Aerosol Optical Properties around the East China Seas Based on AERONET Measurements
Abstract
:1. Introduction
2. Study Area and Sites
3. Data and Theoretical Background
3.1. Data Collection
3.2. Theoretical Background
4. Results and Discussion
4.1. Overall Statistics
4.2. Daily Variation of Aerosol Optical Characteristics
4.3. Aerosol Typing
4.4. Aerosol Size Distributions
5. Conclusions
- (1)
- The frequency distribution of AOT and Ångström exponent (α) as well as the descriptive statistical for the four sites are presented. The distribution of is similar to a log-normal distribution with a right-skewed long tail larger than 0.5, while the distributions of Ångström exponent are closer to the normal distribution. The mean value (0.31–0.36) for the East China Seas sites is much larger than the background maritime conditions. The majority of Ångström exponent is usually less than 1.4–1.5 with a mean value (1.17–1.31). It is mainly because the aerosols composition over these sites are influenced by the high concentrations of natural and anthropologic from the continent.
- (2)
- Daily variations of AOT, Ångström parameter and precipitable water for the four AERONET island sites have been illustrated. Large AOT () were frequently observed in summer (June and July) and spring (March to May) followed by autumn and winter. The reason for high summer measurements in the East China Seas is that the high temperature and humidity is suitable for the gas and particles conversion, which increases the average of the particle size and leads to larger particle extinction efficiency and AOT. The large AOT observed in spring is due to the frequent presence of dust, smoke, and urban–industrial aerosol. The daily variations of Ångström exponent usually indicates a dominance of fine-mode anthropogenic aerosols from June to October while coarse-mode aerosols in the spring. The appearance of coarse-mode aerosols in spring mainly depends on the broken out and transported of Asian dust storm. While some other Ångström exponents indicate coarse mode aerosol, such as sea-salt aerosol also observed in the other seasons.
- (3)
- The 2D density plots are constructed of versus Ångström exponent to classify aerosol types as maritime aerosol (MA), dust aerosol (DA), urban/industrial aerosols (UIA), biomass burning (BBA), and mixed types. All the aerosol types were observed during the entire period. The UIA and MIX aerosol types were dominant over the East China Seas.
- (4)
- It is clear that the average VSDs are quite different for each type of aerosols. The average VSD of each type of aerosols, except for the pure maritime aerosol, also has great variations at different sites. The atmospheric column aerosol is characterized by a bimodal lognormal size distribution with a fine mode at Reff = 0.16 ± 0.01 μm, and coarse mode at Reff = 2.05 ± 0.1 μm. Variations in the size distributions were mainly due to the different types of the component and their fraction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordon, R. Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. 1997, 102, 17081–17106. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Liss, P.S.; Johnson, M.T. Ocean-Atmosphere Interactions of Gases and Particles; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783642256424. [Google Scholar]
- Kang, L.; Chen, S.; Huang, J.; Zhao, S.; Ma, X.; Yuan, T.; Zhang, X.; Xie, T. The Spatial and Temporal Distributions of Absorbing Aerosols over East Asia. Remote Sens. 2017, 9, 1050. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Sekiguchi, M.; Takemura, T.; Uno, I.; Higurashi, A.; Kim, D.; Sohn, B.J.; Oh, S.N.; Nakajima, T.Y.; Ohta, S.; et al. Significance of direct and indirect radiative forcings of aerosols in the East China Sea region. J. Geophys. Res. Atmos. 2003, 108, 2013–2015. [Google Scholar] [CrossRef]
- Tijjani, B.I.; Sha’Aibu, F.; Aliyu, A. The Effect of Relative Humidity on Maritime Tropical Aerosols. Open J. Appl. Sci. 2014, 4, 299–322. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Takamura, T.; Nakajima, T. Overview of SKYNET and its activities. Opt. Pura Apl. 2004, 37, 3303–3308. [Google Scholar]
- Li, Z.Q.; Xu, H.; Li, K.T.; Li, D.H.; Xie, Y.S.; Li, L.; Zhang, Y.; Gu, X.F.; Zhao, W.; Tian, Q.J. Comprehensive study of optical, physical, chemical and radiative properties of total columnar atmospheric aerosols over China: An overview of Sun-sky radiometer Observation NETwork (SONET) measurements. Bull. Am. Meteorol. Soc. 2018, 99, 739–755. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Kaufman, Y.J.; Dubovik, O.; Eck, T.F.; Slutsker, I.; Pietras, C.; Halthore, R.N. Optical properties of atmospheric aerosol in maritime environments. J. Atmos. Sci. 2002, 59, 501–523. [Google Scholar] [CrossRef] [Green Version]
- Sakerin, S.M.; Smirnov, A.; Kabanov, D.M.; Pol’kin, V.V.; Panchenko, M.V.; Holben, B.N.; Kopelevich, O.V. Aerosol optical and microphysical properties over the Atlantic Ocean during the 19th cruise of the Research Vessel Akademik Sergey Vavilov. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xu, H.; Li, Z.; Xie, Y.; Li, D. Maritime Aerosol Optical and Microphysical Properties in the South China Sea Under Multi-source Influence. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Xu, X.; Xie, L.; Yang, X.; Wu, H.; Cai, L.; Qi, P. Aerosol optical properties at seven AERONET sites over Middle East and Eastern Mediterranean Sea. Atmos. Environ. 2020, 243, 117884. [Google Scholar] [CrossRef]
- Zhao, W.; Tang, J.; Gao, F.; Lin, M. Measurement and Study of Aerosol Optical Properties over the Huanghai Sea and the East China Sea in the Spring. Acta Oceanol. Sin. 2005, 27, 46–53. [Google Scholar]
- Tu, Q.; Hao, Z.; Pan, D. Mass deposition fluxes of Asian dust to the Bohai Sea and Yellow Sea from geostationary satellite MTSAT: A case study. Atmosphere 2015, 6, 1771–1784. [Google Scholar] [CrossRef] [Green Version]
- Che, H.; Gui, K.; Chen, Q.; Zheng, Y.; Yu, J.; Sun, T.; Zhang, X.; Shi, G. Calibration of the 936 nm water-vapor channel for the China aerosol remote sensing NETwork (CARSNET) and the effect of the retrieval water-vapor on aerosol optical property over Beijing, China. Atmos. Pollut. Res. 2016, 7, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Alam, K.; Trautmann, T.; Blaschke, T.; Majid, H. Aerosol optical and radiative properties during summer and winter seasons over Lahore and Karachi. Atmos. Environ. 2012, 50, 234–245. [Google Scholar] [CrossRef]
- Adesina, J.A.; Piketh, S.J.; Formenti, P.; Maggs-Kölling, G.; Holben, B.N.; Sorokin, M.G. Aerosol optical properties and direct radiative effect over Gobabeb, Namibia. Clean Air J. 2019, 29, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, D.; Chen, W.; Zhang, H. Measurements of Asian dust optical properties over the Yellow Sea of China by shipboard and ground-based photometers, along with satellite remote sensing: A case study of the passage of a frontal system during April 2006. J. Geophys. Res. Atmos. 2010, 115, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.J.; Wang, J.; Zhang, X.Y.; Wang, D.; Sheng, L.F. Influence of relative humidity on aerosol composition: Impacts on light extinction and visibility impairment at two sites in coastal area of China. Atmos. Res. 2015, 153, 500–511. [Google Scholar] [CrossRef]
- Tan, S.-C.; Shi, G.-Y.; Wang, H. Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas. Atmos. Environ. 2012, 46, 299–308. [Google Scholar] [CrossRef]
- Salinas, S.V.; Chew, B.N.; Liew, S.C. Retrievals of aerosol optical depth and Angström exponent from ground-based Sun-photometer data of Singapore. Appl. Opt. 2009, 48, 1473–1484. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, A.; Holben, B.N.; Slutsker, I.; Giles, D.M.; McClain, C.R.; Eck, T.F.; Sakerin, S.M.; Macke, A.; Croot, P.; Zibordi, G.; et al. Maritime Aerosol Network as a component of Aerosol Robotic Network. J. Geophys. Res. Atmos. 2009, 114, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
Site Name | Longitude | Latitude | Altitude | Time Period | Measurements | Days | Months |
---|---|---|---|---|---|---|---|
Baengnyeong | 124.6303 | 37.9661 | 136 | 2010.07–2016.08 | 24,179 | 955 | 54 |
Anmyon | 126.3302 | 36.5385 | 47 | 1999.09–2019.11 | 59,028 | 2413 | 143 |
Gosan_SNU | 126.1617 | 33.2922 | 72 | 2001.04–2016.09 | 33,455 | 1399 | 108 |
Cape_Fuguei | 121.5379 | 25.2975 | 40 | 2016.11–2018.08 | 4211 | 257 | 22 |
Site Name | AOT | Angstrom | Precipitable Water | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Median | Stddev | Mean | Median | Stddev | Mean | Median | Stddev | |
Baengnyeong | 0.316 | 0.234 | 0.278 | 1.275 | 1.31 | 0.295 | 1.247 | 0.852 | 1.085 |
Anmyon | 0.357 | 0.258 | 0.318 | 1.21 | 1.234 | 0.298 | 1.588 | 1.169 | 1.264 |
Gosan_SNU | 0.355 | 0.281 | 0.266 | 1.18 | 1.218 | 0.334 | 1.84 | 1.343 | 1.313 |
Cape_Fuguei | 0.311 | 0.253 | 0.227 | 1.348 | 1.361 | 0.294 | 3.384 | 3.724 | 1.353 |
Site Name | Total | Fine Mode | Coarse Mode | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
VolC | REff | VMR | Std | VolC | REff | VMR | Std | VolC | REff | VMR | Std | |
Baengnyeong | 0.11 | 0.36 | 0.89 | 1.38 | 0.05 | 0.16 | 0.18 | 0.49 | 0.06 | 2.15 | 2.65 | 0.64 |
Anmyon | 0.11 | 0.36 | 0.85 | 1.34 | 0.05 | 0.16 | 0.18 | 0.48 | 0.06 | 2.14 | 2.65 | 0.65 |
Gosan_SNU | 0.13 | 0.34 | 0.79 | 1.34 | 0.06 | 0.15 | 0.17 | 0.48 | 0.07 | 1.95 | 2.41 | 0.65 |
Cape_Fuguei | 0.09 | 0.4 | 0.93 | 1.33 | 0.04 | 0.17 | 0.19 | 0.47 | 0.05 | 1.99 | 2.49 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Q.; Hao, Z.; Yan, Y.; Tao, B.; Chung, C.; Kim, S. Aerosol Optical Properties around the East China Seas Based on AERONET Measurements. Atmosphere 2021, 12, 642. https://doi.org/10.3390/atmos12050642
Tu Q, Hao Z, Yan Y, Tao B, Chung C, Kim S. Aerosol Optical Properties around the East China Seas Based on AERONET Measurements. Atmosphere. 2021; 12(5):642. https://doi.org/10.3390/atmos12050642
Chicago/Turabian StyleTu, Qianguang, Zengzhou Hao, Yunwei Yan, Bangyi Tao, Chuyong Chung, and Sumin Kim. 2021. "Aerosol Optical Properties around the East China Seas Based on AERONET Measurements" Atmosphere 12, no. 5: 642. https://doi.org/10.3390/atmos12050642
APA StyleTu, Q., Hao, Z., Yan, Y., Tao, B., Chung, C., & Kim, S. (2021). Aerosol Optical Properties around the East China Seas Based on AERONET Measurements. Atmosphere, 12(5), 642. https://doi.org/10.3390/atmos12050642