Saccharides Emissions from Biomass and Coal Burning in Northwest China and Their Application in Source Contribution Estimation
Abstract
:1. Introduction
2. Methodology
2.1. Fuel and Stove
2.2. Sample Collection
2.3. Chemical Analysis
2.4. Data Processing
3. Results and Discussion
3.1. General Description of PM2.5 EFs
3.2. Comparison of Diagnostic Ratios of PM2.5 between BB and CC
3.3. Assessment of Present BB Source Contribution Estimation Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Information | Coal Stove | Wood Stove | Heated Kang | ||||||
---|---|---|---|---|---|---|---|---|---|
Anthracitic Coal | Bituminous Coal | Briquettes | Corn Cob | Wood Branches | Wood Branches | Wood Block | Maize Straw | Wheat Straw | |
Number of Samples | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Average sample quality/g | 862 | 850 | 843 | 530 | 492 | 496 | 501 | 511 | 524 |
Average sampling time/min | 79 | 70 | 71 | 27 | 32 | 32 | 31 | 25 | 26 |
Combustion Conditions | flaming burning | flaming burning | flaming burning | flaming burning | flaming burning | smoldering burning | smoldering burning | smoldering burning | smoldering burning |
Appendix B. The Concentration of LG and Arabitol in Stove Calculated Method
References
- Duan, X.L.; Jiang, Y.; Wang, B.B.; Zhao, X.G.; Shen, G.F.; Cao, S.Z.; Huang, N.; Qian, Y.; Chen, Y.T.; Wang, L.M. Household fuel use for cooking and heating in China: Results from the first Chinese Environmental Exposure-Related Human Activity Patterns Survey (CEERHAPS). Appl. Energy 2014, 136, 692–703. [Google Scholar] [CrossRef]
- Tao, S.; Ru, M.Y.; Du, W.; Zhu, X.; Zhong, Q.R.; Li, B.G.; Shen, G.F.; Pan, X.L.; Meng, W.J.; Chen, Y.L.; et al. Quantifying the Rural Residential Energy Transition in China from 1992 to 2012 through a Representative National Survey. Nat. Energy 2018, 3, 567–573. [Google Scholar] [CrossRef]
- Zhao, N.; Zhang, Y.; Li, B.; Hao, J.; Chen, D.; Zhou, Y.; Dong, R. Natural Gas and Electricity: Two Perspective Technologies of Substituting Coal-Burning Stoves for Rural Heating and Cooking in Hebei Province of China. Energy Sci. Eng. 2019, 7, 120–131. [Google Scholar] [CrossRef]
- Eriksson, A.C.; Nordin, E.Z.; Nyström, R.; Pettersson, E.; Swietlicki, E.; Bergvall, C.; Westerholm, R.; Boman, C.; Pagels, J.H. Particulate PAH Emissions from Residential Biomass Combustion: Time-Resolved Analysis with Aerosol Mass Spectrometry. Environ. Sci. Technol. 2014, 48, 7143–7150. [Google Scholar] [CrossRef] [PubMed]
- Unosson, J.; Blomberg, A.; Sandström, T.; Muala, A.; Boman, C.; Nyström, R.; Westerholm, R.; Mills, N.L.; Newby, D.E.; Langrish, J.P.; et al. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Part. Fibre Toxicol. 2013, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, M.Z. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J. Geophys. Res. Atmos. 2014, 119, 8980–9002. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Chen, J.M.; Li, C.L.; Ristovski, A.; Milic, A.; Gu, Y.T.; Sislam, M.; Wang, S.X.; Hao, J.M.; Zhang, H.F.; He, C.R.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
- Pöschl, U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. 2005, 44, 7520–7540. [Google Scholar] [CrossRef]
- Turpin, B.J.; Huntzicker, J.J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995, 29, 3527–3544. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Houck, J.E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 2001, 43, 1141–1151. [Google Scholar] [CrossRef]
- Saitoh, K.; Sera, K.; Hirano, K.; Shirai, T. Chemical characterization of particles in winter-night smog in Tokyo. Atmos. Environ. 2002, 36, 435–440. [Google Scholar] [CrossRef]
- Geng, H.; Park, Y.; Hwang, H.; Kang, S.; Ro, C.U. Elevated nitrogen-containing particles observed in Asian dust aerosol samples collected at the marine boundary layer of the Bohai Sea and the Yellow Sea. Atmos. Chem. Phys. 2009, 9, 6933–6947. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Zhang, X.S.; Wang, Z.W.; Ci, Z.J. Water-soluble organic carbon (WSOC) and its temperature-resolved carbon fractions in atmospheric aerosols in Beijing. Atmos. Res. 2016, 181, 200–210. [Google Scholar] [CrossRef]
- Taylor, N.F.; Collins, D.R.; Lowenthal, D.H.; Zielinska, B.; Samburova, V.; Kumar, N.; Hallar, A.G.; Mazzoleni, L.R.; Mccubbin, I.B. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and storm Peak Laboratory. Atmos. Chem. Phys. 2017, 17, 2555–2571. [Google Scholar] [CrossRef] [Green Version]
- Xiang, P.; Zhou, X.M.; Duan, J.C.; Tan, J.H.; He, K.B.; Yuan, C.; Ma, Y.L.; Zhang, Y.X. Chemical characteristics of water-soluble organic compounds (WSOC) in PM2.5 in Beijing, China: 2011–2012. Atmos. Res. 2017, 183, 104–112. [Google Scholar] [CrossRef]
- Fraser, M.P.; Lakshmanan, K. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environ. Sci. Technol. 2000, 34, 4560–4564. [Google Scholar] [CrossRef]
- Ho, K.F.; Engling, G.; Ho, S.S.A.; Huang, R.J.; Lai, S.C.; Cao, J.J.; Lee, S.C. Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta region, China. Tellus B Chem. Phys. Meteorol. 2014, 66, 22577. [Google Scholar] [CrossRef]
- Bhattarai, H.; Saikawa, E.; Wan, X.; Zhu, H.X.; Kirpa, R.; Gao, S.P.; Kang, S.C.; Zhang, Q.Q.; Zhang, Y.L.; Wu, G.M.; et al. Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmos. Res. 2019, 220, 20–33. [Google Scholar] [CrossRef]
- Fu, P.Q.; Kawamura, K.; Kobayashi, M.; Simoneit, B.R. Seasonal variations of sugars in atmospheric particulate matter from Gosan Jeju Island: Significant contributions of airborne pollen and Asian dust in spring. Atmos. Environ. 2012, 55, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, M.; Le, H.P.; Wang, F.; Guo, Z.; Iinuma, Y.; Chen, J.; Herrmann, H. Atmospheric outflow of PM2.5 saccharides from megacity Shanghai to East China Sea: Impact of biological and biomass burning sources. Atmos. Environ. 2016, 143, 1–14. [Google Scholar] [CrossRef]
- Salma, I.; Németh, Z.; Weidinger, T.; Maenhaut, W.; Claeys, M.; Molnár, M.; Major, I.; Ajtai, T.; Utry, N.; Bozóki, Z. Source apportionment of carbonaceous chemical species to fossil fuel combustion, biomass burning and biogenic emissions by a coupled radiocarbon–levoglucosan marker method. Atmos. Chem. Phys. 2017, 17, 13767–13781. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.Q.; Shao, M.; Liu, Y.; William, K.; Paul, G.; Li, X.H.; Liu, Y.; Lu, S.H. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmos. Environ. 2007, 41, 8380–8390. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, M.; Sullivan, A.P.; Bosch, C.; Desyaterik, Y.; Andersson, A.; Li, X.; Guo, X.; Zhou, T.; Gustafsson, O.; et al. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions. Atmos. Environ. 2015, 121, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Cao, J.J.; Chow, J.C.; Shen, Z.X.; Ho, K.F.; Steven, S.H.H.; Liu, S.X.; Han, Y.M.; John, G.W.; Wang, G.H. Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi’an China. J. Air. Waste Manage. Assoc. 2014, 64, 1317–1327. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.S.; Cao, J.J.; Tsai, C.J.; Zhang, Z.S.; Tao, J. Biomass burning tracers in Rural and urban ultrafine particles in Xi’an China. Atmos. Pollution Res. 2017, 8, 614–618. [Google Scholar]
- Harrison, R.M.; Beddows, D.C.S.; Hu, L.; Yin, J. Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations. Atmos. Chem. Phys. 2012, 12, 8271–8283. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Claeys, M.; Cachier, H.; Dong, S.; Wang, W.; Maenhaut, W.; Liu, X. Identification and estimation of the biomass burning contribution to beijing aerosol using levoglucosan as a molecular marker. Atmos. Environ. 2008, 42, 7013–7021. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Z.X.; Zeng, Y.; Liu, F.; Zhang, Q.; Lei, Y.; Xu, H.; Cao, J.; Yang, L. Day-Night differences, Seasonal Variations and Source Apportionment of PM10-Bound PAHs over Xi’an, Northwest China. Atmosphere 2018, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Zheng, M.; Sullivan, A.P.; Shen, G.; Chen, Y.; Wang, S.; Zhao, B.; Cai, S.; Desyaterik, Y.; Li, X. Residential coal combustion as a source of levoglucosan in China. Environ. Sci. Technol. 2018, 52, 1665–1674. [Google Scholar] [CrossRef]
- Wu, J.; Kong, S.; Zeng, X.; Cheng, Y.; Qi, S. First high-resolution emission inventory of levoglucosan for biomass burning and non-biomass burning sources in China. Environ. Sci. Technol. 2021, 55, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Kourtchev, I.; Hellebust, S.; Bell, J.M.; O’Connor, I.P.; Healy, R.M.; Allanic, A.; Healy, D.; Wenger, J.C.; Sodeau, J.R. The use of polar organic compounds to estimate the contribution of domestic solid fuel combustion and biogenic sources to ambient levels of organic carbon and PM2.5 in Cork Harbour, Ireland. Sci. Total Environ. 2011, 409, 2143–2155. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, D.; Marynowski, L.; Fabianska, M.J.; Zaton, M.; Simoneit, B.R.T. Levoglucosan and other cellulose markers in pyrolysates of miocene lignites: Geochemical and environmental implications. Environ. Sci. Technol. 2008, 42, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, D.; Torri, C.; Simoneit, B.R.T.; Marynowski, L.; Rushdi, A.I.; Fabianska, M.J. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmos. Environ. 2009, 43, 2286–2295. [Google Scholar] [CrossRef]
- Rybicki, M.; Marynowski, L.; Simoneit, B.R.T. Composition of organic compounds from low-temperature burning of lignite and their application as tracers in ambient air. Chemosphere 2020, 249, 126087. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.X.; Han, Y.M.; Cao, J.J.; Jing, T.; Zhu, C.S.; Liu, P.P.; Wang, Y.Q. Characteristics of traffic-related emissions: A case study in roadside ambient air over Xi’an, China. Aerosol Air Qual. Res. 2010, 10, 292–300. [Google Scholar] [CrossRef]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Watson, J.G.; Lee, S.C.; Tie, X.X.; Ho, K.F.; Wang, G.H.; Han, Y.M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. J. Air. Waste Manag. Assoc. 2012, 62, 1214–1226. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.X.; Cao, J.J.; Zhang, L.; Wu, T.; Zhang, Q.; Yin, X.; Huang, Y.; Huang, R.J. Particulate matters emitted from maize straw burning for winter heating in rural areas in Guanzhong Plain, China: Current emission and future reduction. Atmos. Res. 2017, 184, 66–76. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Chen, L.W.A.; Chang, M.O.; Robinson, N.F.; Trimble, D.; Kohl, S. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manag. Assoc. 2007, 57, 1014–1023. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.X.; Cao, J.J.; Liu, S.; Zhu, C.; Wang, X.; Zhang, T.; Xu, H.; Hu, T. Chemical composition of PM10 and PM2.5 collected at ground level and 100 meters during a strong winter-time pollution episode in Xi’an, China. J. Air Waste Manag. Assoc. 2011, 61, 1150–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Shen, Z.X.; Zeng, Y.L.; Niu, X.Y.; Wang, J.H.; Cao, J.J.; Gong, X.S.; Xu, H.M.; Wang, T.B.; Liu, H.X.; et al. Characterization and cytotoxicity of PAHs in PM2.5 emitted from residential solid fuel burning in the Guanzhong Plain, China. Environ. Pollut. 2018, 241, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Naxieli, S.L.R.; Griselda, G.C.; José, J.F.L.; Mirella, G.A.; Claudia, O.V.; Irma, F.R.H.; Violeta, M.A. Emission factors of atmospheric and climatic pollutants from crop residues Burning. J. Air Waste Manage. Assoc. 2018, 68, 849–865. [Google Scholar]
- Daniela, A.F.; Karla, M.L.; Turibio, G.S.N.; José, C.S.; Saulo, R.F.; Bernardo, F.T.R.; Ely, V.C.; Edson, A.; João, A.C.J. Pre-Harvest Sugarcane Burning: Determination of Emission Factors through Laboratory Measurements. Atmosphere 2012, 3, 164–180. [Google Scholar]
- Sun, J.; Shen, Z.X.; Zhang, Y.; Zhang, Q.; Wang, F.R.; Wang, T.; Chang, X.J.; Lei, Y.L.; Xu, H.M.; Cao, J.J.; et al. Effects of biomass briquetting and carbonization on PM2.5 emission from residential burning in Guanzhong Plain, China. Fuel 2019, 244, 379–387. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhi, G.R.; Feng, Y.L.; Fu, J.; Feng, J.; Sheng, G.; Simoneit, B.R.T. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China. Geophys. Res. Lett. 2006, 33, 20. [Google Scholar] [CrossRef]
- Shen, G.F.; Yang, Y.; Wang, W.; Tao, S.; Zhu, C.; Min, Y.; Xue, M.; Ding, J.; Wang, B.; Wang, R. Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. Environ. Sci. Technol. 2010, 44, 7157–7162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wang, S.; Duan, L.; Hao, J.M. Characterization of non-methane hydrocarbons emitted from open burning of wheat straw and corn stover in China. Environ. Res. Lett. 2009, 4, 4. [Google Scholar] [CrossRef]
- Ni, H.; Han, Y.; Cao, J.J.; Chen, L.W.; Tian, J.; Wang, X.L.; Chow, J.C.; Watson, J.G.; Wang, Q.Y.; Wang, P.; et al. Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmos. Environ. 2015, 123, 399–406. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Trubetskaya, A.; Lin, C.; Ovadnevaite, J.; Ceburnis, D.; O’Dowd, C.; Leahy, J.J.; Monaghan, R.F.D.; Johnson, R.; Layden, P.; Smith, W. Study of Emissions from Domestic Solid-Fuel Stove Combustion in Ireland. Energy Fuels 2021, 35, 4966–4978. [Google Scholar] [CrossRef]
- Shen, G.F.; Chen, Y.; Xue, C.; Lin, N.; Huang, Y.; Shen, H.; Wang, Y.; Li, T.; Zhang, Y.; Su, S. Pollutant emissions from improved coal-and wood-fuelled cookstoves in rural households. Environ. Sci. Technol. 2015, 49, 6590–6598. [Google Scholar] [CrossRef] [PubMed]
- Zhi, G.R.; Chen, Y.J.; Feng, Y.L.; Xiong, S.C.; Li, J.; Zhang, G.; Sheng, G.Y.; Fu, J.M. Emission characteristics of carbonaceous particles from various residential coal-stoves in China. Environ. Sci. Technol. 2008, 42, 3310–3315. [Google Scholar] [CrossRef]
- Lei, Y.L.; Shen, Z.X.; Zhang, T.; Wang, Q.; Sun, J.; Gong, X.; Cao, J.J.; Xu, H.M.; Liu, S.X. Optical source profiles of brown carbon in size-resolved particulate matter from typical domestic biofuel burning over Guanzhong Plain, China. Sci. Total Environ. 2018, 622, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Hays, M.D.; Fine, P.M.; Geron, C.D.; Kleeman, M.J.; Gullett, B.K. Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions. Atmos. Environ. 2005, 39, 6747–6764. [Google Scholar] [CrossRef]
- Sillapapiromsuk, S.; Chantara, S.; Tengjaroenkul, U.; Prasitwattanaseree, S.; Prapamontol, T. Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions. Chemosphere 2013, 93, 1912–1919. [Google Scholar] [CrossRef]
- Shen, Z.X.; Cao, J.J.; Arimoto, R.; Han, Z.; Zhang, R.; Han, Y.; Liu, S.X.; Okuda, S.; Nakao, S.; Tanaka, S. Ionic composition of TSP and PM 2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos. Environ. 2009, 43, 2911–2918. [Google Scholar] [CrossRef]
- Li, X.H.; Wang, S.X.; Duan, L.; Hao, J.M.; Nie, Y.F. Carbonaceous aerosol emissions from household biofuel combustion in China. Environ. Sci. Technol. 2009, 43, 6076–6081. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fine, P.M.; Cass, G.R.; Simoneit, B.R. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environ. Sci. Technol. 2001, 35, 2665–2675. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, D.; Niemi, J.; Engblom, M. Effect of temperature gradient on composition and morphology of synthetic chlorine-containing biomass boiler deposits. Fuel. Process. Technol. 2016, 141, 285–298. [Google Scholar] [CrossRef]
- Zhang, Z.; Jian, G.; Engling, G.; Tao, J.; Chai, F.; Zhang, L.; Zhang, R.; Sang, X.; Chan, C.Y.; Lin, Z. Characteristics and applications of size-segregated biomass burning tracers in China’s Pearl River Delta region. Atmos. Environ. 2015, 105, 290–301. [Google Scholar] [CrossRef]
- Xu, H.M.; Cao, J.J.; Gao, M.L.; Ho, K.F.; Niu, X.Y.; Coons, T.L.; Steven, S.H.H.; Wang, G.H.; Zhao, Z. Personal exposure to fine particulates and polycyclic aromatic hydrocarbons in an office environment in Xi’an, China. Front. Env. Sci. Eng. 2013, 2, 33–46. [Google Scholar]
- Zhang, Y.; Tian, J.; Shen, Z.; Wang, W.; Ni, H.; Liu, S.; Cao, J. Emission Characteristics of PM2.5 and Trace Gases from Household Wood Burning in Guanzhong Plain, Northwest China. Aerosol Sci. Eng. 2018, 2, 130–140. [Google Scholar] [CrossRef]
Fuel Types | Moisture, % | Ash, % | Volatile Matter, % | Fixed Carbon, % | Heating Value, MJ/kg |
---|---|---|---|---|---|
Anthracitic Coal | 0.88 | 9.72 | 6.12 | 83.28 | 29.68 |
Bituminous Coal | 7.98 | 7.98 | 33.20 | 50.84 | 22.02 |
Briquettes | 3.00 | 32.34 | 4.99 | 59.67 | 20.37 |
Corn Cob | 4.87 | 5.93 | 71.95 | 17.25 | 17.72 |
Wood Branches | 4.39 | 2.15 | 82.96 | 10.51 | 18.03 |
Wood Block | 4.39 | 2.15 | 82.96 | 10.51 | 18.03 |
Maize Straw | 6.10 | 4.70 | 76.00 | 13.20 | 17.73 |
Wheat Straw | 4.39 | 8.90 | 67.36 | 19.32 | 14.52 |
Species | Unit | Coal Stove | Wood Stove | Heated Kang | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Anthracitic Coal | Bituminous Coal | Briquettes | Corn Cob | Wood Branches | Wood Branches | Wood Block | Maize Straw | Wheat Straw | ||
PM2.5 | g/kg | 0.14 ± 0.02 | 26.80 ± 1.13 | 0.43 ± 0.03 | 17.77 ± 3.18 | 9.09 space ± space 1.52 | 14.87 ± 0.54 | 7.07 ± 1.20 | 36.70 ± 4.12 | 25.63 ± 1.28 |
OC | g/kg | 0.03 ± 0.02 | 5.16 ± 1.87 | 0.12 ± 0.02 | 7.49 ± 2.42 | 2.87 ± 0.47 | 6.63±1.72 | 4.13 ± 0.46 | 20.65 ± 1.14 | 10.43 ± 1.79 |
EC | g/kg | 0.02 ± 0.00 | 7.36 ± 2.24 | 0.02 ± 0.01 | 4.21 ± 0.08 | 2.32 ± 0.19 | 1.26 ± 0.21 | 0.95 ± 0.06 | 3.88 ± 0.31 | 0.70 ± 0.14 |
TC | g/kg | 0.05 ± 0.02 | 12.52 ± 0.37 | 0.14 ± 0.02 | 11.69 ± 2.34 | 5.19 ± 0.66 | 7.89 ± 1.93 | 5.07 ± 0.51 | 24.53 ± 1.46 | 11.13 ± 1.93 |
OC1 | g/kg | 0.01 ± 0.01 | 0.81 ± 0.30 | 0.04 ± 0.01 | 1.51 ± 0.72 | 0.59 ± 0.16 | 2.89 ± 0.88 | 1.85 ± 0.28 | 10.96 ± 0.25 | 6.23 ± 2.00 |
OC2 | g/kg | 0.01 ± 0.00 | 1.53 ± 0.36 | 0.03 ± 0.00 | 1.21 ± 0.79 | 0.35 ± 0.02 | 1.72 ± 0.08 | 1.19 ± 0.09 | 5.38 ± 0.38 | 2.15 ± 0.15 |
OC3 | g/kg | 0.01 ± 0.00 | 1.57 ± 0.74 | 0.04 ± 0.01 | 2.60 ± 1.64 | 0.99 ± 0.09 | 1.24 ± 0.77 | 0.54 ± 0.00 | 2.31 ± 0.18 | 0.91 ± 0.11 |
OC4 | g/kg | ND | 1.78 ± 0.77 | 0.01 ± 0.00 | 1.16 ± 0.07 | 0.60 ± 0.08 | 0.24 ± 0.11 | 0.07 ± 0.05 | 0.30 ± 0.05 | 0.11 ± 0.03 |
EC1 | g/kg | 0.01 ± 0.00 | 4.05 ± 1.19 | 0.01 ± 0.01 | 5.20 ± 0.88 | 2.61 ± 0.30 | 1.77 ± 0.08 | 1.41 ± 0.08 | 5.56 ± 0.58 | 1.71 ± 0.24 |
EC2 | g/kg | 0.01 ± 0.00 | 3.18±0.98 | 0.01 ± 0.00 | 0.01 ± 0.01 | 0.04 ± 0.03 | 0.01 ± 0.01 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.01 |
EC3 | g/kg | ND | 0.13 ± 0.07 | ND | ND | 0.01 ± 0.02 | 0.01 ± 0.00 | ND | 0.01 ± 0.00 | ND |
OP | g/kg | ND | -0.52 ± 0.30 | ND | 1.01 ± 0.79 | 0.34 ± 0.17 | 0.54 ± 0.12 | 0.47 ± 0.03 | 1.70 ± 0.27 | 1.02 ± 0.08 |
Na+ | mg/kg | 1.72 ± 0.07 | 28.11 ± 30.14 | 9.53 ± 0.32 | 22.46 ± 1.15 | 66.91 ± 58.54 | 92.81 ± 44.81 | 40.06 ± 0.30 | 168.42 ± 156.61 | 46.72 ± 16.16 |
NH4+ | mg/kg | 0.66 ± 0.76 | 64.71 ± 9.17 | 0.46 ± 0.20 | 12.15 ± 14.72 | 21.49 ± 0.33 | 78.28 ± 11.08 | 20.61 ± 12.07 | 45.15 ± 38.20 | 377.16 ± 386.67 |
K+ | mg/kg | 0.30 ± 0.02 | 62.53 ± 49.17 | 1.04 ± 0.10 | 754.81 ± 138.37 | 371.34 ± 213.21 | 155.03 ± 100.81 | 56.57 ± 19.86 | 381.84 ± 187.84 | 263.85 ± 34.90 |
Mg2+ | mg/kg | 0.11 ± 0.02 | 7.67 ± 0.27 | 0.74 ± 0.00 | 1.68 ± 0.04 | 4.60 ± 4.17 | 7.22 ± 3.93 | 3.21 ± 1.06 | 4.47 ± 2.61 | 3.82 ± 2.75 |
Ca2+ | mg/kg | 1.11 ± 0.10 | 68.39 ± 18.03 | 7.75 ± 0.25 | 17.08 ± 6.92 | 57.53 ± 46.91 | 133.15 ± 64.39 | 62.08 ± 1.97 | 117.66 ± 46.26 | 78.38 ± 27.59 |
Cl− | mg/kg | 0.38 ± 0.08 | 224.72 ± 132.04 | 0.97 ± 0.33 | 458.56 ± 153.89 | 178.81 ± 82.62 | 160.18 ± 148.27 | 27.84 ± 2.66 | 222.00 ± 6.16 | 764.84 ± 772.10 |
NO3− | mg/kg | 0.89 ± 0.19 | 76.55 ± 27.08 | 5.85 ± 1.74 | 5.61 ± 1.92 | 19.20 ± 15.19 | 38.40 ± 15.62 | 14.37 ± 5.32 | 17.58 ± 1.83 | 14.00 ± 2.62 |
SO42− | mg/kg | 3.22 ± 1.22 | 300.08 ± 212.40 | 3.96 ± 5.61 | 48.79 ± 15.8 | 92.91 ± 61.53 | 180.61 ± 71.69 | 63.15 ± 19.35 | 116.98 ± 31.22 | 261.46 ± 156.33 |
Levoglucosan | mg/kg | 0.16 ± 0.23 | 0.08 ± 0.03 | 0.34 ± 0.47 | 126.60 ± 33.34 | 41.84 ± 19.24 | 123.34 ± 29.95 | 111.99 ± 50.76 | 259.20 ± 32.93 | 165.54 ± 2.94 |
Arabitol | mg/kg | 0.24 ± 0.34 | 0.11 ± 0.03 | 0.12 ± 0.02 | 188.24 ± 50.00 | 62.34 ± 29.71 | 150.24 ± 3.12 | 143.93 ± 50.48 | 169.42 ± 216.42 | 164.00 ± 68.42 |
Glucose | mg/kg | ND | ND | ND | ND | ND | ND | ND | 2.85±4.03 | 0.06±0.08 |
Mannitol | mg/kg | ND | ND | ND | ND | ND | 0.20±0.28 | ND | ND | 0.12 ± 0.16 |
Inositol | mg/kg | ND | ND | ND | ND | ND | ND | ND | 1.05 ± 0.11 | 0.12 ± 0.16 |
Sucrose | mg/kg | 0.03 ± 0.04 | ND | 0.13 ± 0.19 | 0.66 ± 0.09 | 0.74 ± 0.01 | 0.92 ± 0.60 | 0.16 ± 0.02 | 2.16 ± 0.38 | 39.73 ± 5.69 |
Total Saccharides * | mg/kg | 0.43 ± 0.61 | 0.19 ± 0.03 | 0.59 ± 0.66 | 315.50 ± 83.43 | 104.92 ± 48.96 | 274.70 ± 33.95 | 256.08 ± 101.26 | 434.68 ± 244.83 | 369.57 ± 65.92 |
Ratio | Coal Stove | Wood Stove | Heated Kang | ||||||
---|---|---|---|---|---|---|---|---|---|
Anthracitc Coal | Bituminous Coal | Briquettes | Corn Cob | Wood Branches | Wood Branches | Wood Block | Maize Straw | Wheat Straw | |
Saccharides/OC | 14.33 | 0.04 | 4.92 | 42.12 | 36.56 | 41.43 | 62.00 | 21.05 | 35.43 |
LG/OC | 5.33 | 0.02 | 2.83 | 16.90 | 14.58 | 18.60 | 27.12 | 12.55 | 15.87 |
Arabitol/OC | 8.00 | 0.02 | 1.00 | 25.13 | 21.72 | 22.66 | 34.85 | 8.20 | 15.72 |
Ratio | Coal Stove | Wood Stove | Heated Kang | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Anthracitic Coal | Bituminous Coal | Briquettes | Corn Cob | Wood Branches | Wood Branches | Wood Block | Maize Straw | Wheat Straw | ||
OC/EC | 1.50 | 0.70 | 6.00 | 1.78 | 1.24 | 5.26 | 4.35 | 5.32 | 14.90 | |
TC/PM2.5 | 0.36 | 0.47 | 0.33 | 0.66 | 0.57 | 0.53 | 0.72 | 0.67 | 0.43 | |
NO3−/SO42− | 0.28 | 0.26 | 1.48 | 0.11 | 0.21 | 0.21 | 0.23 | 0.15 | 0.05 | |
SO42−/K+ | 10.73 | 4.80 | 3.81 | 0.06 | 0.25 | 1.17 | 1.12 | 0.31 | 0.99 | |
K+/OC | 0.01 | 0.01 | 0.01 | 0.10 | 0.13 | 0.02 | 0.01 | 0.02 | 0.03 | |
K+/EC | 0.02 | 0.01 | 0.05 | 0.18 | 0.16 | 0.12 | 0.06 | 0.10 | 0.38 | |
K+/LG | 1.88 | 781.63 | 3.06 | 5.96 | 8.88 | 1.26 | 0.51 | 1.47 | 1.59 | |
SO42−/LG | 20.13 | 3751.00 | 11.65 | 0.39 | 2.22 | 1.46 | 0.56 | 0.45 | 1.58 | |
NO3−/LG | 5.56 | 956.88 | 17.21 | 0.04 | 0.46 | 0.31 | 0.13 | 0.07 | 0.08 | |
LG/TC | * 1000 | 3.20 | 0.01 | 2.43 | 10.83 | 8.06 | 15.63 | 22.09 | 10.57 | 14.87 |
LG/OC | * 1000 | 5.33 | 0.02 | 2.83 | 16.90 | 14.58 | 18.60 | 27.12 | 12.55 | 15.87 |
LG/EC | * 1000 | 8.00 | 0.01 | 17.00 | 30.07 | 18.03 | 97.89 | 117.88 | 66.80 | 236.49 |
Arabitol/OC | * 1000 | 8.00 | 0.02 | 1.00 | 25.13 | 21.72 | 22.66 | 34.85 | 8.20 | 15.72 |
Arabitol/EC | * 1000 | 12.00 | 0.01 | 6.00 | 44.71 | 26.87 | 119.24 | 151.51 | 43.66 | 234.29 |
Ratio | Fuel types | Source | Ambient a | BB/PM2.5 | Refernce |
---|---|---|---|---|---|
LG/PM2.5 | straw/wood | 0.007 | 0.003 | 42.4% | this study |
crop straw/wood | 0.020 | 15.8% | Yan et al. 2018 | ||
cereal straw | 0.045 | 7.0% | Zhang et al. 2007 | ||
woods | 0.007–0.228 | 1.4–45.1% | Fine et al. 2004a; Fine et al. 2004b |
Fuel | Yield/104 t | Consumption a/104 t | EF-LG b/(mg/kg) | Estimated Emission/t | Biomass/Coal |
---|---|---|---|---|---|
Coal | 13478.06 | 13478.06 | 0.12 | 1617.37 | 43.3 |
Corn Crops | 609.58 | 93.32 | 385.80 | 36002.62 | |
Wheat Crops | 382.04 | 127.62 | 165.54 | 21126.82 | |
Woods | 460.93 | 132.75 | 97.29 | 12915.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Sun, J.; Wang, X.; Zhang, B.; Zhang, Y.; Zhang, R.; Shen, Z. Saccharides Emissions from Biomass and Coal Burning in Northwest China and Their Application in Source Contribution Estimation. Atmosphere 2021, 12, 821. https://doi.org/10.3390/atmos12070821
He K, Sun J, Wang X, Zhang B, Zhang Y, Zhang R, Shen Z. Saccharides Emissions from Biomass and Coal Burning in Northwest China and Their Application in Source Contribution Estimation. Atmosphere. 2021; 12(7):821. https://doi.org/10.3390/atmos12070821
Chicago/Turabian StyleHe, Kun, Jian Sun, Xin Wang, Bin Zhang, Yue Zhang, Renjian Zhang, and Zhenxing Shen. 2021. "Saccharides Emissions from Biomass and Coal Burning in Northwest China and Their Application in Source Contribution Estimation" Atmosphere 12, no. 7: 821. https://doi.org/10.3390/atmos12070821
APA StyleHe, K., Sun, J., Wang, X., Zhang, B., Zhang, Y., Zhang, R., & Shen, Z. (2021). Saccharides Emissions from Biomass and Coal Burning in Northwest China and Their Application in Source Contribution Estimation. Atmosphere, 12(7), 821. https://doi.org/10.3390/atmos12070821