestern Europe. Atmosphere, 12(4), 509. https://doi.org/10.3390/atmos12040509