Envisioning an Integrated Assessment System and Observation Network for the North Atlantic Ocean
Abstract
:1. Introduction
- Understanding physical and dynamic changes; including the sea-level rise, cryosphere loss in the Arctic and Greenland, changes and trends in the major Atlantic currents with particular attention on the Atlantic Meridional Overturning Circulation (AMOC) and the regional tele-connections between weather and climate systems.
- Human and ecosystem health, including the chemical fluxes and pathways that determine the regional atmospheric composition, e.g., atmospheric ozone concentrations, Persistent Organic Pollutants (POPs), carbonaceous species and inorganic compounds, and the influences of periodic large-scale biophysical events such Saharan dust plumes from North Africa as well as biogenic emissions from natural and managed systems.
- Constraining carbon budget ranges for global temperature increments through reducing uncertainty on factors determining the Earth system energy balance represents a major challenge, as identified in the UNFCCC Paris Agreement. Quantification of the relationship between global climate sensitivity and the increased retention of energy in the climate system is central to estimation of carbon budgets that are compatible with the temperature goal established in the Paris Agreement. However, uncertainty in estimation of carbon budgets reduces the policy effectiveness of limiting warming by curbing emissions [5]. Much of the associated uncertainty in radiative forcing is linked to the direct and indirect (cloud) effects of aerosols, the radiative properties of carbonaceous aerosols and atmosphere–surface gas exchanges that influence the carbon budget. The North Atlantic is uniquely situated to determine the impacts of a range of aerosol types on energy fluxes as well as alterations to biogeochemical cycles that influence the carbon budget. A reduction in the uncertainties surrounding these processes requires the planned development of a network of linked high-precision in situ and remote observations, tailored to integrate analysis of emissions, air/sea exchange, transport and atmospheric processing of a range of aerosol types and gases as well as their impacts on carbon budgets and energy/radiative transfer.
2. Societal and Scientific Context
3. Science-Policy Thematic Challenges
3.1. Physical and Dynamic Changes
Vulnerabilities of the North Atlantic
3.2. Human and Ecosystem Health
Vulnerabilities of the North Atlantic
3.3. Reduce Knowledge Gaps on the Global Carbon Budget and the Earth’s Energy Balance
Vulnerabilities of the North Atlantic
4. Potential Cross-Thematic Benefits of Integrated Assessment System and Monitoring Network
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Biermann, F.; Kim, R.E. The Boundaries of the Planetary Boundary Framework: A Critical Appraisal of Approaches to Define a “Safe Operating Space” for Humanity. Annu. Rev. Environ. Resour. 2020, 45, 497–521. [Google Scholar] [CrossRef]
- Lovelock, J.; Lovelock, J.E. Gaia: A New Look at Life on Earth; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Hari, P.; Petäjä, T.; Bäck, J.; Kerminen, V.-M.; Lappalainen, H.; Vihma, T.; Laurila, T.; Viisanen, Y.; Vesala, T.; Kulmala, M. Conceptual design of a measurement network of the global change. Atmos. Chem. Phys. Discuss. 2016, 16, 1017–1028. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Forster, P.; Kriegler, E.; Smith, C.J.; Séférian, R. Estimating and tracking the remaining carbon budget for stringent climate targets. Nat. Cell Biol. 2019, 571, 335–342. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report Summary for Policy Makers. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Skinner, I.; Farmer, A.; Kuik, O. The Thematic Strategy on Air Pollution; Policy Brief for the EP Environment Committee; IEEP: Brussels, Belgium, 2006. [Google Scholar]
- Barrie, L.; McGovern, F.M. Protecting the North Atlantic atmosphere: A report on the outcome of an international meeting on the twentieth anniversary of the second aerosol characterisation experiment (ACE2). In EPA Research Report; EPA: Tenerife, Spain, 2017. [Google Scholar]
- WMO. GCOS/IPCC/UNCCC Workshop on Enhancing Observations to Support Preparedness and Adaptation in a Changing Climate—Learning from the IPCC 5th Assessment Report; WMO: Bonn, Germany, 2015. [Google Scholar]
- ATMO-ACCESS. 2021. Available online: https://www.imk-aaf.kit.edu/1361.php (accessed on 12 July 2021).
- European Union. Eurostat Regional Yearbook 2011; European Union: Brussels, Belgium, 2011. [Google Scholar]
- NOAA. National Coastal Population Report; NOAA: Washington, DC, USA, 2013.
- Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L.A.; Prospero, J.M.; Omar, A.; Winker, D.; Yang, Y.; Zhang, Y.; et al. The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett. 2015, 42, 1984–1991. [Google Scholar] [CrossRef]
- Prospero, J.M.; Barkley, A.E.; Gaston, C.J.; Gatineau, A.; Sansano, A.C.Y.; Panechou, K. Characterizing and Quantifying African Dust Transport and Deposition to South America: Implications for the Phosphorus Budget in the Amazon Basin. Glob. Biogeochem. Cycles 2020, 34, 6536. [Google Scholar] [CrossRef]
- Morlighem, M.; Williams, C.; Rignot, E.; An, L.; Arndt, J.E.; Bamber, J.L.; Catania, G.; Chauché, N.; Dowdeswell, J.; Dorschel, B.; et al. BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation. Geophys. Res. Lett. 2017, 44, 11. [Google Scholar] [CrossRef] [Green Version]
- Waugh, D.W.; Polvani, L.M.; Sobel, A.H. Stratospheric polar vortices. Extreme Events 2010, 190, 43–57. [Google Scholar]
- Kim, H.; An, S.; Kim, D. Timescale-dependent AMOC–AMO relationship in an earth system model of intermediate complexity. Int. J. Clim. 2021, 41, 3298. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans 2013, 118, 5772–5791. [Google Scholar] [CrossRef]
- Zhang, R.; Delworth, T. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Sutton, R.; Dong, B. Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci. 2012, 5, 788–792. [Google Scholar] [CrossRef]
- Goldenberg, S.B.; Landsea, C.W.; Mestas-Nunez, A.; Gray, W.M. The Recent Increase in Atlantic Hurricane Activity: Causes and Implications. Science 2001, 293, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Tung, K.-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 2014, 345, 897–903. [Google Scholar] [CrossRef]
- Wang, C.; Dong, S.; Evan, A.T.; Foltz, G.; Lee, S.-K. Multidecadal Covariability of North Atlantic Sea Surface Temperature, African Dust, Sahel Rainfall, and Atlantic Hurricanes. J. Clim. 2012, 25, 5404–5415. [Google Scholar] [CrossRef]
- McCarthy, G.D.; Haigh, I.D.; Hirschi, J.J.-M.; Grist, J.; Smeed, D. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nat. Cell Biol. 2015, 521, 508–510. [Google Scholar] [CrossRef] [Green Version]
- Laffoley, D.; Baxter, J.M. Explaining Ocean Warming: Causes, Scale, Effects and Consequences; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [Green Version]
- Chylek, P.; Folland, C.K.; Lesins, G.; Dubey, M.K.; Wang, M. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Previdi, M.; Janoski, T.P.; Chiodo, G.; Smith, K.L.; Polvani, L.M. Arctic Amplification: A Rapid Response to Radiative Forcing. Geophys. Res. Lett. 2020, 47, e2020GL089933. [Google Scholar] [CrossRef]
- Dai, A.; Luo, D.; Song, M.; Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Flis, A. Winter Breaking Point. North Atlantic Oscillation and Arctic Oscillation Reach Near-Record Values, Affecting Both Sides of the Atlantic. One Gets Spring, and One Gets Cold. Which Side Are You On? 2020. Available online: https://www.severe-weather.eu/global-weather/winter-breaking-point-arctic-atlantic-oscillation-february-fa/ (accessed on 12 July 2021).
- Rigor, I.G.; Wallace, J.M.; Colony, R.L. Response of Sea Ice to the Arctic Oscillation. J. Clim. 2002, 15, 2648–2663. [Google Scholar] [CrossRef] [Green Version]
- Stroeve, J.C.; Maslanik, J.; Serreze, M.C.; Rigor, I.; Meier, W.; Fowler, C. Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Visbeck, M.; Hurrell, J.W.; Polvani, L.; Cullen, H.M. The North Atlantic Oscillation: Past, present, and future. Proc. Natl. Acad. Sci. USA 2001, 98, 12876–12877. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An overview of the North Atlantic Oscillation. In Large Igneous Provinces; American Geophysical Union (AGU): Washington, DC, USA, 2003; Volume 134, pp. 1–35. [Google Scholar]
- Bryden, H.L.; Hall, M.M. Heat Transport by Currents Across 25 N Latitude in the Atlantic Ocean. Science 1980, 207, 884–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johns, W.E.; Baringer, M.; Beal, L.M.; Cunningham, S.A.; Kanzow, T.; Bryden, H.; Hirschi, J.J.M.; Marotzke, J.; Meinen, C.S.; Shaw, B.; et al. Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5 °N. J. Clim. 2011, 24, 2429–2449. [Google Scholar] [CrossRef] [Green Version]
- Wells, N.C. The Atmosphere and Ocean; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Srokosz, M.; Bryden, H. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science 2015, 348, 1255575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Technical Summary. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; IPCC: Geneva, Switzerland, 2013; pp. 33–115. [Google Scholar]
- Haskins, R.K.; Oliver, K.I.C.; Jackson, L.C.; Wood, R.A.; Drijfhout, S.S. Temperature domination of AMOC weakening due to freshwater hosing in two GCMs. Clim. Dyn. 2019, 54, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Keil, P.; Mauritsen, T.; Jungclaus, J.; Hedemann, C.; Olonscheck, D.; Ghosh, R. Multiple drivers of the North Atlantic warming hole. Nat. Clim. Chang. 2020, 10, 667–671. [Google Scholar] [CrossRef]
- Volkov, D.L.; Baringer, M.; Smeed, D.; Johns, W.; Landerer, F.W. Teleconnection between the Atlantic Meridional Overturning Circulation and Sea Level in the Mediterranean Sea. J. Clim. 2019, 32, 935–955. [Google Scholar] [CrossRef] [Green Version]
- Ezer, T.; Atkinson, L.P.; Corlett, W.B.; Blanco, J.L. Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. J. Geophys. Res. Ocean. 2013, 118, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.; Hershner, C.; Herman, J.; Schatt, D.E.; Eggington, E. Recurrent flooding study for Tidewater Virginia; William&Mary: Williamsburg, VA, USA, 2013. [Google Scholar]
- Hanna, E.; Cappelen, J.; Fettweis, X.; Mernild, S.H.; Mote, T.L.; Mottram, R.; Steffen, K.; Ballinger, T.J.; Hall, R.J. Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Clim. 2021, 41. [Google Scholar] [CrossRef]
- Dangendorf, S.; Hay, C.; Calafat, F.M.; Marcos, M.; Piecuch, C.G.; Berk, K.; Jensen, J. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Chang. 2019, 9, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; van den Broeke, M.; Velicogna, I.; Whitehouse, P.; Briggs, K.; Joughin, I.; Krinner, G.; et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 2020, 579, 233–239. [Google Scholar]
- Jackson, L.C.; Kahana, R.; Graham, T.; Ringer, M.; Woollings, T.; Mecking, J.V.; Wood, R.A. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 2015, 45, 3299–3316. [Google Scholar] [CrossRef]
- Fromentin, J.; Planque, B. Calanus and environment in the eastern North Atlantic. II. Influence of the North Atlantic Oscillation on C. finmarchicus and C. helgolandicus. Mar. Ecol. Prog. Ser. 1996, 134, 111–118. [Google Scholar] [CrossRef]
- Melero-Jiménez, I.J.; Salvo, A.E.; Báez, J.C.; Bañares-España, E.; Reul, A.; Flores-Moya, A. North Atlantic Oscillation drives the annual occurrence of an isolated, peripheral population of the brown seaweedFucus guiryiin the Western Mediterranean Sea. PeerJ 2017, 5, e4048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastos, A.; Janssens, I.; Gouveia, C.; Trigo, R.; Ciais, P.; Chevallier, F.; Penuelas, J.; Rödenbeck, C.; Piao, S.; Friedlingstein, P.; et al. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling. Nat. Commun. 2016, 7, 10315. [Google Scholar] [CrossRef]
- Randel, W.J.; Wu, F. Cooling of the Arctic and Antarctic Polar Stratospheres due to Ozone Depletion. J. Clim. 1999, 12, 1467–1479. [Google Scholar] [CrossRef]
- Lind, S.; Ingvaldsen, R.B.; Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Chang. 2018, 8, 634–639. [Google Scholar] [CrossRef]
- IPCC. Impacts of 1.5 C Global Warming on Natural and Human Systems. Global Warming of 1.5 C. An IPCC Special Report; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Tandon, N.F.; Kushner, P.J. Does External Forcing Interfere with the AMOC’s Influence on North Atlantic Sea Surface Temperature? J. Clim. 2015, 28, 6309–6323. [Google Scholar] [CrossRef]
- Mann, M.E.; Steinman, B.A.; Brouillette, D.J.; Miller, S.K. Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science 2021, 371, 1014–1019. [Google Scholar] [CrossRef]
- EEA. Climate Change, Impacts and Vulnerability in Europe 2016: An Indicator-Based Report; EEA: Copenhagen, Denmark, 2017. [Google Scholar]
- Bamber, J.L.; Oppenheimer, M.; Kopp, R.E.; Aspinall, W.P.; Cooke, R.M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl. Acad. Sci. USA 2019, 116, 11195. [Google Scholar] [CrossRef] [Green Version]
- Kopp, R.E.; DeConto, R.M.; Bader, D.A.; Hay, C.C.; Horton, R.M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earth’s Future 2017, 5, 1217–1233. [Google Scholar] [CrossRef] [Green Version]
- Sallenger, A.H.; Doran, K.; Howd, P.A. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Clim. Chang. 2012, 2, 884–888. [Google Scholar] [CrossRef]
- Delworth, T.L.; Zeng, F.; Vecchi, G.A.; Yang, X.; Zhang, L.; Zhang, R. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci. 2016, 9, 509–512. [Google Scholar] [CrossRef]
- Perez, F.F.; Fontela, M.; García-Ibáñez, M.I.; Mercier, H.; Velo, A.; Lherminier, P.; Zunino, P.; De La Paz, M.; Alonso-Pérez, F.; Guallart, E.F.; et al. Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean. Nat. Cell Biol. 2018, 554, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Fontela, M.; García-Ibáñez, M.I.; Hansell, D.A.; Mercier, H.; Perez, F.F. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation. Sci. Rep. 2016, 6, 26931. [Google Scholar] [CrossRef] [Green Version]
- Zickfeld, K.; Eby, M.; Weaver, A.J. Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Shen, Y.; Benner, R. Mixing it up in the ocean carbon cycle and the removal of refractory dissolved organic carbon. Sci. Rep. 2018, 8, 2542. [Google Scholar] [CrossRef] [Green Version]
- Brown, P. Feedbacks between the AMOC and the carbon cycle: A present and future perspective. In 2018 International AMOC Science Meeting; US-CLIVAR: Washington, DC, USA, 2018. [Google Scholar]
- Nielsen, S.B.; Jochum, M.; Pedro, J.B.; Eden, C.; Nuterman, R. Two-Timescale Carbon Cycle Response to an AMOC Collapse. Paleoceanogr. Paleoclimatol. 2019, 34, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Barrett, K.; Church, T.; Dentener, F.; Duce, R.A.; Galloway, J.N.; Levy, H.; Moody, J.; Quinn, P. Atmospheric deposition of nutrients to the North Atlantic Basin. Nitrogen Cycl. N. Atl. Ocean. Watersheds 1996, 35, 27–73. [Google Scholar]
- Zamora, L.M.; Prospero, J.; Hansell, D.; Trapp, J.M. Atmospheric P deposition to the subtropical North Atlantic: Sources, properties, and relationship to N deposition. J. Geophys. Res. Atmos. 2013, 118, 1546–1562. [Google Scholar] [CrossRef] [Green Version]
- Dugo, M.A.; Han, F.; Tchounwou, P.B. Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation. Rev. Environ. Health 2012, 27, 103–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WMO. Arctic Ozone Depletion Reached Record Level; WMO: Geneva, Switzerland, 2020. [Google Scholar]
- Grigas, T.; Ovadnevaite, J.; Ceburnis, D.; Moran, E.; McGovern, F.M.; Jennings, S.G.; O’Dowd, C.; Grigas, T.; Ovadnevaite, J.; Ceburnis, D.; et al. Sophisticated Clean Air Strategies Required to Mitigate Against Particulate Organic Pollution. Sci. Rep. 2017, 7, srep44737. [Google Scholar] [CrossRef] [Green Version]
- WHO. 9 out of 10 People Worldwide Breathe Polluted Air, but More Countries are Taking Action; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Jumelet, J.; Klekociuk, A.R.; Alexander, S.P.; Bekki, S.; Hauchecorne, A.; Vernier, J.P.; Fromm, M.; Keckhut, P. Detection of Aerosols in Antarctica From Long-Range Transport of the 2009 Australian Wildfires. J. Geophys. Res. Atmos. 2020, 125, 032542. [Google Scholar] [CrossRef]
- Magzamen, S.; Gan, R.W.; Liu, J.; O’Dell, K.; Ford, B.; Berg, K.; Bol, K.; Wilson, A.; Fischer, E.V.; Pierce, J.R. Differential Cardiopulmonary Health Impacts of Local and Long-Range Transport of Wildfire Smoke. GeoHealth 2021, 5, 000330. [Google Scholar] [CrossRef]
- Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Martin, M.V.; Honrath, R.E.; Owen, R.C.; Pfister, G.; Fialho, P.; Barata, F. Significant enhancements of nitrogen oxides, black carbon, and ozone in the North Atlantic lower free troposphere resulting from North American boreal wildfires. J. Geophys. Res. Space Phys. 2006, 111, 23. [Google Scholar]
- Baroni, T.; Ceburnis, D.; O’Dowd, C.D. Classification of Pollution Types Degree of Severity Encountered Over the NE Atlantic—A Decadalscale Perspective From Remote Sensing Techniques. in preparation. 2021. [Google Scholar]
- Forster, C.; Wandinger, U.; Wotawa, G.; James, P.; Mattis, I.; Althausen, D.; Simmonds, P.; O’Doherty, S.; Jennings, S.G.; Kleefeld, C.; et al. Transport of boreal forest fire emissions from Canada to Europe. J. Geophys. Res. Space Phys. 2001, 106, 22887–22906. [Google Scholar] [CrossRef]
- Sandstrom, T.; Nowak, D.; Van Bree, L. Health effects of coarse particles in ambient air: Messages for research and decision-making. Eur. Respir. J. 2005, 26, 187–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Jacob, D.J.; Bey, I.; Palmer, P.I.; Duncan, B.N.; Field, B.D.; Martin, R.; Fiore, A.; Yantosca, R.M.; Parrish, D.D.; et al. Transatlantic transport of pollution and its effects on surface ozone in Europe and North America. J. Geophys. Res. Space Phys. 2002, 107, ACH 4-1–ACH 4-21. [Google Scholar] [CrossRef]
- EEA. Indicator Assessment. In Exceedance of Air Quality Standards in Europe; EEA: Geneva, Switzerland, 2020. [Google Scholar]
- Butler, T.; Lupascu, A.; Nalam, A. Attribution of ground-level ozone to anthropogenic and natural sources of nitrogen oxides and reactive carbon in a global chemical transport model. Atmos. Chem. Phys. Discuss. 2020, 20, 10707–10731. [Google Scholar] [CrossRef]
- Gaudel, A.; Cooper, O.R.; Chang, K.-L.; Bourgeois, I.; Ziemke, J.R.; Strode, S.A.; Oman, L.D.; Sellitto, P.; Nédélec, P.; Blot, R.; et al. Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere. Sci. Adv. 2020, 6, eaba8272. [Google Scholar] [PubMed]
- Zhang, J.; Tian, W.; Xie, F.; Sang, W.; Guo, N.; Chipperfield, M.; Feng, W.; Hu, D. Zonally asymmetric trends of winter total column ozone in the northern middle latitudes. Clim. Dyn. 2018, 52, 4483–4500. [Google Scholar] [CrossRef] [Green Version]
- Pausata, F.S.R.; Pozzoli, L.; Vignati, E.; Dentener, F.J. North Atlantic Oscillation and tropospheric ozone variability in Europe: Model analysis and measurements intercomparison. Atmos. Chem. Phys. Discuss. 2012, 12, 6357–6376. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Fiore, A.; Horowitz, L.W.; Langford, A.; Oltmans, S.J.; Tarasick, D.; Rieder, H.E. Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions. Nat. Commun. 2015, 6, 710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neu, J.L.; Flury, T.; Manney, G.L.; Santee, M.L.; Livesey, N.J.; Worden, J. Tropospheric ozone variations governed by changes in stratospheric circulation. Nat. Geosci. 2014, 7, 340–344. [Google Scholar] [CrossRef]
- Karanasiou, A.; Moreno, N.; Moreno, T.; Viana, M.; de Leeuw, F.; Querol, X. Health effects from Sahara dust episodes in Europe: Literature review and research gaps. Environ. Int. 2012, 47, 107–114. [Google Scholar] [CrossRef]
- Goldberg, D.L.; Loughner, C.P.; Tzortziou, M.; Stehr, J.W.; Pickering, K.E.; Marufu, L.T.; Dickerson, R. Higher surface ozone concentrations over the Chesapeake Bay than over the adjacent land: Observations and models from the DISCOVER-AQ and CBODAQ campaigns. Atmos. Environ. 2014, 84, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Moffat, A.S. Ecology: Global Nitrogen Overload Problem Grows Critical. Science 1998, 279, 988–989. [Google Scholar] [CrossRef]
- Morgan, C.; Owens, N. Benefits of water quality policies: The Chesapeake Bay. Ecol. Econ. 2001, 39, 271–284. [Google Scholar] [CrossRef]
- Galloway, J.N.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.; Cowling, E.B.; Cosby, B.J. The Nitrogen Cascade. Bioscience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Desbonnet, A.; Costa-Pierce, B.A. Science of Ecosystem-Based Management: Narragansett Bay in the 21st Century; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Loughner, C.P.; Tzortziou, M.; Shroder, S.; Pickering, K.E. Enhanced dry deposition of nitrogen pollution near coastlines: A case study covering the Chesapeake Bay estuary and Atlantic Ocean coastline. J. Geophys. Res. Atmos. 2016, 121, 221. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Dlugokencky, E.J.; Bousquet, P. Methane on the Rise--Again. Science 2014, 343, 493–495. [Google Scholar] [CrossRef] [Green Version]
- Nisbet, E.G.; Dlugokencky, E.J.; Manning, M.R.; Lowry, D.; Fisher, R.; France, J.; Michel, S.E.; Miller, J.; White, J.W.; Vaughn, B.; et al. Rising atmospheric methane: 2007–2014 growth and isotopic shift. Glob. Biogeochem. Cycles 2016, 30, 1356–1370. [Google Scholar] [CrossRef] [Green Version]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.; Allen, G.; Bousquet, P.; et al. Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Fisher, R.E.; Lowry, D.; France, J.; Allen, G.; Bakkaloglu, S.; Broderick, T.J.; Cain, M.; Coleman, M.; Fernandez, J.; et al. Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Rev. Geophys. 2020, 58, e2019RG000675. [Google Scholar] [CrossRef]
- Aydin, M.; Verhulst, K.R.; Saltzman, E.S.; Battle, M.O.; Montzka, S.; Blake, D.R.; Tang, Q.; Prather, M.J. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air. Nat. Cell Biol. 2011, 476, 198–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Summary for policymakers. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Watson, A.J.; Schuster, U.; Shutler, J.D.; Holding, T.; Ashton, I.G.C.; Landschützer, P.; Woolf, D.K.; Goddijn-Murphy, L. Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory. Nat. Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Stjern, C.W.; Samset, B.H.; Myhre, G.; Forster, P.M.; Hodnebrog, Ø.; Andrews, T.; Boucher, O.; Faluvegi, G.; Iversen, T.; Kasoar, M.; et al. Rapid adjustments cause weak surface temperature response to increased black carbon concentrations. J. Geophys. Res. Atmos. 2017, 122, 462. [Google Scholar] [CrossRef]
- Westervelt, D.M.; Conley, A.J.; Fiore, A.M.; Lamarque, J.; Shindell, D.; Previdi, M.; Faluvegi, G.; Correa, G.; Horowitz, L.W. Multimodel precipitation responses to removal of U.S. sulfur dioxide emissions. J. Geophys. Res. Atmos. 2017, 122, 5024–5038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sand, M.; Berntsen, T.K.; Kay, J.E.; Lamarque, J.F.; Seland, Ø.; Kirkevåg, A. The Arctic response to remote and local forcing of black carbon. Atmos. Chem. Phys. 2013, 13, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Oshima, N.; Yukimoto, S.; Deushi, M.; Koshiro, T.; Kawai, H.; Tanaka, T.Y.; Yoshida, K. Global and Arctic effective radiative forcing of anthropogenic gases and aerosols in MRI-ESM2.0. Prog. Earth Planet. Sci. 2020, 7, 1–21. [Google Scholar] [CrossRef]
- Wang, R.; Balkanski, Y.; Boucher, O.; Ciais, P.; Schuster, G.L.; Chevallier, F.; Samset, B.H.; Liu, J.; Piao, S.; Valari, M.; et al. Estimation of global black carbon direct radiative forcing and its uncertainty constrained by observations. J. Geophys. Res. Atmos. 2016, 121, 5948–5971. [Google Scholar] [CrossRef]
- Bond, T.C.; Streets, D.; Yarber, K.F.; Nelson, S.M.; Woo, J.; Klimont, Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Tørseth, K.; Andrews, E.; Asmi, E.; Eleftheriadis, K.; Fiebig, M.; Herber, A.; Huang, L.; Kylling, A.; Lupi, A.; Massling, A.; et al. Review of Observation Capacities and Data Availability for Black Carbon in the Arctic Region: EU Action on Black Carbon in the Arctic—Technical Report 1; Balmer, J., Ed.; AMAP: Tromso, Norway, 2019. [Google Scholar]
- Ceburnis, D.; Garbaras, A.; Szidat, S.; Rinaldi, M.; Fahrni, S.; Perron, N.; Wacker, L.; Leinert, S.; Remeikis, V.; Facchini, M.C.; et al. Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis. Atmos. Chem. Phys. Discuss. 2011, 11, 8593–8606. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Yon, J.; Fuentes, A.; Lobo, P.; Smallwood, G.J.; Corbin, J.C. Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Sci. Technol. 2020, 54, 33–51. [Google Scholar] [CrossRef]
- Matsui, H.; Hamilton, D.S.; Mahowald, N.M. Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Zhao, G.; Tao, J.; Kuang, Y.; Shen, C.; Yu, Y.; Zhao, C. Role of black carbon mass size distribution in the direct aerosol radiative forcing. Atmos. Chem. Phys. Discuss. 2019, 19, 13175–13188. [Google Scholar] [CrossRef] [Green Version]
- McKenzie Skiles, S.; Painter, T.H. Assessment of Radiative Forcing by Light-Absorbing Particles in Snow from In Situ Observations with Radiative Transfer Modeling. J. Hydrometeorol. 2018, 19, 1397–1409. [Google Scholar] [CrossRef]
- Mori, T.; Goto-Azuma, K.; Kondo, Y.; Ogawa-Tsukagawa, Y.; Miura, K.; Hirabayashi, M.; Oshima, N.; Koike, M.; Kupiainen, K.; Moteki, N.; et al. Black Carbon and Inorganic Aerosols in Arctic Snowpack. J. Geophys. Res. Atmos. 2019, 124, 13325–13356. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, M.; Ghan, S.J.; Ding, A.; Wang, H.; Zhang, K.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Takeamura, T.; et al. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmos. Chem. Phys. Discuss. 2016, 16, 2765–2783. [Google Scholar] [CrossRef] [Green Version]
- Brooks, S.D.; Thornton, D.C. Marine Aerosols and Clouds. Annu. Rev. Mar. Sci. 2018, 10, 289–313. [Google Scholar] [CrossRef]
- Boyce, D.G.; Lewis, M.R.; Worm, B. Global phytoplankton decline over the past century. Nat. Cell Biol. 2010, 466, 591–596. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 1997, 42, 1–20. [Google Scholar] [CrossRef]
- Sverdrup, H.U. On Conditions for the Vernal Blooming of Phytoplankton. ICES J. Mar. Sci. 1953, 18, 287–295. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Boss, E. Resurrecting the Ecological Underpinnings of Ocean Plankton Blooms. Annu. Rev. Mar. Sci. 2014, 6, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.H.; Gordon, R.M. Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1988, 35, 177–196. [Google Scholar] [CrossRef]
- Bopp, L.; Kohfeld, K.; Le Quéré, C.; Aumont, O. Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanogr. Paleoclimatolog 2003, 18. [Google Scholar] [CrossRef]
- Röthlisberger, R.; Bigler, M.; Wolff, E.W.; Joos, F.; Monnin, E.; Hutterli, M.A. Ice core evidence for the extent of past atmospheric CO2 change due to iron fertilisation. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Schulz, M.; Prospero, J.; Baker, A.R.; Dentener, F.; Ickes, L.; Liss, P.S.; Mahowald, N.M.; Nickovic, S.; García-Pando, C.P.; Rodríguez, S.; et al. Atmospheric Transport and Deposition of Mineral Dust to the Ocean: Implications for Research Needs. Environ. Sci. Technol. 2012, 46, 10390–10404. [Google Scholar] [CrossRef]
- O’Dowd, C.; Facchini, M.C.; Cavalli, F.; Ceburnis, D.; Mircea, M.; Decesari, S.; Fuzzi, S.; Yoon, Y.J.; Putaud, J.-P. Biogenically driven organic contribution to marine aerosol. Nat. Cell Biol. 2004, 431, 676–680. [Google Scholar] [CrossRef]
- O’Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Vaishya, A.; Rinaldi, M.; Facchini, M.C. Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head? Atmos. Chem. Phys. Discuss. 2014, 14, 10687–10704. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, K.J.; Chen, C.-L.; Russell, L.M.; Betha, R.; Liu, J.; Price, D.J.; Massoli, P.; Ziemba, L.D.; Crosbie, E.C.; Moore, R.H.; et al. Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ovadnevaite, J.; Zuend, A.; Laaksonen, A.; Sanchez, K.J.; Roberts, G.; Ceburnis, D.; Decesari, S.; Rinaldi, M.; Hodas, N.; Facchini, M.C.; et al. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nat. Cell Biol. 2017, 546, 637–641. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteorol. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- O’Dowd, C.; Ceburnis, D.; Vaishya, A.; Jennings, S.G.; Moran, E. Cleaner air: Brightening the pollution perspective? AIP Conf. Proc. 2013, 1527, 579–582. [Google Scholar]
- Fossum, K.N.; Ovadnevaite, J.; Ceburnis, D.; Preißler, J.; Snider, J.R.; Huang, R.-J.; Zuend, A.; O’Dowd, C. Sea-spray regulates sulfate cloud droplet activation over oceans. NPJ Clim. Atmos. Sci. 2020, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, S.; Putrasahan, D. How Does the North Atlantic SST Pattern Respond to Anthropogenic Aerosols in the 1970s and 2000s? Geophys. Res. Lett. 2021, 48, e2020GL092142. [Google Scholar] [CrossRef]
- Hassan, T.; Allen, R.J.; Liu, W.; Randles, C.A. Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models. Atmos. Chem. Phys. Discuss. 2021, 21, 5821–5846. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Huang, Y.; Chou, G.; Xie, Y.; Soulard, N. Radiative Control of the Interannual Variability of Arctic Sea Ice. Geophys. Res. Lett. 2019, 46, 9899–9908. [Google Scholar] [CrossRef]
- Kühn, T.; Kupiainen, K.; Miinalainen, T.; Kokkola, H.; Paunu, V.-V.; Laakso, A.; Tonttila, J.; Van Dingenen, R.; Kulovesi, K.; Karvosenoja, N.; et al. Effects of black carbon mitigation on Arctic climate. Atmos. Chem. Phys. Discuss. 2020, 20, 5527–5546. [Google Scholar] [CrossRef]
- Sugimoto, N.; Nishizawa, T.; Shimizu, A.; Jin, Y. The Asian Dust and Aerosol Lidar Observation Network (AD-Net). In Optics and Photonics for Energy and the Environment; Optical Society of America: Washington, DC, USA, 2016. [Google Scholar]
- Liu, B.; Ma, Y.; Gong, W.; Zhang, M.; Yang, J. Study of continuous air pollution in winter over Wuhan based on ground-based and satellite observations. Atmos. Pollut. Res. 2018, 9, 156–165. [Google Scholar] [CrossRef]
- Kim, S.-W.; Berthier, S.; Raut, J.-C.; Chazette, P.; Dulac, F.; Yoon, S.-C. Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea. Atmos. Chem. Phys. Discuss. 2008, 8, 3705–3720. [Google Scholar] [CrossRef] [Green Version]
- Engel-Cox, J.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Safai, P.; Devara, P.; Rao, S.V.B.; Jayasankar, C. Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations. Atmos. Res. 2016, 178–179, 155–163. [Google Scholar] [CrossRef]
- Marchese, F.; Sannazzaro, F.; Falconieri, A.; Filizzola, C.; Pergola, N.; Tramutoli, V. An Enhanced Satellite-Based Algorithm for Detecting and Tracking Dust Outbreaks by Means of SEVIRI Data. Remote. Sens. 2017, 9, 537. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Liu, Z.; Omar, A.H.; Tackett, J.; Fairlie, D. CALIOP observations of the transport of ash from the Eyjafjallajökull volcano in April 2010. J. Geophys. Res. Space Phys. 2012, 117, 20. [Google Scholar] [CrossRef]
- Duncan, B.N.; Prados, A.; Lamsal, L.N.; Liu, Y.; Streets, D.G.; Gupta, P.; Hilsenrath, E.; Kahn, R.A.; Nielsen, J.E.; Beyersdorf, A.J.; et al. Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 2014, 94, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Flentje, H.; Claude, H.; Elste, T.; Gilge, S.; Kohler, U.; Plass-Dülmer, C.; Steinbrecht, W.; Thomas, W.; Werner, A.; Fricke, W. The Eyjafjallajökull eruption in April 2010—detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles. Atmos. Chem. Phys. Discuss. 2010, 10, 10085–10092. [Google Scholar] [CrossRef] [Green Version]
- O’Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Martucci, G.; Bialek, J.; Monahan, C.; Berresheim, H.; Vaishya, A.; Grigas, T.; Jennings, S.G.; et al. The Eyjafjallajökull ash plume—Part I: Physical, chemical and optical characteristics. Atmos. Environ. 2012, 48, 129–142. [Google Scholar] [CrossRef]
- Evan, A.T.; Vimont, D.J.; Heidinger, A.K.; Kossin, J.P.; Bennartz, R. The Role of Aerosols in the Evolution of Tropical North Atlantic Ocean Temperature Anomalies. Science 2009, 324, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Birkel, S.D.; Mayewski, P.A.; Maasch, K.A.; Kurbatov, A.V.; Lyon, B. Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. NPJ Clim. Atmos. Sci. 2018, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.E.; Emanuel, K.A. Atlantic hurricane trends linked to climate change. Eos 2006, 87, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Evan, A.T.; Dunion, J.; Foley, J.A.; Heidinger, A.K.; Velden, C.S. New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett. 2006, 33, 33. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.Y.; Liu, C.H.; Wan, K.-Y. Transport of the Saharan dust air plumes over the tropical North Atlantic from FORMOSAT–3/COSMIC observation. Atmos. Pollut. Res. 2014, 5, 539–553. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Prospero, J. The Large-Scale Movement of Saharan Air Outbreaks over the Northern Equatorial Atlantic. J. Appl. Meteorol. 1972, 11, 283–297. [Google Scholar] [CrossRef]
- Moulin, C.; Lambert, C.E.; Dulac, F.; Dayan, U. Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nat. Cell Biol. 1997, 387, 691–694. [Google Scholar] [CrossRef]
- Újvári, G.; Stevens, T.; Molnár, M.; Demény, A.; Lambert, F.; Varga, G.; Jull, A.J.T.; Páll-Gergely, B.; Buylaert, J.-P.; Kovács, J. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. USA 2017, 114, E10632–E10638. [Google Scholar] [CrossRef] [Green Version]
- Adebiyi, A.A.; Kok, J.F. Climate models miss most of the coarse dust in the atmosphere. Sci. Adv. 2020, 6, eaaz9507. [Google Scholar] [CrossRef] [Green Version]
- Booth, B.B.B.; Dunstone, N.; Halloran, P.; Andrews, T.; Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nat. Cell Biol. 2012, 484, 228–232. [Google Scholar] [CrossRef]
- Bellucci, A.; Mariotti, A.; Gualdi, S. The Role of Forcings in the Twentieth-Century North Atlantic Multidecadal Variability: The 1940–75 North Atlantic Cooling Case Study. J. Clim. 2017, 30, 7317–7337. [Google Scholar] [CrossRef]
- Robson, J.; Aksenov, Y.; Bracegirdle, T.J.; Dimdore-Miles, O.; Griffiths, P.T.; Grosvenor, D.P.; Hodson, D.L.R.; Keeble, J.; MacIntosh, C.; Megann, A.; et al. The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6. J. Adv. Model. Earth Syst. 2020, 12, 002126. [Google Scholar] [CrossRef]
- Coleman, L. Regional Scale Modelling of Boundary Layer Ozone and Influences of Climate Change; National University of Ireland: Galway, Ireland, 2012. [Google Scholar]
- Coleman, L.; Martin, D.; Varghese, S.; Jennings, S.; O’Dowd, C. Assessment of changing meteorology and emissions on air quality using a regional climate model: Impact on ozone. Atmos. Environ. 2013, 69, 198–210. [Google Scholar] [CrossRef]
- Coleman, L.; McVeigh, P.; Berresheim, H.; Martino, M.; O’Dowd, C.D. Photochemical Impact on Ozone Fluxes in Coastal Waters. Adv. Meteorol. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Multi-Model Framework for Quantitative Sectoral Impacts Analysis: A Technical Report for the Fourth National Climate Assessment; US Environmental Protection Agency: Washington, DC, USA, 2017.
- Parrish, D.D.; Law, K.; Staehelin, J.; Derwent, R.; Cooper, O.R.; Tanimoto, H.; Volz-Thomas, A.; Gilge, S.; Scheel, H.-E.; Steinbacher, M.; et al. Lower tropospheric ozone at northern midlatitudes: Changing seasonal cycle. Geophys. Res. Lett. 2013, 40, 1631–1636. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, P.; Derwent, R. Measurements of ozone and other radiatively active gases at Mace Head in the Republic of Ireland. Atmos. Environ. Part A Gen. Top. 1991, 25, 1795–1808. [Google Scholar] [CrossRef]
- Derwent, R.; Manning, A.J.; Simmonds, P.G.; Spain, G.; O’Doherty, S. Analysis and interpretation of 25 years of ozone observations at the Mace Head Atmospheric Research Station on the Atlantic Ocean coast of Ireland from 1987 to 2012. Atmos. Environ. 2013, 80, 361–368. [Google Scholar] [CrossRef]
- Rodríguez, S.; Torres, C.; Guerra, J.-C.; Cuevas, E. Transport pathways of ozone to marine and free-troposphere sites in Tenerife, Canary Islands. Atmos. Environ. 2004, 38, 4733–4747. [Google Scholar] [CrossRef]
- Parrish, D.D.; Trainer, M.; Holloway, J.S.; Yee, J.E.; Warshawsky, M.S.; Fehsenfeld, F.C.; Forbes, G.L.; Moody, J.L. Relationships between ozone and carbon monoxide at surface sites in the North Atlantic region. J. Geophys. Res. Space Phys. 1998, 103, 13357–13376. [Google Scholar] [CrossRef]
- Oltmans, S.J.; Levy, H. Surface ozone measurements from a global network. Atmos. Environ. 1994, 28, 9–24. [Google Scholar] [CrossRef]
- Lelieveld, J.; Van Aardenne, J.; Fischer, H.; De Reus, M.; Williams, J.; Winkler, P. Increasing Ozone over the Atlantic Ocean. Science 2004, 304, 1483–1487. [Google Scholar] [CrossRef]
- Boylan, P.; Helmig, D.; Oltmans, S.J. Ozone in the Atlantic Ocean marine boundary layer. Elem. Sci. Anth. 2015, 3, 000045. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences and Medicine. The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Unger, N. Global Climate Forcing by Criteria Air Pollutants. Annu. Rev. Environ. Resour. 2012, 37, 1–24. [Google Scholar] [CrossRef]
- Paterson, S.K.; Le Tissier, M.; Whyte, H.; Robinson, L.B.; Thielking, K.; Ingram, M.; Mccord, J. Examining the Potential of Art-Science Collaborations in the Anthropocene: A Case Study of Catching a Wave. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Kankaanpää, P.; Young, O.R. The effectiveness of the Arctic Council. Polar Res. 2012, 31, 31. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coleman, L.; Mc Govern, F.M.; Ovadnevaite, J.; Ceburnis, D.; Baroni, T.; Barrie, L.; O’Dowd, C.D. Envisioning an Integrated Assessment System and Observation Network for the North Atlantic Ocean. Atmosphere 2021, 12, 955. https://doi.org/10.3390/atmos12080955
Coleman L, Mc Govern FM, Ovadnevaite J, Ceburnis D, Baroni T, Barrie L, O’Dowd CD. Envisioning an Integrated Assessment System and Observation Network for the North Atlantic Ocean. Atmosphere. 2021; 12(8):955. https://doi.org/10.3390/atmos12080955
Chicago/Turabian StyleColeman, Liz, Frank M. Mc Govern, Jurgita Ovadnevaite, Darius Ceburnis, Thaize Baroni, Leonard Barrie, and Colin D. O’Dowd. 2021. "Envisioning an Integrated Assessment System and Observation Network for the North Atlantic Ocean" Atmosphere 12, no. 8: 955. https://doi.org/10.3390/atmos12080955
APA StyleColeman, L., Mc Govern, F. M., Ovadnevaite, J., Ceburnis, D., Baroni, T., Barrie, L., & O’Dowd, C. D. (2021). Envisioning an Integrated Assessment System and Observation Network for the North Atlantic Ocean. Atmosphere, 12(8), 955. https://doi.org/10.3390/atmos12080955