Tracking the Endogenous Dynamics of the Solfatara Volcano (Campi Flegrei, Italy) through the Analysis of Ground Thermal Image Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Thermal Infrared Surface Data and Atmospheric Temperature and Pressure Data
2.3. ICA Method
3. Results
3.1. ICA Results
3.2. Time Evolution of the Spectral Power
3.3. Changing Points Analysis
CFc TIR Time-Series, Seismicity and CO2 Flux
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Harris, A. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; ISBN 052185945X. [Google Scholar]
- Blackett, M. An overview of infrared remote sensing of volcanic activity. J. Imaging 2017, 3, 13. [Google Scholar] [CrossRef]
- Silvestri, M.; Marotta, E.; Buongiorno, M.F.; Avvisati, G.; Belviso, P.; Bellucci Sessa, E.; Caputo, T.; Longo, V.; De Leo, V.; Teggi, S. Monitoring of surface temperature on Parco delle Biancane (Italian geothermal area) using optical satellite data, UAV and field campaigns. Remote Sens. 2020, 12, 2018. [Google Scholar] [CrossRef]
- Kervyn, M.; Kervyn, F.; Goossens, R.; Rowland, S.K.; Ernst, G.G.J. Mapping Volcanic Terrain Using High-Resolution and 3D Satellite Remote Sensing. Available online: sp.lyellcollection.org (accessed on 7 May 2021).
- Kieffer, H.H.; Frank, D.; Friedman, J.D. The 1980 Eruptions of Mount St. Helens, Washington. Thermal Infrared Surveys at Mount St. Helens—Observations Prior to the Eruption of May 18; Geological Survey Professional Paper; Federal Center: Denver, CO, USA, 1981. [Google Scholar]
- Hernández, P.A.; Pérez, N.M.; Varekamp, J.C.; Henriquez, B.; Hernández, A.; Barrancos, J.; Padrón, E.; Calvo, D.; Melián, G. Crater lake temperature changes of the 2005 eruption of Santa Ana volcano, El Salvador, Central America. Pure Appl. Geophys. 2007, 164, 2507–2522. [Google Scholar] [CrossRef]
- Calvari, S.; Lodato, L.; Spampinato, L. Monitoring active volcanoes using a handheld thermal camera. In Proceedings of the Thermosense XXVI, Orlando, FL, USA, 13–15 April 2004; Burleigh, D.D., Cramer, K.E., Peacock, G.R., Eds.; SPIE: Bellingham, WA, USA, 2004; Volume 5405, p. 199. [Google Scholar]
- Hilman, Z.; Saepuloh, A.; Susanto, V. Application of land surface temperature derived from ASTER TIR to identify volcanic gas emission around bandung basin. Int. J. Remote Sens. Earth Sci. 2020, 16, 179. [Google Scholar] [CrossRef]
- Hilman, Z.; Saepuloh, A.; Chalik, C.A.; Heriawan, M.N. Identifying upflow zone based on thermal infrared (TIR) sensor and field. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2020; Volume 417, p. 012011. [Google Scholar]
- Silvestri, M.; Cardellini, C.; Chiodini, G.; Buongiorno, M.F. Satellite-derived surface temperature and in situ measurement at Solfatara of Pozzuoli (Naples, Italy). Geochem. Geophys. Geosyst. 2016, 17, 2095–2109. [Google Scholar] [CrossRef] [Green Version]
- Vilardo, G.; Chiodini, G.; Augusti, V.; Granieri, D.; Caliro, S.; Minopoli, C.; Terranova, C. The Permanent Thermal Infrared Network for the Monitoring of Hydrothermal Activity at the Solfatara and Vesuvius Volcanoes. In Conception, Verification and Application of Innovative Techniques to Study Active Volcanoes; Marzocchi, W., Zollo, A., Eds.; DoppiaVoce: Naples, Italy, 2008; pp. 481–495. [Google Scholar]
- Vilardo, G.; Sansivero, F.; Chiodini, G. Long-term TIR imagery processing for spatiotemporal monitoring of surface thermal features in volcanic environment: A case study in the Campi Flegrei (Southern Italy). J. Geophys. Res. Solid Earth 2015, 120, 812–826. [Google Scholar] [CrossRef]
- Caputo, T.; Sessa, E.B.; Silvestri, M.; Buongiorno, M.F.; Musacchio, M.; Sansivero, F.; Vilardo, G. Surface temperature multiscale monitoring by thermal infrared satellite and ground images at Campi Flegrei volcanic area (Italy). Remote Sens. 2019, 11, 1007. [Google Scholar] [CrossRef] [Green Version]
- Caputo, T.; Cusano, P.; Petrosino, S.; Sansivero, F.; Vilardo, G. Spectral analysis of ground thermal image temperatures: What we are learning at Solfatara volcano (Italy). Adv. Geosci. 2020, 52, 55–65. [Google Scholar] [CrossRef]
- Marotta, E.; Peluso, R.; Avino, R.; Belviso, P.; Caliro, S.; Carandente, A.; Chiodini, G.; Macedonio, G.; Avvisati, G.; Marfè, B. Thermal energy release measurement with thermal camera: The case of La Solfatara volcano (Italy). Remote Sens. 2019, 11, 167. [Google Scholar] [CrossRef] [Green Version]
- Chiodini, G.; Granieri, D.; Avino, R.; Caliro, S.; Costa, A.; Werner, C. Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J. Geophys. Res. Solid Earth 2005, 110, 1–17. [Google Scholar] [CrossRef]
- Petrosino, S.; Damiano, N.; Cusano, P.; Di Vito, M.A.; de Vita, S.; Del Pezzo, E. Subsurface structure of the Solfatara volcano (Campi Flegrei caldera, Italy) as deduced from joint seismic-noise array, volcanological and morphostructural analysis. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Bianco, F.; Castellano, M.; Cogliano, R.; Cusano, P.; Del Pezzo, E.; Antonio Di Vito, M.; Fodarella, A.; Galluzzo, D.; La Rocca, M.; Milana, G.; et al. Caratterizzazione del noise sismico nell’area vulcanica dei Campi Flegrei (Napoli): L’esperimento “uNREST”. Quad. Geofis. 2010, 86, 1–19. [Google Scholar]
- Bellucci Sessa, E.; Castellano, M.; Ricciolino, P. GIS applications in volcano monitoring: The study of seismic swarms at the Campi Flegrei volcanic complex, Italy. Adv. Geosci. 2021, 52, 131–144. [Google Scholar] [CrossRef]
- Cataloghi Sismici Vulcani Campani. Available online: http://www.ov.ingv.it/ov/it/banche-dati/186-catalogo-sismico-del-vesuvio.html (accessed on 14 June 2021).
- Bollettini di Monitoraggio Vulcanico. Available online: https://www.ov.ingv.it/ov/it/bollettini.html (accessed on 17 April 2021).
- Chiodini, G.; Paonita, A.; Aiuppa, A.; Costa, A.; Caliro, S.; De Martino, P.; Acocella, V.; Vandemeulebrouck, J. Magmas near the critical degassing pressure drive volcanic unrest towards a critical state. Nat. Commun. 2016, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilardo, G.; Ventura, G.; Bellucci Sessa, E.; Terranova, C. Morphometry of the Campi Flegrei caldera (Southern Italy). J. Maps 2013, 9, 635–640. [Google Scholar] [CrossRef]
- Orsi, G.; De Vita, S.; Di Vito, M. The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 1996, 74, 179–214. [Google Scholar] [CrossRef]
- Acocella, V. Activating and reactivating pairs of nested collapses during calderaforming eruptions: Campi Flegrei (Italy). Geophys. Res. Lett. 2008, 35, L17304. [Google Scholar] [CrossRef]
- Fedele, L.; Scarpati, C.; Lanphere, M.; Melluso, L.; Morra, V.; Perrotta, A.; Ricci, G. The Breccia Museo formation, Campi Flegrei, southern Italy: Geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull. Volcanol. 2008, 70, 1189–1219. [Google Scholar] [CrossRef]
- Scarpati, C.; Perrotta, A.; Lepore, S.; Calvert, A. Eruptive history of Neapolitan volcanoes: Constraints from 40Ar-39Ar dating. Geol. Mag. 2013, 150, 412–425. [Google Scholar] [CrossRef] [Green Version]
- Di Vito, M.A.; Acocella, V.; Aiello, G.; Barra, D.; Battaglia, M.; Carandente, A.; Del Gaudio, C.; de Vita, S.; Ricciardi, G.P.; Ricco, C.; et al. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci. Rep. 2016, 6, 32245. [Google Scholar] [CrossRef]
- Orsi, G.; Civetta, L.; Del Gaudio, C.; De Vita, S.; Di Vito, M.A.; Isaia, R.; Petrazzuoli, S.M.; Ricciardi, G.P.; Ricco, C. Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block-resurgence in a densely populated area. J. Volcanol. Geotherm. Res. 1999, 91, 415–451. [Google Scholar] [CrossRef]
- Del Gaudio, C.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandone, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 195, 48–56. [Google Scholar] [CrossRef]
- De Martino, P.; Tammaro, U.; Obrizzo, F. GPS time series at Campi Flegrei caldera (2000–2013). Ann. Geophys. 2014, 57, 213. [Google Scholar]
- De Lauro, E.; Petrosino, S.; Ricco, C.; Aquino, I.; Falanga, M. Medium and long period ground oscillatory pattern inferred by borehole tiltmetric data: New perspectives for the Campi Flegrei caldera crustal dynamics. Earth Planet Sci. Lett. 2018, 504, 21–29. [Google Scholar] [CrossRef]
- Ricco, C.; Petrosino, S.; Aquino, I.; Del Gaudio, C.; Falanga, M. Some investigations on a possible relationship between ground deformation and seismic activity at Campi Flegrei and Ischia volcanic areas (Southern Italy). Geosciences 2019, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Petrosino, S.; Ricco, C.; De Lauro, E.; Aquino, I.; Falanga, M. Time evolution of medium and long-period ground tilting at Campi Flegrei caldera. Adv. Geosci. 2020, 52, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Giudicepietro, F.; Chiodini, G.; Avino, R.; Brandi, G.; Caliro, S.; De Cesare, W.; Galluzzo, D.; Esposito, A.; La Rocca, A.; Lo Bascio, D.; et al. Tracking episodes of seismicity and gas transport in Campi Flegrei caldera through seismic, geophysical, and geochemical measurements. Seismol. Res. Lett. 2021, 92, 965–975. [Google Scholar] [CrossRef]
- Saccorotti, G.; Petrosino, S.; Bianco, F.; Castellano, M.; Galluzzo, D.; La Rocca, M.; Del Pezzo, E.; Zaccarelli, L.; Cusano, P. Seismicity associated with the 2004–2006 renewed ground uplift at Campi Flegrei Caldera, Italy. Phys. Earth Planet. Inter. 2007, 165, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Cusano, P.; Petrosino, S.; Saccorotti, G. Hydrothermal origin for sustained Long-Period (LP) activity at Campi Flegrei Volcanic Complex, Italy. J. Volcanol. Geotherm. Res. 2008, 177, 1035–1044. [Google Scholar] [CrossRef]
- D’Auria, L.; Giudicepietro, F.; Aquino, I.; Borriello, G.; Del Gaudio, C.; Lo Bascio, D.; Martini, M.; Ricciardi, G.P.; Ricciolino, P.; Ricco, C. Repeated fluid-transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989–2010). J. Geophys. Res. Solid Earth 2011, 116, B04313. [Google Scholar] [CrossRef]
- Petrosino, S.; Cusano, P.; Madonia, P. Tidal and hydrological periodicities of seismicity reveal new risk scenarios at Campi Flegrei caldera. Sci. Rep. 2018, 8, 13808. [Google Scholar] [CrossRef] [Green Version]
- Cardellini, C.; Chiodini, G.; Frondini, F.; Avino, R.; Bagnato, E.; Caliro, S.; Lelli, M.; Rosiello, A. Monitoring diffuse volcanic degassing during volcanic unrests: The case of Campi Flegrei (Italy). Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Granieri, D.; Avino, R.; Chiodini, G. Carbon dioxide diffuse emission from the soil: Ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity. Bull. Volcanol. 2010, 72, 103–118. [Google Scholar] [CrossRef]
- Sansivero, F.; Scarpato, G.; Vilardo, G. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater. Ann. Geophys. 2013, 56, S0454. [Google Scholar]
- Sansivero, F.; Vilardo, G. Processing thermal infrared imagery time-series from volcano permanent ground-based monitoring network. Latest methodological improvements to characterize surface temperatures behavior of thermal anomaly areas. Remote Sens. 2019, 11, 553. [Google Scholar] [CrossRef] [Green Version]
- Hyvarinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis; John Wiley & Sons Inc.: New York, NY, USA, 2001. [Google Scholar]
- De Lauro, E.; De Martino, S.; Falanga, M.; Palo, M. Statistical analysis of Stromboli VLP tremor in the band [0.1–0.5] Hz: Some consequences for vibrating structures. Nonlinear Process. Geophys. 2006, 13, 393–400. [Google Scholar] [CrossRef] [Green Version]
- De Martino, S.; Falanga, M.; Palo, M.; Montalto, P.; Patanè, D. Statistical analysis of the volcano seismicity during the 2007 crisis of Stromboli, Italy. J. Geophys. Res. 2011, 116, B09312. [Google Scholar] [CrossRef]
- De Lauro, E.; De Martino, S.; Falanga, M.; Petrosino, S. Fast wavefield decomposition of volcano-tectonic earthquakes into polarized P and S waves by Independent Component Analysis. Tectonophysics 2016, 690, 355–361. [Google Scholar] [CrossRef]
- Capuano, P.; De Lauro, E.; De Martino, S.; Falanga, M. Detailed investigation of long-period activity at Campi Flegrei by convolutive independent component analysis. Phys. Earth Planet. Inter. 2016, 253, 48–57. [Google Scholar] [CrossRef]
- MathWorks Find Abrupt Changes in Signal—MATLAB Findchangepts. Available online: https://it.mathworks.com/help/signal/ref/findchangepts.html (accessed on 23 April 2021).
- Shumway, R.H.; Stoffer, D.S. Characteristics of Time Series. In Time Series Analysis and Its Applications; Springer Texts in Statistics; Springer: New York, NY USA, 2000; pp. 1–88. [Google Scholar]
- Chatfield, C. The Analysis of Time Series: An Introduction; CRC, Chapman and Hall: London, UK, 2003; ISBN 0429208707. [Google Scholar]
- Petrosino, S.; de Siena, L.; del Pezzo, E. Recalibration of the magnitude scales at Campi Flegrei Italy, on the basis of measured path and site and transfer functions. Bull. Seismol. Soc. Am. 2008, 98, 1964–1974. [Google Scholar] [CrossRef] [Green Version]
- Galluzzo, D.; Del Pezzo, E.; La Rocca, M.; Petrosino, S. Peak ground acceleration produced by local earthquakes in volcanic areas of Campi Flegrei and Mt. Vesuvius. Ann. Geophys. 2004, 47, 1377–1389. [Google Scholar]
- Madonia, P. Variations of low temperature fumaroles as a tool for detecting changes in volcanic activity state: A brief overview. Adv. Geosci. 2020, 52, 97–103. [Google Scholar] [CrossRef]
- Tripaldi, S.; Telesca, L.; Lovallo, M. Spectral and informational analysis of temperature and chemical composition of Solfatara Fumaroles (Campi Flegrei, Italy). Entropy 2021, 23, 593. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Yu, S.; Oh, Y.Y.; Chae, G.; Yun, S.T.; Shinn, Y.J. Short-term monitoring of geogenic soil CO2 flux in a non-volcanic and seismically inactive emission site, South Korea. Front. Earth Sci. 2021, 8, 599388. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Vita, F.; Cangemi, M.; Inguaggiato, C.; Calderone, L. The monitoring of CO2 soil degassing as indicator of increasing volcanic activity: The paroxysmal activity at stromboli volcano in 2019–2021. Geosciences 2021, 11, 169. [Google Scholar] [CrossRef]
- Petrosino, S.; De Siena, L. Fluid migrations and volcanic earthquakes from depolarized ambient noise. Preprint Res. Square 2021. [Google Scholar] [CrossRef]
- Isaia, R.; Vitale, S.; Di Giuseppe, M.G.; Iannuzzi, E.; Tramparulo, F.D.A.; Troiano, A. Stratigraphy, structure, and volcano-tectonic evolution of Solfatara maar-diatreme (Campi Flegrei, Italy). Bull. Geol. Soc. Am. 2015, 127, 1485–1504. [Google Scholar] [CrossRef] [Green Version]
- Gresse, M.; Vandemeulebrouck, J.; Byrdina, S.; Chiodini, G.; Revil, A.; Johnson, T.C.; Ricci, T.; Vilardo, G.; Mangiacapra, A.; Lebourg, T.; et al. Three-dimensional electrical resistivity tomography of the Solfatara Crater (Italy): Implication for the multiphase flow structure of the shallow hydrothermal system. J. Geophys. Res. Solid Earth 2017, 122, 8749–8768. [Google Scholar] [CrossRef]
- Siniscalchi, A.; Tripaldi, S.; Romano, G.; Chiodini, G.; Improta, L.; Petrillo, Z.; D’Auria, L.; Caliro, S.; Avino, R. Reservoir structure and hydraulic properties of the Campi Flegrei geothermal system inferred by audiomagnetotelluric, geochemical, and seismicity study. J. Geophys. Res. Solid Earth 2019, 124, 5336–5356. [Google Scholar] [CrossRef]
- Isaia, R.; Di Giuseppe, M.G.; Natale, J.; Tramparulo, F.D.; Troiano, A.; Vitale, S. Volcano-tectonic setting of the Pisciarelli Fumarole field, Campi Flegrei Caldera, Southern Italy: Insights into fluid circulation patterns and hazard scenarios. Tectonics 2021, 40, e2020TC006227. [Google Scholar] [CrossRef]
XCorr | 10–20 Days | 30–50 Days | 55–65 Days | 85–115 Days |
---|---|---|---|---|
Ves vs. PIS | 0.24 | 0.33 | 0.70 | 0.70 |
PIS vs. Tatm | 0.23 | 0.49 | 0.49 | 0.70 |
Ves vs. Tatm | 0.43 | 0.77 | 0.72 | 0.90 |
SF1 vs. Tatm | 0.47 | 0.53 | 0.57 | 0.81 |
SF2 vs. Tatm | 0.39 | 0.54 | 0.62 | 0.89 |
SOB vs. Tatm | 0.28 | 0.45 | 0.39 | 0.73 |
OBN vs. Tatm | 0.33 | 0.45 | 0.63 | 0.84 |
Tatm CPTs Date | Trend 1 (°C) | Ves CPVs Date | Trend 1 (°C) | PIS CPPs Date | Trend 1 (°C) | |
---|---|---|---|---|---|---|
1 | 4 January 2017 | +0.81 | 5 January 2017 | +3.30 | 12 December 2016 | +1.52 |
2 | 5 February 2017 | min, 14.93 | 22 January 2017 | +17.49 | 21 January 2017 | max, 67.38 |
3 | 29 December 2017 | −2.12 | 29 September 2017 | −7.68 | 16 January 2018 | −7.27 |
4 | 28 February 2018 | max, 19.03 | 21 December 2017 | −8.88 | 2 May 2018 | +2.70 |
5 | 26 April 2019 | −0.77 | 2 April 2018 | −5.51 | 16 April 2019 | stable, 0.00 |
6 | 5 June 2019 | min, 14.52 | 4 September 2018 | −3.50 | 20 May 2019 | min, 59.84 |
7 | 22 March 2020 | −0.11 | 2 July 2019 | −6.16 | 10 December 2019 | +1.55 |
8 | 12 May 2020 | min 15.66 | +0.68 | −0.62 | ||
−6.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cusano, P.; Caputo, T.; De Lauro, E.; Falanga, M.; Petrosino, S.; Sansivero, F.; Vilardo, G. Tracking the Endogenous Dynamics of the Solfatara Volcano (Campi Flegrei, Italy) through the Analysis of Ground Thermal Image Temperatures. Atmosphere 2021, 12, 940. https://doi.org/10.3390/atmos12080940
Cusano P, Caputo T, De Lauro E, Falanga M, Petrosino S, Sansivero F, Vilardo G. Tracking the Endogenous Dynamics of the Solfatara Volcano (Campi Flegrei, Italy) through the Analysis of Ground Thermal Image Temperatures. Atmosphere. 2021; 12(8):940. https://doi.org/10.3390/atmos12080940
Chicago/Turabian StyleCusano, Paola, Teresa Caputo, Enza De Lauro, Mariarosaria Falanga, Simona Petrosino, Fabio Sansivero, and Giuseppe Vilardo. 2021. "Tracking the Endogenous Dynamics of the Solfatara Volcano (Campi Flegrei, Italy) through the Analysis of Ground Thermal Image Temperatures" Atmosphere 12, no. 8: 940. https://doi.org/10.3390/atmos12080940
APA StyleCusano, P., Caputo, T., De Lauro, E., Falanga, M., Petrosino, S., Sansivero, F., & Vilardo, G. (2021). Tracking the Endogenous Dynamics of the Solfatara Volcano (Campi Flegrei, Italy) through the Analysis of Ground Thermal Image Temperatures. Atmosphere, 12(8), 940. https://doi.org/10.3390/atmos12080940