The Potential Ozone Impacts of Landfills
Abstract
:1. Introduction
2. Methods
2.1. The MicroFACT Air Quality Model
2.2. Model Domains and Resolution
2.3. Meteorological and Chemical Assumptions
2.4. Hypothetical Landfill Emissions
3. Results
3.1. Model Scenarios
3.2. Near-Source Simulation
3.3. Far-Field Simulation
4. Discussion
5. Summary and Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basic Information about Landfill Gas. Available online: https://www.epa.gov/lmop/basic-information-about-landfill-gas (accessed on 24 March 2021).
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Intergovernmental panel on climate change (IPCC). In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 509. [Google Scholar]
- West, J.J.; Fiore, A.M. Management of tropospheric ozone by reducing methane emissions. Environ. Sci. Technol. 2005, 39, 4685–4691. [Google Scholar] [CrossRef] [Green Version]
- U.S. Code of Federal Regulations, Title 40, Chapter I, Subchapter C, Part 51, Subpart F, Section 51.100. Available online: https:/www.ecfr.gov/cgi-bin/text-idx?SID=e0c5c3051512c0d6b780c0a78597a2d7&mc=true&node=pt40.2.51&rgn=div5#sp40.2.51.f (accessed on 2 July 2021).
- McKain, K.; Down, A.; Raciti, S.M.; Budney, J.; Hutyra, L.R.; Floerchinger, C.; Herndon, S.C.; Nehrkorn, T.; Zahniser, M.S.; Jackson, R.B.; et al. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. Proc. Natl. Acad. Sci. USA 2015, 112, 1941–1946. [Google Scholar] [CrossRef] [Green Version]
- Von Fischer, J.C.; Cooley, D.; Chamberlain, S.; Gaylord, A.; Griebenow, C.J.; Hamburg, S.P.; Salo, J.; Schumacher, R.; Theobald, D.; Ham, J. Rapid, vehicle-based identification of location and magnitude of urban natural gas pipeline leaks. Environ. Sci. Technol. 2017, 51, 4091–4099. [Google Scholar] [CrossRef] [PubMed]
- Phillips, N.G.; Ackley, R.; Crosson, E.R.; Down, A.; Hutyra, L.R.; Brondfield, M.; Karr, J.D.; Zhao, K.; Jackson, R.B. Mapping urban pipeline leaks: Methane leaks across Boston. Environ. Pollut. 2013, 173, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Schiermeier, Q. Global methane levels soar to record high. Nature 2020. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide; EPA-600/R-05/047; Office of Research and Development: Washington, DC, USA, 2005.
- Duren, R.; Thorpe, A.; McCubbin, I. The California Methane Survey; CEC-500-2020-047; California Energy Commission: Sacramento, CA, USA, 2020. [Google Scholar]
- Duren, R.; Thorpe, A.; Foster, K.T.; Rafiq, T.; Hopkins, F.M.; Yadav, V.; Bue, B.; Thompson, D.R.; Conley, S.; Colombi, N.; et al. California’s methane super-emitters. Nature 2019, 575, 180–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janson, J.L.; Yesiller, N.; Manheim, D.C. Estimation and Comparison of Methane, Nitrous Oxide, and Trace Volatile Organic Compound Emissions and Gas Collection System Efficiencies in California Landfills; California Polytechnic State University: San Luis Obispo, CA, USA, 2020. [Google Scholar]
- Olaguer, E.P.; Rappenglück, B.; Lefer, B.; Stutz, J.; Dibb, J.; Griffin, R.; Brune, W.H.; Shauck, M.; Buhr, M.; Jeffries, H.; et al. Deciphering the role of radical precursors during the Second Texas Air Quality Study. J. Air Waste Manag. Assoc. 2009, 59, 1258–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaguer, E.P.; Kolb, C.E.; Lefer, B.; Rappenglück, B.; Zhang, R.; Pinto, J.P. Overview of the SHARP campaign: Motivation, design, and major outcomes. J. Geophys. Res. Atmos. 2014, 119, 2597–2610. [Google Scholar] [CrossRef]
- Ratzman, K. Formaldehyde Emissions from Landfill Gas and Natural Gas Engines; Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxics Workshop: Towson, MD, USA, 2018. [Google Scholar]
- Cestone, R.M. Formaldehyde emissions from combustion sources and its contributions toward volatile organic compounds and hazardous air pollutants. In Proceedings of the New Jersey Water Environment Association Conference, Atlantic City, NJ, USA, 8 May 2018. [Google Scholar]
- Torres, V.; Allen, D.; Herndon, S. TCEQ 2010 Flare Study Report; Houston-Galveston Area Council: Houston, TX, USA, 2011. [Google Scholar]
- Olaguer, E.P. Atmospheric Impacts of the Oil and Gas Industry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 124–126. [Google Scholar]
- U.S. Environmental Protection Agency. Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and PM2.5 under the PSD Permitting Program; EPA-454/R-19-003; Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 2019.
- Olaguer, E.P. Adjoint model enhanced plume reconstruction from tomographic remote sensing measurements. Atmos. Environ. 2011, 45, 6980–6986. [Google Scholar] [CrossRef]
- Olaguer, E.P. The potential near source ozone impacts of upstream oil and gas industry emissions. J. Air Waste Manag. Assoc. 2012, 62, 966–977. [Google Scholar] [CrossRef]
- Olaguer, E.P. Near source air quality impacts of large olefin flares. J. Air Waste Manag. Assoc. 2012, 62, 978–988. [Google Scholar] [CrossRef]
- Olaguer, E.P. Application of an adjoint neighborhood scale chemistry transport model to the attribution of primary formaldehyde at Lynchburg Ferry during TexAQS II. J. Geophys. Res. Atmos. 2013, 118, 4936–4946. [Google Scholar] [CrossRef]
- Colella, P.; Woodward, P.R. The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 1984, 54, 174–201. [Google Scholar] [CrossRef] [Green Version]
- Bott, A. A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Weather Rev. 1989, 117, 1006–1015. [Google Scholar] [CrossRef]
- Smolarkiewicz, P.K. A fully multi-dimensional positive definite advection transport algorithm with small implicit diffusion. J. Comput. Phys. 1984, 54, 325–362. [Google Scholar] [CrossRef]
- Jet Propulsion Laboratory (JPL). Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 19; Publication 19-5; NASA JPL: Pasadena, CA, USA, 2020. [Google Scholar]
- Jet Propulsion Laboratory (JPL). Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Publication 06-2; NASA JPL: Pasadena, CA, USA, 2006. [Google Scholar]
- Atkinson, R.A.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Kerr, J.A.; Rossi, M.J.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. 2010. Available online: http://iupac.pole-ether.fr (accessed on 26 March 2021).
- Ammann, M.; Cox, R.A.; Crowley, J.N.; Jenkin, M.E.; Mellouki, A.; Rossi, M.J.; Troe, J.; Wallington, T.J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—heterogeneous reactions with liquid substrates. Atmos. Chem. Phys. 2013, 13, 8045–8228. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Wang, T.; Zhang, L.; Li, Q.; Wang, Z.; Xia, M.; Yun, H.; Wang, W.; Yu, C.; Yue, D.; et al. The significant contribution of HONO to secondary pollutants during a severe winter pollution event in southern China. Atmos. Chem. Phys. 2019, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hertel, O.; Berkowicz, R.; Christensen, J. Test of two numerical schemes for use in atmospheric transport-chemistry models. Atmos. Environ. 1993, 27A, 2591–2611. [Google Scholar] [CrossRef]
- Saunders, S.M.; Jenkin, M.E.; Derwent, R.G.; Pilling, M.J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Yarwood, G.; Whitten, G.Z.; Jung, J.; Heo, G.; Allen, D.T. Development, Evaluation and Testing of Version 6 of the Carbon Bond Chemical Mechanism (CB6); Texas Commission on Environmental Quality: Austin, TX, USA, 2010. [Google Scholar]
- Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G.Z. Updates to the Carbon Bond Mechanism: CB05; Environmental Protection Agency: Research Triangle Park, NC, USA, 2005. [Google Scholar]
- Byun, D.W.; Ching, J.K.S. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; EPA/600/R-99/030 (NTIS PB2000-100561); Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- Singh, B.; Hansen, B.S.; Brown, M.J.; Pardyjak, E.R. Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon. Environ. Fluid Mech. 2008, 8, 281–312. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4; NCAR/TN-556+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen differenzengleichungen der mathematischen physic. Math. Ann. 1928, 100, 32–74. [Google Scholar] [CrossRef]
- Zhang, L.; Brook, J.R.; Vet, R. A revised parameterization for gaseous dry deposition in air-quality. Atmos. Chem. Phys. 2003, 3, 2067–2082. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jacob, D.J.; Knipping, E.M.; Kumar, N.; Munger, J.W.; Carouge, C.C.; van Donkelaar, A.; Wang, Y.X.; Chen, D. Nitrogen deposition to the United States: Distribution, sources, and processes. Atmos. Chem. Phys. 2012, 12, 4539–4554. [Google Scholar] [CrossRef] [Green Version]
- Kleffmann, J.; Kurtenbach, R.; Lörzer, J.C.; Wiesen, P.; Kalthoff, N.; Vogel, N.; Vogel, B. Measured and simulated vertical profiles of nitrous acid. Part I: Field measurements. Atmos. Environ. 2003, 37, 2949–2955. [Google Scholar] [CrossRef]
- Koplitz, S.; Simon, H.; Henderson, B.; Liljegren, J.; Tonneson, G.; Whitehill, A.; Wells, B. Changes in ozone chemical sensitivity in the US from 2007 to 2016. 2021. manuscript in preparation. [Google Scholar]
- Brook, J.R.; Makar, P.A.; Sills, D.M.L.; Hayden, K.L.; McLaren, R. Exploring the nature of air quality over southwestern Ontario: Main findings from the Border Air Quality and Meteorology Study. Atmos. Chem. Phys. 2013, 13, 10461–10482. [Google Scholar] [CrossRef] [Green Version]
- Stroud, C.A.; Ren, S.; Zhang, J.; Moran, M.; Akingunola, A.; Makar, P.; Munoz, R.A.; Leroyer, S.; Bélair, S.; Sills, D.; et al. Chemical analysis of surface-level ozone exceedances during the 2015 Pan American Games. Atmosphere 2020, 11, 572. [Google Scholar] [CrossRef]
- Stroud, C.A.; (Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON M3H 5T4, Canada). Personal communication, 2021.
- Michigan Department of Environment, Great Lakes, and Energy (EGLE). Air Quality Annual Report 2019; EGLE: Lansing, MI, USA, 2020; p. 112.
- Liu, Z.; Cui, Y.; He, Q.; Guo, L.; Gao, X.; Feng, Y.; Wang, Y.; Wang, X. Seasonal variations of carbonyls and their contributions to the ozone formation in urban atmosphere of Taiyuan, China. Atmosphere 2021, 12, 510. [Google Scholar] [CrossRef]
- McDonald, B.C.; Joost, A.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [Green Version]
- Seltzer, K.M.; Pennington, E.; Rao, V.; Murphy, B.N.; Strum, M.; Isaacs, K.K.; Pye, H.O.T. Reactive organic carbon emissions from volatile chemical products. Atmos. Chem. Phys. 2021, 21, 5079–5100. [Google Scholar] [CrossRef]
- Michigan-Ontario Ozone Source Experiment (MOOSE). Available online: https://www-air.larc.nasa.gov/missions/moose/index.html (accessed on 27 May 2021).
Time (LST) | Pressure (Pa) | Temperature (K) | Relative Humidity |
---|---|---|---|
10:00 | 99,271 | 301.74 | 0.54027 |
11:00 | 99,235 | 303.13 | 0.47248 |
12:00 | 99,206 | 304.19 | 0.43763 |
13:00 | 99,174 | 304.84 | 0.41445 |
14:00 | 99,127 | 305.05 | 0.41848 |
15:00 | 99,081 | 305.03 | 0.43777 |
16:00 | 99,048 | 304.92 | 0.46994 |
17:00 | 99,027 | 304.66 | 0.49497 |
10:00–18:00 | 99,146 | 304.20 | 0.46075 |
Chemical Species | Symbol | Boundary Condition (ppb) | Deposition Velocity (cm/s) |
---|---|---|---|
Nitric Oxide | NO | 0.793 | |
Nitrogen Dioxide | NO2 | 3.56 | 0.36 |
Ozone | O3 | 70.3 | 0.42 |
Nitrous Acid | HONO | 0.0576 | 1.9 |
Formaldehyde | HCHO | 2.84 | 0.54 |
Carbon Monoxide | CO | 260 | |
Ethene | C2H4 | 0.734 | |
Propene 1 | C3H6 | 0.313 | |
1,3-Butadiene 1 | C4H6 | 0.020 | |
1-Butene 1 | BUT1ENE | 0.020 | |
2-Butenes 2 | BUT2ENE | 0.075 | |
Isobutene 1 | IBUTENE | 0.020 | |
Isoprene | ISOP | 0.804 | |
Toluene | TOL | 0.480 | |
Xylenes | XYL | 0.255 | |
Organic Nitrates | RNO3 | 0.701 | 0.32 |
Paraffinic Bond | PAR | 27.9 | |
Acetaldehyde | CH3CHO | 1.09 | 0.2 |
Methacrolein + Methylvinylketone | ISPD | 0.508 | 0.2 |
Peroxyacetyl Nitrate | PAN | 0.785 | 0.27 |
Methane | CH4 | 1904 | |
Methanol | MEOH | 2.20 | 0.7 |
Ethanol | ETOH | 0.697 | 0.6 |
Nitric Acid | HNO3 | 2.49 | 2.7 |
Terpenes | TERP | 0.0377 | |
Ethane | C2H6 | 1.58 | |
Ketone Bond | KET | 5.42 | |
Glyoxal | GLY | 0.165 | |
Methyl Glyoxal | MGLY | 0.147 | 0.2 |
Unsaturated Aldehyde from ARD 3 | OPEN | 0.0234 | |
Unsaturated Ketone from ARD 3 | XOPN | 0.0165 | |
Cresol | CRESOL | 0.0191 | 0.2 |
Higher Aldehyde | ALDX | 0.596 | |
Higher Peroxyacyl Nitrate | PANX | 0.290 | 0.4 |
NO3 + N2O5 | NO3X | 0.000696 | 2.7 |
NO | NO2 | HONO | HCHO | CO | C2H4 | C3H6 | MEOH |
---|---|---|---|---|---|---|---|
100.55 | 11.17 | 0.89 | 22.27 | 126.45 | 2.22 | 0.20 | 0.56 |
PAR | C2H6 | TOL | XYL | ETOH | KET |
---|---|---|---|---|---|
86.9 | 7.76 | 4.54 | 0.37 | 0.36 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaguer, E.P. The Potential Ozone Impacts of Landfills. Atmosphere 2021, 12, 877. https://doi.org/10.3390/atmos12070877
Olaguer EP. The Potential Ozone Impacts of Landfills. Atmosphere. 2021; 12(7):877. https://doi.org/10.3390/atmos12070877
Chicago/Turabian StyleOlaguer, Eduardo P. 2021. "The Potential Ozone Impacts of Landfills" Atmosphere 12, no. 7: 877. https://doi.org/10.3390/atmos12070877
APA StyleOlaguer, E. P. (2021). The Potential Ozone Impacts of Landfills. Atmosphere, 12(7), 877. https://doi.org/10.3390/atmos12070877