Temperature Response to Changes in Vegetation Fraction Cover in a Regional Climate Model
Abstract
:1. Introduction
2. Methods and Data
2.1. Land Surface Model
2.1.1. Soil Thermodynamics
2.1.2. Soil Hydrology
2.1.3. Surface Energy Balance
2.2. Experiments Description
3. Results
3.1. Analysis of Surface Energy Fluxes
3.2. Canopy Resistance and Soil Moisture
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickinson, R.E.; Henderson-Sellers, A. Modelling tropical deforestation: A study of GCM land-surface parametrizations. Quart. J. Roy. Meteor. Soc. 1988, 114, 439–462. [Google Scholar] [CrossRef]
- Foley, J.A.; Prentice, I.C.; Ramankutty, N.; Levis, S.; Pollard, D.; Sitch, S.; Haxeltine, A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeoch. Cycles 1996, 10, 603–628. [Google Scholar] [CrossRef]
- Costa, M.; Pires, G.F. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 2010, 30, 1970–1979. [Google Scholar] [CrossRef]
- Copeland, J.H.; Pielke, R.A.; Kittel, T.G. Potential climatic impacts of vegetation change: A regional modeling study. J. Geophys. Res. Atmos. 1996, 101, 7409–7418. [Google Scholar] [CrossRef]
- Heck, P.; Lüthi, D.; Wernli, H.; Schär, C. Climate impacts of European-scale anthropogenic vegetation changes: A sensitivity study using a regional climate model. J. Geophys. Res. Atmos. 2001, 106, 7817–7835. [Google Scholar] [CrossRef]
- Müller, O.V.; Berbery, E.H.; Alcaraz-Segura, D.; Ek, M.B. Regional model simulations of the 2008 drought in southern South America using a consistent set of land surface properties. J. Clim. 2014, 27, 6754–6778. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Pyles, R.D.; Snyder, R.; Monier, E.; Falk, M.; Chen, S.H. Impact of canopy representations on regional modeling of evapotranspiration using the WRF-ACASA coupled model. Agric. For. Meteor. 2017, 247, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Segal, M.; Avissar, R.; Pielke, M.M.R. Evaluation of vegetation effects on the generation and modification of mesoscale circulations. J. Atmos. Sci. 1988, 45, 2268–2292. [Google Scholar] [CrossRef] [Green Version]
- Kurkowski, N.P.; Stensrud, D.J.; Baldwin, M.E. Assessment of Implementing Satellite-Derived Land Cover Data in the Eta Model. Wea. Forecast. 2003, 18, 404–416. [Google Scholar] [CrossRef] [Green Version]
- Vahmani, P.; Ban-Weiss, G. Impact of remotely sensed albedo and vegetation fraction on simulation of urban climate in WRF-urban canopy model: A case study of the urban heat island in Los Angeles. J. Geophys. Res. 2016, 121, 1511–1531. [Google Scholar] [CrossRef]
- Stensrud, D.J. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Jiménez-Gutiérrez, J.M.; Valero, F.; Jerez, S.; Montávez, J.P. Impacts of green vegetation fraction derivation methods on regional climate simulations. Atmosphere 2019, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Rypley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Montandon, L.M.; Small, E.E. The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sens. Environ. 2008, 112, 1835–1845. [Google Scholar] [CrossRef]
- Jacquemin, B.; Noilhan, J. Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set. Bound. Lay. Meteor. 1990, 52, 93–134. [Google Scholar] [CrossRef]
- Hong, S.; Lakshmi, V.; Small, E.; Chen, F.; Tewari, M.; Manning, K.W. Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Matsui, T.; Lakshmi, V.; Small, E.E. The effects of satellite-derived vegetation cover variability on simulated land-atmosphere interactions in the NAMS. J. Clim. 2005, 18, 21–40. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Refslund, J.; Dellwik, E.; Hahmann, A.; Barlage, M.; Boegh, E. Development of satellite green vegetation fraction time series for use in mesoscale modeling: Application to the European heat wave 2006. Theor. App. Clim. 2014, 117, 377–392. [Google Scholar] [CrossRef] [Green Version]
- James, K.A.; Stensrud, D.J.; Yussouf, N. Value of real-time vegetation fraction to forecasts of severe convection in high-resolution models. Wea. Forecast. 2009, 24, 187–210. [Google Scholar] [CrossRef]
- Meng, X.H.; Evans, J.P.; McCabe, M.F. The Impact of Observed Vegetation Changes on Land–Atmosphere Feedbacks During Drought. J. Hydrometeor. 2014, 15, 759–776. [Google Scholar] [CrossRef] [Green Version]
- Crawford, T.M.; Stensrud, D.J.; Mora, F.; Merchant, J.W.; Wetzel, P.J. Value of Incorporating Satellite-Derived Land Cover Data in MM5/PLACE for Simulating Surface Temperatures. J. Hydrometeor. 2001, 2, 453–468. [Google Scholar] [CrossRef]
- Tullot, I.F. Climatología de España y Portugal; Universidad de Salamanca: Salamanca, Spain, 2000; Volume 76. [Google Scholar]
- Lorente-Plazas, R.; Montávez, J.; Jerez, S.; Gómez-Navarro, J.; Jiménez-Guerrero, P.; Jiménez, P. A 49 year hindcast of surface winds over the Iberian Peninsula. Int. J. Climatol. 2015, 35, 3007–3023. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.; Dudhia, J.; Stauffer, D. A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). Ncar Tech. Note NCAR 1994, NCAR-TN-398 +STR. 117. [Google Scholar] [CrossRef]
- Mahrt, L.; Ek, M. The influence of atmospheric stability on potential evaporation. J. Appl. Meteor. 1984, 23, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, L.; Pan, H. A two-layer model of soil hydrology. Bound. Lay. Meteor. 1984, 29, 1–20. [Google Scholar] [CrossRef]
- Pan, H.L.; Mahrt, L. Interaction between soil hydrology and boundary-layer development. Bound. Lay. Meteor. 1987, 38, 185–202. [Google Scholar] [CrossRef]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef] [Green Version]
- Noilhan, J.; Planton, S. A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev. 1989, 117, 536–549. [Google Scholar] [CrossRef]
- Ek, M.; Mahrt, L. OSU 1-D PBL Model User’s Guide; Technical Report; Department of Atmospheric Sciences, Oregon State University: Corvallis, OR, USA, 1991. [Google Scholar]
- Peters-Lidard, C.D.; Zion, M.S.; Wood, E.F. A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes. J. Geophys. Res. Atmos. 1997, 102, 4303–4324. [Google Scholar] [CrossRef]
- Mahfouf, J.F.; Noilhan, J. Comparative study of various formulations of evaporations from bare soil using in situ data. J. Appl. Meteor. 1991, 30, 1354–1365. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.; Taubman, S.; Brown, P.; Iacono, M.; Clough, S. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Pan, H. Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast Model. Mon. Wea. Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef] [Green Version]
- Jerez, S.; López-Romero, J.M.; Turco, M.; Lorente-Plazas, R.; Gómez-Navarro, J.J.; Jiménez-Guerrero, P.; Montávez, J.P. On the Spin-Up Period in WRF Simulations Over Europe: Trade-Offs Between Length and Seasonality. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001945. [Google Scholar] [CrossRef] [Green Version]
- Jerez, S.; Montavez, J.P.; Gomez-Navarro, J.J.; Jimenez-Guerrrero, P.; Jimenez, J.M.; Gonzalez-Rouco, J.F. Temperature sensitivity to the land-surface model in MM5 climate simulations over the Iberian Peninsula. Meteor. Z. 2010, 19, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Navarro, J.; Montávez, J.; Jiménez-Guerrero, P.; Jerez, S.; Lorente-Plazas, R.; González-Rouco, J.; Zorita, E. Internal and external variability in regional simulations of the Iberian Peninsula climate over the last millennium. Clim. Past 2012, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Jerez, S.; Montavez, J.P.; Jimenez-Guerrero, P.; Gomez-Navarro, J.J.; Lorente-Plazas, R.; Zorita, E. A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Clim. Dyn. 2013, 40, 3023–3046. [Google Scholar] [CrossRef]
- Fernández-Montes, S.; Gómez-Navarro, J.; Rodrigo, F.; García-Valero, J.; Montávez, J. Covariability of seasonal temperature and precipitation over the Iberian Peninsula in high-resolution regional climate simulations (1001–2099). Glob. Planet. Chang. 2017, 151, 122–133. [Google Scholar] [CrossRef]
- Marshall, C.H.; Crawford, K.C.; Mitchell, K.E.; Stensrud, D.J. The impact of the land surface physics in the operational NCEP Eta model on simulating the diurnal cycle: Evaluation and testing using Oklahoma Mesonet data. Wea. Forecast. 2003, 18, 748–768. [Google Scholar] [CrossRef]
- Kumar, A.; Chen, F.; Barlage, M.; Ek, M.B.; Niyogi, D. Assessing impacts of integrating MODIS vegetation data in the weather research and forecasting (WRF) model coupled to two different canopy-resistance approaches. J. Appl. Meteor. Climatol. 2014, 53, 1362–1380. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Gutiérrez, J.M.; Valero, F.; Ruiz-Martínez, J.; Montávez, J.P. Temperature Response to Changes in Vegetation Fraction Cover in a Regional Climate Model. Atmosphere 2021, 12, 599. https://doi.org/10.3390/atmos12050599
Jiménez-Gutiérrez JM, Valero F, Ruiz-Martínez J, Montávez JP. Temperature Response to Changes in Vegetation Fraction Cover in a Regional Climate Model. Atmosphere. 2021; 12(5):599. https://doi.org/10.3390/atmos12050599
Chicago/Turabian StyleJiménez-Gutiérrez, Jose Manuel, Francisco Valero, Jesús Ruiz-Martínez, and Juan Pedro Montávez. 2021. "Temperature Response to Changes in Vegetation Fraction Cover in a Regional Climate Model" Atmosphere 12, no. 5: 599. https://doi.org/10.3390/atmos12050599
APA StyleJiménez-Gutiérrez, J. M., Valero, F., Ruiz-Martínez, J., & Montávez, J. P. (2021). Temperature Response to Changes in Vegetation Fraction Cover in a Regional Climate Model. Atmosphere, 12(5), 599. https://doi.org/10.3390/atmos12050599