Climate Variability, Dengue Vector Abundance and Dengue Fever Cases in Dhaka, Bangladesh: A Time-Series Study
Abstract
:1. Introduction
1.1. Climate Factors and Dengue Relationships: An Overview
1.1.1. Temperature and Dengue
1.1.2. Rainfall and Dengue
1.1.3. Relative Humidity and Dengue
1.1.4. Dengue Studies in Bangladesh
2. Materials and Methods
2.1. Study Area and Design
2.2. Data Collection Techniques
2.3. Statistical Analyses
3. Results
3.1. Analysis of Climate Factors vs. Vector Indices
3.2. Analysis of Vector Abundance vs. Dengue Case Incidence
3.3. Analysis of Climate Factors vs. Dengue Case Incidence
3.4. Analysis of Seasonality vs. Dengue Cases
3.5. Analysis of Climate Anomaly vs. Dengue Cases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halstead, S.B. Dengue. Lancet 2007, 370, 1644–1652. [Google Scholar] [CrossRef]
- Gubler, D.J. The global pandemic of dengue/dengue haemorrhagic fever: Current status and prospects for the future. Ann. Acad. Med. Singap. 1998, 27, 227–234. [Google Scholar] [PubMed]
- Rodhain, F. Les insectes ne connaissent pas nos frontières. Médecine Mal. Infect. 1996, 26 (Suppl. 3), 408–414. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Dengue and Severe Dengue. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 6 July 2021).
- Githeko, A.K.; Lindsay, S.W.; Confalonieri, U.E.; Patz, J.A. Climate change and vector-borne diseases: A regional analysis. Bull. World Health Organ. 2000, 78, 1136. [Google Scholar]
- Lorenz, C.; Azevedo, T.S.; Virginio, F.; Aguiar, B.S.; Chiaravalloti-Neto, F.; Suesdek, L. Impact of environmental factors on neglected emerging arboviral diseases. PLoS Negl. Trop. Dis. 2017, 11, e0005959. [Google Scholar] [CrossRef] [Green Version]
- Mcmichael, A.J.; Woodruff, R.E.; Hales, S. Climate change and human health: Present and future risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Pham, H.V.; Doan, H.T.M.; Phan, T.T.T.; Minh, N.N.T. Ecological factors associated with dengue fever in a central highlands Province, Vietnam. BMC Infect. Dis. 2011, 11, 172. [Google Scholar] [CrossRef]
- Tseng, W.-C.; Chen, C.-C.; Chang, C.-C.; Chu, Y.-H. Estimating the economic impacts of climate change on infectious diseases: A case study on dengue fever in Taiwan. Clim. Chang. 2009, 92, 123–140. [Google Scholar] [CrossRef]
- Stewart Ibarra, A.M.; Ryan, S.J.; Beltrán, E.; Mejía, R.; Silva, M.; Muñoz, Á. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: Implications for targeted control. PLoS ONE 2013, 8, e78263. [Google Scholar] [CrossRef]
- Depradine, C.A.; Lovell, E.H. Climatological variables and the incidence of dengue disease in Barbados. Int. J. Environ. Health Res. 2004, 14, 429–441. [Google Scholar] [CrossRef]
- Colón-González, F.J.; Fezzi, C.; Lake, I.R.; Hunter, P.R. The effects of weather and climate change on dengue. PLoS Negl. Trop. Dis. 2013, 7, e2503. [Google Scholar] [CrossRef] [Green Version]
- Naish, S.; Dale, P.; Mackenzie, J.S.; McBride, J.; Mengersen, K.; Tong, S. Climate change and dengue: A critical and systematic review of quantitative modelling approaches. BMC Infect. Dis. 2014, 14, 167. [Google Scholar] [CrossRef] [Green Version]
- Halide, H.; Ridd, P. A predictive model for dengue hemorrhagic fever epidemics. Int. J. Environ. Health Res. 2008, 18, 253–265. [Google Scholar] [CrossRef]
- Wu, P.-C.; Lay, J.-G.; Guo, H.-R.; Lin, C.-Y.; Lung, S.-C.; Su, H.-J. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci. Total Environ. 2009, 407, 2224–2233. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Haque, C.E.; Hossain, S.; Rochon, K. Role of container type, behavioural, and ecological factors in Aedes pupal production in Dhaka, Bangladesh: An application of zero-inflated negative binomial model. Acta Trop. 2019, 193, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Kuno, G. Review of the factors modulating dengue transmission. Epidemiol. Rev. 1995, 17, 321–335. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Lun, Z.-R.; James, A.A.; Chen, X.-G. Review: Dengue fever in mainland China. Am. J. Trop. Med. Hyg. 2010, 83, 664–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.-L.; Yang, S.-J.; Yen, H.-J.; Christakos, G. A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stoch Environ. Res. Risk Assess 2011, 25, 485–494. [Google Scholar] [CrossRef]
- Shahid, S.; Harun, S.B.; Katimon, A. Changes in diurnal temperature range in Bangladesh during the time period 1961–2008. Atmos. Res. 2012, 118, 260–270. [Google Scholar] [CrossRef]
- Yunus, E.B. Dengue outbreak 2000: The emerged issues. Bangladesh Med. J. 2000, 33, 46–47. [Google Scholar]
- Hossain, M.A.; Khatun, M.; Arjumand, F.; Nisalak, A.; Breiman, R.F. Serologic evidence of dengue infection before onset of epidemic, Bangladesh. Emerg. Infect. Dis. 2003, 9, 1411–1414. [Google Scholar] [CrossRef] [Green Version]
- Yunus, E.B.; Bangali, A.M.; Mahmood, M.A.H.; Rahman, M.M.; Chowdhury, A.R.; Talukder, K.R. Dengue outbreak 2000 in Bangladesh: From speculation to reality and exercises. Dengue Bull. 2001, 25, 15–20. [Google Scholar]
- Sharmin, S.; Glass, K.; Viennet, E.; Harley, D. Interaction of mean temperature and daily fluctuation influences dengue incidence in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 2015, 9, e0003901. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Rahman, K.; Siddque, A.K.; Shoma, S.; Kamal, A.H.; Ali, K.S.; Nisaluk, A.; Breiman, R.F. First outbreak of dengue hemorrhagic fever, Bangladesh. Emerg. Infect. Dis. 2002, 8, 738–740. [Google Scholar] [CrossRef] [PubMed]
- Morales, I.; Salje, H.; Saha, S.; Gurley, E.S. Seasonal distribution and climatic correlates of dengue disease in Dhaka, Bangladesh. Am. J. Trop. Med. Hyg. 2016, 94, 1359–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhaka Tribune. DGHS: 673 More Hospitalized for Dengue in 24hrs. 13 September 2019. Available online: https://www.dhakatribune.com/bangladesh/2019/09/13/dghs-673-more-hospitalized-for-dengue-in-24hrs (accessed on 14 September 2019).
- Shirin, T.; Muraduzzaman, A.K.; Alam, A.N.; Sultana, S.; Siddiqua, M.; Khan, M.H.; Akram, A.; Sharif, A.R.; Hossain, S.; Flora, M.S. Largest dengue outbreak of the decade with high fatality may be due to reemergence of DEN-3 serotype in Dhaka, Bangladesh, necessitating immediate public health attention. New Microbes New Infect. 2019, 29, 100511. [Google Scholar] [CrossRef]
- Dhar-Chowdhury, P.; Paul, K.K.; Haque, C.E.; Hossain, S.; Lindsay, L.R.; Dibernardo, A.; Brooks, W.A.; Drebot, M.A. Dengue seroprevalence, seroconversion and risk factors in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 2017, 11, e0005475. [Google Scholar] [CrossRef]
- Banu, S.; Hu, W.; Hurst, C.; Guo, Y.; Islam, M.Z.; Tong, S. Space-time clusters of dengue fever in Bangladesh. Trop. Med. Int. Health 2012, 17, 1086–1091. [Google Scholar] [CrossRef] [Green Version]
- Hashizume, M.; Dewan, A.K.; Sunahara, T.; Rahman, M.Z.; Yamamoto, T. Hydroclimatological variability and dengue transmission in Dhaka, Bangladesh: A time-series study. BMC Infect. Dis. 2012, 12, 98. [Google Scholar] [CrossRef] [Green Version]
- Karim, M.N.; Munshi, S.U.; Anwar, N.; Alam, M.S. Climatic factors influencing dengue cases in Dhaka city: A model for dengue prediction. Indian J. Med. Res. 2012, 136, 32–39. [Google Scholar]
- Sharmin, S.; Viennet, E.; Glass, K.; Harley, D. The emergence of dengue in Bangladesh: Epidemiology, challenges and future disease risk. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 619–627. [Google Scholar] [CrossRef]
- Paul, K.K.; Dhar-Chowdhury, P.; Haque, C.E.; Al-Amin, H.M.; Goswami, D.R.; Kafi, M.A.; Drebot, M.A.; Lindsay, L.R.; Ahsan, G.U.; Brooks, W.A. Risk factors for the presence of dengue vector mosquitoes, and determinants of their prevalence and larval site selection in Dhaka, Bangladesh. PLoS ONE 2018, 13, e0199457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.Z.; Rutherford, S.; Dung Phung, M.; Uzzaman, N.; Baum, S.; Huda, M.M.; Asaduzzaman, M.; Talukder, M.R.; Chu, C. Correlates of climate variability and dengue fever in two metropolitan cities in Bangladesh. Cureus 2018, 10, e3398. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Rahman, G.M.S.; Bashar, K.; Shamsuzzaman, M.; Samajpati, S.; Sultana, S.; Hossain, M.I.; Banu, N.N.; Rahman, M.S. Seasonal prevalence of dengue vector mosquitoes in Dhaka City, Bangladesh. Bangladesh J. Zool. 2007, 35, 205–212. [Google Scholar]
- BBS (Bangladesh Bureau of Statistics). Statistical Yearbook 2016; BBS, Ministry of Planning: Dhaka, Bangladesh, 2016.
- UN (United Nations). The World’s Cities in 2016: Data Booklet. 2016. Available online: http://www.un.org/en/development/desa/population/publications/pdf/urbanization/the_worlds_cities_in_2016_data_booklet.pdf (accessed on 3 June 2020).
- BBS (Bangladesh Bureau of Statistics). Statistical Yearbook 2010; BBS, Ministry of Planning: Dhaka, Bangladesh, 2010.
- WMO (World Meteorological Organization). WMO Guidelines on the Calculation of Climate Normals, 2017 ed.; WMO-No. 1203; WMO: Geneva, Switzerland, 2017; p. 29. [Google Scholar]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data, 2nd ed.; John Wiley: New York, NY, USA, 2002. [Google Scholar]
- Weerasinghe, D.S.S. A missing values imputation method for time series data: An efficient method to investigate the health effects of sulphur dioxide levels. Environmetrics 2010, 21, 162–172. [Google Scholar] [CrossRef]
- Wolberg, G. Cubic Spline Interpolation: A Review; Columbia University: New York, NY, USA, 1988. [Google Scholar]
- Moritz SBartz-Beielstein, T. imputeTS: Time Series Missing Value Imputation in R. R J. 2017, 9, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Buuren, S.V. Flexible Imputation of Missing Data; Chapman and Hall/CRC: Boca Raton, FL, USA; New York, NY, USA, 2012. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org (accessed on 20 June 2020).
- Wood, S.N. Generalized Additive Models: An Introduction with R; Chapman and Hall: Boca Raton, FL, USA, 2006. [Google Scholar]
- Barrera, R.; Amador, M.; MacKay, A.J. Population dynamics of Aedes aegypti and dengue as Influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl. Trop. Dis. 2011, 5, e1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, L.R.; Runge-Ranzinger, S.; McCall, P.J. Assessing the relationship between vector indices and dengue transmission: A systematic review of the evidence. PLoS Negl. Trop. Dis. 2014, 8, e2848. [Google Scholar] [CrossRef]
- Githeko, A.K. Advances in developing a climate-based dengue outbreak models in Dhaka, Bangladesh: Challenges and opportunities. Commentary. Indian J. Med. Res. 2012, 136, 7–9. [Google Scholar]
- Cheng, Q.; Jing, Q.; Spear, R.C.; Marshall, J.M.; Yang, Z.; Gong, P. Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou, 2014: Evidence from a mathematical model. PLoS Negl. Trop. Dis. 2016, 10, e0004417. [Google Scholar] [CrossRef]
- Nakhapakorn, K.; Tripathi, N.K. An information value-based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int. J. Health Geogr. 2005, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, F.-S.; Tseng, Y.-T.; Hsu, P.-S.; Chen, C.-D.; Lian, I.-B.; Chao, D.-Y. Re-assess vector indices threshold as an early warning tool for predicting dengue epidemic in a dengue non-endemic country. PLoS Negl. Trop. Dis. 2015, 9, e0004043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcari, P.; Tapper, N.; Pfueller, S. Regional variability in relationships between climate and dengue/SD in Indonesia. Singap. J. Trop. Geogr. 2007, 28, 251–272. [Google Scholar] [CrossRef]
- Johansson, M.A.; Dominici, F.; Glass, G.E. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl. Trop. Dis. 2009, 3, e382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muurlink, T.O.; Stephenson, P.; Islam, M.Z.; Taylor-Robinson, A.W. Long-term predictors of dengue outbreaks in Bangladesh: A data mining approach. Infect. Dis. Model. 2018, 3, 322–330. [Google Scholar] [CrossRef]
- Ehelepola, N.D.B.; Ariyaratne, K.; Buddhadasa, W.M.N.P.; Ratnayake, S.; Wickramasinghe, M. A study of the correlation between dengue and weather in Kandy City, Sri Lanka (2003–2012) and lessons learned. Infect. Dis. Poverty 2015, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Do, T.T.T.; Martens, P.; Luu, N.H.; Wright, P.; Choisy, M. Climatic-driven seasonality of emerging dengue fever in Hanoi, Vietnam. BMC Public Health 2014, 14, 1078. [Google Scholar] [CrossRef]
- Hii, Y.L.; Zhu, H.; Ng, N.; Ng, L.C.; Rocklov, J. Forecast of dengue incidence using temperature and rainfall. PLoS Negl. Trop. Dis. 2012, 6, e1908. [Google Scholar] [CrossRef] [Green Version]
- Bannister-Tyrrell, M.; Williams, C.; Ritchie, S.A.; Rau, G.; Lindesay, J.; Mercer, G.; Harley, D. Weather-driven variation in dengue activity in Australia examined using a process-based modeling approach. Am. J. Trop. Med. Hyg. 2013, 88, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Beebe, N.W.; Cooper, R.D.; Mottram, P.; Sweeney, A.W. Australia’s dengue risk driven by human adaptation to climate change. PLoS Negl. Trop. Dis. 2009, 3, e429. [Google Scholar] [CrossRef]
- Lana, R.M.; Morais, M.M.; Lima, T.F.; Carneiro, T.G.; Stolerman, L.M.; dos Santos, J.P.; Cortés, J.J.; Eiras, Á.E.; Codeço, C.T. Assessment of a trap based Aedes aegypti surveillance program using mathematical modeling. PLoS ONE 2018, 13, e0190673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, L.F.; Morrison, A.C.; Kitron, U.D.; Scott, T.W. Nonlinear impacts of climatic variability on the density-dependent regulation of an insect vector of disease. Glob. Chang. Biol. 2012, 18, 457–468. [Google Scholar] [CrossRef]
- Tun-Lin, W.; Burkot, T.R.; Kay, B.H. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med. Vet. Entomol. 2000, 14, 31–37. [Google Scholar] [CrossRef]
- Banu, S.; Guo, Y.; Hu, W.; Dale, P.; Mackenzie, J.S.; Mengersen, K.; Tong, S. Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh. Sci. Rep. 2015, 5, 16105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.A.; Cummings, D.A.T.; Glass, G.E. Multiyear climate variability and dengue—El Nino Southern Oscillation, weather, and dengue Incidence in Puerto Rico, Mexico, and Thailand: A longitudinal data analysis. PLoS Med. 2009, 6, e1000168. [Google Scholar] [CrossRef] [Green Version]
- Hales, S.; Weinstein, P.; Souares, Y.; Woodward, A. El Nino and the dynamics of vector-borne disease transmission. Environ. Health Perspect. 1999, 107, 99–102. [Google Scholar] [PubMed] [Green Version]
- Tipayamongkholgul, M.; Fang, C.T.; Klinchan, S.; Liu, C.M.; King, C.C. Effects of the El Nino-Southern Oscillation on dengue epidemics in Thailand, 1996–2005. BMC Public Health 2009, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Hurtado-Diaz, M.; Riojas-Rodriguez, H.; Gomez-Dantes, H.; Cifuentes, E. Short communication: Impact of climate variability on the incidence of dengue in Mexico. Trop. Med. Int. Health 2007, 12, 1327–1337. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Renhorn, K.E.; Tissera, H.; Abu Bakar, S.; Alphey, L.; Kittayapong, P.; Lindsay, S.; Logan, J.; Hatz, C.; Reiter, P.; et al. Dengue tools: Innovative tools and strategies for the surveillance and control of dengue. Glob. Health Action 2012, 5, 17273. [Google Scholar] [CrossRef]
Years | Months | %CI | %BI | %HI | MT (°C) | MH (%) | MR (mm) | LMR (mm) |
---|---|---|---|---|---|---|---|---|
2002 | Aug. | 7.49 | 15.28 | 14.25 | 28.6 | 81 | 8.77 | 14.39 |
2003 | Aug. | 16.31 | 16.84 | 8.74 | 29.4 | 78 | 6.52 | 6.16 |
2004 | Jun. | 29.91 | 32.54 | 14.04 | 28.5 | 81 | 15.87 | 5.23 |
2005 | Sep. | 15.7 | 13.91 | 10.47 | 28.9 | 81 | 17.13 | 11.65 |
2006 | Aug. | 8.11 | 14.69 | 8.49 | 29.1 | 77 | 5.39 | 10.68 |
2007 | Aug. | 13.61 | 39.14 | 10.73 | 29.1 | 80 | 16.29 | 24.29 |
2008 | Aug. | 26.46 | 71.07 | 15.58 | 28.8 | 81 | 10.29 | 18.16 |
2009 | Jun. | 40.91 | 94.29 | 21.43 | 30.2 | 74 | 5.67 | 5.42 |
2010 | Aug. | 51.56 | 96.59 | 26.65 | 29.5 | 78 | 10.97 | 5.39 |
2011 | Aug. | 54.36 | 81.7 | 29.45 | 28.5 | 82 | 13.19 | 11.48 |
2012 | Sep. | 45.6 | 57.33 | 28.01 | 29 | 79 | 2.70 | 9.10 |
2013 | Oct. | 21.47 | 30 | 20.53 | 27.2 | 78 | 4.23 | 5.73 |
Association of Stegomyia Indices with Climate Variables | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Association with CI | Association with BI | Association with HI | ||||||||||
Variables | MT | MH | MR | LMR | MT | MH | MR | LMR | MT | MH | MR | LMR |
p-value | 0.294 | 0.360 | 0.0372 * | 0.0762 | 0.7976 | 0.0208 * | 0.0186 * | 0.8572 | 0.448 | 0.259 | 0.197 | 0.678 |
R2 (adj) | 0.79 | 0.72 | ||||||||||
Association of dengue cases with Stegomyia Indices | ||||||||||||
Variables | HI | BI | CI | |||||||||
p-value | 0.005 * | <0.001 * | <0.001 * | |||||||||
R2 (adj) | 0.49 | |||||||||||
Association of dengue cases with climate variables | ||||||||||||
Variables | LMR | MH | ||||||||||
p-value | 0.0279 * | 0.0463 * | ||||||||||
R2 (adj) | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, S.; Haque, C.E.; Hossain, S.; Hanesiak, J. Climate Variability, Dengue Vector Abundance and Dengue Fever Cases in Dhaka, Bangladesh: A Time-Series Study. Atmosphere 2021, 12, 905. https://doi.org/10.3390/atmos12070905
Islam S, Haque CE, Hossain S, Hanesiak J. Climate Variability, Dengue Vector Abundance and Dengue Fever Cases in Dhaka, Bangladesh: A Time-Series Study. Atmosphere. 2021; 12(7):905. https://doi.org/10.3390/atmos12070905
Chicago/Turabian StyleIslam, Sabrina, C. Emdad Haque, Shakhawat Hossain, and John Hanesiak. 2021. "Climate Variability, Dengue Vector Abundance and Dengue Fever Cases in Dhaka, Bangladesh: A Time-Series Study" Atmosphere 12, no. 7: 905. https://doi.org/10.3390/atmos12070905
APA StyleIslam, S., Haque, C. E., Hossain, S., & Hanesiak, J. (2021). Climate Variability, Dengue Vector Abundance and Dengue Fever Cases in Dhaka, Bangladesh: A Time-Series Study. Atmosphere, 12(7), 905. https://doi.org/10.3390/atmos12070905