Spatial and Temporal Variations of Airborne Poaceae Pollen along an Urbanization Gradient Assessed by Different Types of Pollen Traps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Pollen Monitoring
2.2.1. Volumetric Pollen Traps (7-Day)
2.2.2. Gravimetric Pollen Traps—Sampling Network
2.2.3. Personal Volumetric Air Samplers—Sampling Campaign
2.2.4. Sample Preparation
2.3. Analyses
2.3.1. Aerobiological Data
- Campaign Pollen Integral (CPIn)
- ○
- The sum of all measurements for each location during one sampling campaign, i.e., CPIngrav and CPInPVAS [51].
- Weekly Pollen Integral (WPIn)
- ○
- The sum of all daily means of one week of background pollen concentration, i.e., WPInUS for volumetric trap at US (roof level), and WPInSRS for volumetric trap at SRS (roof level).
- ○
- The sum of all gravimetric measurements of all locations for one particular week, i.e., WPIngrav We refer to the week with the highest WPIngrav as a peak week of the campaign.
- Daily Pollen Integral (DPIn)
- ○
- The sum of all PVAS measurements of one day, i.e., DPInPVAS.
2.3.2. Land Cover and Grass Cover
2.3.3. Meteorological Data
3. Results
3.1. Background Pollen Concentration: Characteristics of the Grass Pollen Seasons 2019 and 2020
3.2. Gravimetric Pollen Traps
3.2.1. Sampling Campaign 2019
3.2.2. Sampling Campaign 2020
3.2.3. Land Use
3.3. PVAS Sampling Campaign 2019
3.3.1. Daily Variation
3.3.2. Diurnal Variation
3.3.3. Land Use
4. Discussion
4.1. Spatial Variations
4.1.1. Background Pollen Concentration
4.1.2. Gravimetric Sampling Campaigns
4.1.3. PVAS Sampling Campaigns
4.1.4. Land Use Data
4.2. Diurnal Variations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef] [PubMed]
- García-Mozo, H. Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy 2017, 72, 1849–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langen, U.; Schmitz, R.; Steppuhn, H. Prevalence of allergic diseases in Germany: Results of the German Health Interview and Examination Survey for Adults (DEGS1). Häufigkeit allergischer Erkrankungen in Deutschland. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013, 56, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, K.-C. Weather conditions and climate change have an effect on allergies. Allergo J. Int. 2016, 25, 131–137. [Google Scholar] [CrossRef]
- Oteros, J.; Sofiev, M.; Smith, M.; Clot, B.; Damialis, A.; Prank, M.; Werchan, M.; Wachter, R.; Weber, A.; Kutzora, S.; et al. Building an automatic pollen monitoring network (ePIN): Selection of optimal sites by clustering pollen stations. Sci. Total Environ. 2019, 688, 1263–1274. [Google Scholar] [CrossRef]
- Werchan, M.; Werchan, B.; Bergmann, K.-C. German pollen calendar 4.0—Update based on 2011–2016 pollen data. Allergo J. Int. 2018, 27, 69–71. [Google Scholar] [CrossRef]
- Beggs, P.J. Impacts of climate change on aeroallergens: Past and future. Clin. Exp. Allergy 2004, 34, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Katelaris, C.H.; Beggs, P. Climate change: Allergens and allergic diseases. Intern. Med. J. 2018, 48, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision ST/ESA/SER.A/420, 2019. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 14 September 2020).
- Fuckerieder, K. Der Graspollengehalt der Luft in Mitteleuropa; Berichte: Umweltbundesamt, Germany, 1976; pp. 76–79. [Google Scholar]
- Mullins, J.; White, J.; Davies, B.H. Circadian periodicity of grass pollen. Ann. Allergy 1986, 57, 182–188. [Google Scholar]
- Latałowa, M.; Uruska, A.; Pędziszewska, A.; Góra, M.; Dawidowska, A. Diurnal patterns of airborne pollen concentration of the selected tree and herb taxa in Gdańsk (northern Poland). Grana 2005, 44, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Simoleit, A.; Werchan, M.; Werchan, B.; Mücke, H.-G.; Gauger, U.; Zuberbier, T.; Bergmann, K.-C. Birch, grass, and mugwort pollen concentrations and intradiurnal patterns at two different urban sites in Berlin, Germany. Allergo J. Int. 2017, 26, 155–164. [Google Scholar] [CrossRef]
- Alcázar, P.; Ørby, P.V.; Oteros, J.; Skjøth, C.; Hertel, O.; Galán, C. Cluster analysis of variations in the diurnal pattern of grass pollen concentrations in Northern Europe (Copenhagen) and Southern Europe (Cordoba). Aerobiology 2019, 35, 269–281. [Google Scholar] [CrossRef]
- Kasprzyk, I. Comparative study of seasonal and intradiurnal variation of airborne herbaceous pollen in urban and rural areas. Aerobiology 2006, 22, 185–195. [Google Scholar] [CrossRef]
- Bastl, K.; Kmenta, M.; Berger, U. True or false? Pollen loads are high in the countryside in the morning and in the city at midday. Allergo J. 2013, 22, 485. [Google Scholar] [CrossRef]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Buters, J.T.M.; Antunes, C.; Galveias, A.; Bergmann, K.C.; Thibaudon, M.; Galán, C.; Schmidt-Weber, C.; Oteros, J. Pollen and spore monitoring in the world. Clin. Transl. Allergy 2018, 8, 1–5. [Google Scholar] [CrossRef]
- Katelaris, C.H.; Burke, T.V.; Byth, K. Spatial variability in the pollen count in Sydney, Australia: Can one sam-pling site accurately reflect the pollen count for a region? Annal. Allergy Asthma Immunol. 2004, 93, 131–136. [Google Scholar] [CrossRef]
- Cariñanos, P.; Sánchez-Mesa, J.A.; Prieto-Baena, J.C.; Lopez, A.; Guerra, F.; Moreno, C.; Domínguez, E.; Galán, C. Pollen allergy related to the area of residence in the city of Córdoba, south-west Spain. J. Environ. Monit. 2002, 4, 734–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Rajo, F.J.; Fdez-Sevilla, D.; Stach, A.; Jato, V. Assessment between pollen seasons in areas with different urbanization level related to local vegetation sources and differences in allergen exposure. Aerobiology 2009, 26, 1–14. [Google Scholar] [CrossRef]
- Katz, D.S.W.; Batterman, S.A. Urban-scale variation in pollen concentrations: A single station is insufficient to characterize daily exposure. Aerobiology 2020, 36, 417–431. [Google Scholar] [CrossRef]
- Katz, D.S.; Dzul, A.; Kendel, A.; Batterman, S.A.; Kendal, A. Effect of intra-urban temperature variation on tree flowering phenology, airborne pollen, and measurement error in epidemiological studies of allergenic pollen. Sci. Total Environ. 2019, 653, 1213–1222. [Google Scholar] [CrossRef]
- Peel, R.G.; Kennedy, R.; Smith, M.; Hertel, O. Do urban canyons influence street level grass pollen concentrations? Int. J. Biometeorol. 2013, 58, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Cariñanos, P.; Grilo, F.; Pinho, P.; Casares-Porcel, M.; Branquinho, C.; Acil, N.; Andreucci, M.B.; Anjos, A.; Bianco, P.M.; Brini, S.; et al. Estimation of the Allergenic Potential of Urban Trees and Urban Parks: Towards the Healthy Design of Urban Green Spaces of the Future. Int. J. Environ. Res. Public Health 2019, 16, 1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charalampopoulos, A.; Lazarina, M.; Tsiripidis, I.; Vokou, D. Quantifying the relationship between airborne pollen and vegetation in the urban environment. Aerobiolpgy 2018, 34, 285–300. [Google Scholar] [CrossRef]
- Galan, C.; EAS QC Working Group; Smith, M.; Thibaudon, M.; Frenguelli, G.; Oteros, J.; Gehrig, R.; Berger, U.; Clot, B.; Brandao, R.M. Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiology 2014, 30, 385–395. [Google Scholar] [CrossRef]
- Bastl, M.; Bastl, K.; Karatzas, K.; Aleksic, M.; Zetter, R.; Berger, U. The evaluation of pollen concentrations with statistical and computational methods on rooftop and on ground level in Vienna—How to include daily crowd-sourced symptom data. World Allergy Organ. J. 2019, 12, 100036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durham, O.C. The volumetric incidence of atmospheric allergens: IV. A proposed standard method of gravity sampling, counting, and volumetric interpolation of results. J. Allergy 1946, 17, 79–86. [Google Scholar] [CrossRef]
- Werchan, B.; Werchan, M.; Mücke, H.-G.; Gauger, U.; Simoleit, A.; Zuberbier, T.; Bergmann, K.-C. Spatial distribution of allergenic pollen through a large metropolitan area. Environ. Monit. Assess. 2017, 189, 169. [Google Scholar] [CrossRef] [PubMed]
- Stas, M.; Aerts, R.; Hendrickx, M.; Bruffaerts, N.; Dendoncker, N.; Hoebeke, L.; Linard, C.; Nawrot, T.; Van Nieuwenhuyse, A.; Aerts, J.-M.; et al. Association between local airborne tree pollen composition and surrounding land cover across different spatial scales in Northern Belgium. Urban For. Urban Green. 2021, 61, 127082. [Google Scholar] [CrossRef]
- Katz, D.S.; Carey, T.S. Heterogeneity in ragweed pollen exposure is determined by plant composition at small spatial scales. Sci. Total Environ. 2014, 485–486, 435–440. [Google Scholar] [CrossRef]
- Hugg, T.; Hjort, J.; Antikainen, H.; Rusanen, J.; Tuokila, M.; Korkonen, S.; Weckström, J.; Jaakkola, M.S.; Jaakkola, J.J.K. Urbanity as a determinant of exposure to grass pollen in Helsinki Metropolitan area, Finland. PLoS ONE 2017, 12, e0186348. [Google Scholar] [CrossRef] [PubMed]
- Bricchi, E.; Frenguelli, G.; Mincigrucci, G. Experimental results about Platanus pollen deposition. Aerobiology 2000, 16, 347–352. [Google Scholar] [CrossRef]
- O’Rourke, M.K.; Lebowitz, M.D. A comparison of regional atmospheric pollen with pollen collected at and near homes. Grana 1984, 23, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Peel, R.G.; Hertel, O.; Smith, M.; Kennedy, R. Personal exposure to grass pollen: Relating inhaled dose to background concentration. Ann. Allergy Asthma Immunol. 2013, 111, 548–554. [Google Scholar] [CrossRef]
- Omeara, T. Interpretation of pollen exposure data. J. Allergy Clin. Immunol. 2004, 113, S62–S63. [Google Scholar] [CrossRef]
- Feliziani, V.; Marfisi, R.M. Pollen Aerobiological Monitoring with the personal volumetric air sampler (PVAS). Correlation with a fixed Hirst type sampling station. Aerobiology 1992, 8, 471–477. [Google Scholar] [CrossRef]
- Charalampopoulos, A.; Damialis, A.; Lazarina, M.; Halley, J.M.; Vokou, D. Spatiotemporal assessment of airborne pollen in the urban environment: The pollenscape of Thessaloniki as a case study. Atmos. Environ. 2021, 247, 118185. [Google Scholar] [CrossRef]
- Mitakakis, T.Z.; Tovey, E.R.; Xuan, W.; Marks, G.B. Personal exposure to allergenic pollen and mould spores in inland New South Wales, Australia. Clin. Exp. Allergy 2000, 30, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Peel, R.G.; Kennedy, R.; Smith, M.; Hertel, O. Relative efficiencies of the Burkard 7-Day, Rotorod and Burkard Personal samplers for Poaceae and Urticaceae pollen under field conditions. Ann. Agric. Environ. Med. 2014, 21, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayrisches Landesamt für Statistik. Statistik Kommunal, 2019: Kreisfreie Stadt Ingolstadt, Fürth, 2020. Available online: https://www.statistik.bayern.de/produkte/statistik_kommunal/index.html (accessed on 10 September 2020).
- Jaeger, S. Exposure to grass pollen in Europe. Clin. Exp. Allergy Rev. 2008, 8, 2–6. [Google Scholar] [CrossRef]
- Driessen, M.N.B.M.; Willemse, M.T.M.; Luyn, J.A.G. Grass pollen grain determination by light and UV micros-copy. Grana 1989, 28, 115–122. [Google Scholar] [CrossRef]
- Mundialis. Germany 2019—Land Cover Based on Sentinel-2 Data, 2020. Mundialis GmbH & Co. KG. Available online: https://www.mundialis.de/en/deutschland-2019-landbedeckung-auf-basis-von-sentinel-2-daten/ (accessed on 12 March 2021).
- Copernicus Land Monitoring Service. High Resolution Layer: Grassland (GRA) 2018. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/status-maps/grassland-2018 (accessed on 20 July 2021).
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; Fernandez-González, D.; Frenguelli, G.; Gehrig, R.; Isard, S.; et al. Recommended terminology for aerobiological studies. Aerobiology 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Bastl, K.; Kmenta, M.; Berger, U.E. Defining Pollen Seasons: Background and Recommendations. Curr. Allergy Asthma Rep. 2018, 18, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaar, O.; Karatzas, K.; Bastl, K.; Berger, U.; Buters, J.; Darsow, U.; Demoly, P.; Durham, S.R.; Galán, C.; Gehrig, R.; et al. Pollen season is reflected on symptom load for grass and birch pollen-induced allergic rhinitis in different geographic areas—An EAACI Task Force Report. Allergy 2019, 75, 1099–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojo, J.; Picornell, A.; Oteros, J. AeRobiology: A Computational Tool for Aerobiological Data; 2018. Available online: https://CRAN.R-project.org/package=AeRobiology (accessed on 17 September 2019).
- Jochner-Oette, S.; Jetschni, J.; Menzel, A.; Simmons, M. Impacts of land clearance by fire on spatial variation of mountain cedar pollen concentrations in Texas. Landsc. Urban Plan. 2017, 162, 178–186. [Google Scholar] [CrossRef]
- Jochner, S.C.; Sparks, T.H.; Estrella, N.; Menzel, A. The influence of altitude and urbanisation on trends and mean dates in phenology (1980–2009). Int. J. Biometeorol. 2011, 56, 387–394. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Antón, S.F.; de la Cruz, D.R.; Sánchez, A.G.; Dávila, I.; Sánchez, J.S.; Reyes, E.S. Urban atmospheric levels of allergenic pollen: Comparison of two locations in Salamanca, Central-Western Spain. Environ. Monit. Assess. 2020, 192, 1–19. [Google Scholar] [CrossRef]
- Bosch-Cano, F.; Bernard, N.; Sudre, B.; Gillet, F.; Thibaudon, M.; Richard, H.; Badot, P.-M.; Ruffaldi, P. Human exposure to allergenic pollens: A comparison between urban and rural areas. Environ. Res. 2011, 111, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Jochner, S.; Menzel, A. Does flower phenology mirror the slowdown of global warming? Ecol. Evol. 2015, 5, 2284–2295. [Google Scholar] [CrossRef]
- Rojo, J.; Oteros, J.; Picornell, A.; Ruëff, F.; Werchan, B.; Werchan, M.; Bergmann, K.-C.; Schmidt-Weber, C.B.; Buters, J. Land-Use and Height of Pollen Sampling Affect Pollen Exposure in Munich, Germany. Atmosphere 2020, 11, 145. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Estrella, N.; Pfaffl, M.W.; Hartmann, S.; Handelshauser, E.; Menzel, A. Grass pollen production and group V allergen content of agriculturally relevant species and cultivars. PLoS ONE 2018, 13, e0193958. [Google Scholar] [CrossRef]
- Ziello, C.; Sparks, T.; Estrella, N.; Belmonte, J.; Bergmann, K.C.; Bucher, E.; Brighetti, M.A.; Damialis, A.; Detandt, M.; Galán, C.; et al. Changes to Airborne Pollen Counts across Europe. PLoS ONE 2012, 7, e34076. [Google Scholar] [CrossRef]
- Ciani, F.; Marchi, G.; Dell’Olmo, L.; Foggi, B.; Lippi, M.M. Contribution of land cover and wind to the airborne pollen recorded in a South European urban area. Aerobiology 2020, 36, 325–340. [Google Scholar] [CrossRef]
- Agashe, S.N.; Caulton, E. Pollen and Spores: Applications with Special Emphasis on Aerobiology and Allergy; Science Publishers: Enfield, NH, USA, 2009. [Google Scholar]
- Laaidi, K. Predicting days of high allergenic risk during Betula pollination using weather types. Int. J. Biometeorol. 2001, 45, 124–132. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Ørby, P.V.; Becker, T.; Geels, C.; Schlunssen, V.; Sigsgaard, T.; Bonlokke, J.H.; Sommer, J.; Søgaard, P.; Hertel, O. Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences 2013, 10, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Monroy-Colín, A.; Silva-Palacios, I.; Molina, R.T.; Maya-Manzano, J.M.; Rodríguez, S.F.; Gonzalo, G. Environmental analysis of airborne pollen occurrence, pollen source distribution and phenology of Fraxinus angustifolia. Aerobiology 2018, 34, 269–283. [Google Scholar] [CrossRef]
- Patient’s Hayfever Diary. Available online: www.pollendiary.com (accessed on 20 July 2021).
- BAYSICS Portal. Available online: www.portal.baysics.de (accessed on 20 July 2021).
- Bastl, K.; Kmenta, M.; Berger, M.; Berger, U. The connection of pollen concentrations and crowd-sourced symptom data: New insights from daily and seasonal symptom load index data from 2013 to 2017 in Vienna. World Allergy Organ. J. 2018, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Station Code | Coordinates | Distance from Urban Station (US) [km] | Urban Index | Grass Cover [%] | Land Cover Classification [%] | Description of Immediate Surrounding and Management of Poaceae Area within a Radius of 100 m | ||||
---|---|---|---|---|---|---|---|---|---|---|
Forest | Low Vegetation | Built-Up | Bare Soil | Agriculture | ||||||
G1 | 48.7650° N, 11.4153° E | - | 0.51 | 6 | 8 | 29 | 62 | 1 | 0 | Green space of the Ingolstadt School of Management; irregular-cut Poaceae area, allowing it to flower for short periods. |
G2 | 48.7635° N, 11.4190° E | 0.32 | 0.53 | 0 | 0 | 1 | 98 | 1 | 0 | Fully secluded courtyard of two-story houses with ornamental plants; sealed inner-city areas with no Poaceae area. |
G3 | 48.7665° N, 11.4216° E | 0.49 | 0.58 | 0 | 0 | 0 | 99 | 1 | 0 | Half-secluded driveway to apartment building complex with small backyard; sealed inner-city areas with no Poaceae area. |
G4 | 48.7653° N, 11.4283° E | 0.95 | 0.62 | 0 | 0 | 1 | 93 | 6 | 0 | Courtyard of three-story apartment complex with cut lawn and playground; sealed inner-city areas with no Poaceae area. |
G5 | 48.7726° N, 11.4221° E | 0.98 | 0.64 | 0 | 60 | 16 | 24 | 0 | 0 | City park area; unmanaged Poaceae area. |
G6 | 48.7705° N, 11.4343° E | 1.52 | 0.64 | 0 | 3 | 7 | 89 | 1 | 0 | Small green area at an intersection of a busy street; irregular cut Poaceae area allowing flowering for short periods. |
G7 | 48.7793° N, 11.4364° E | 2.22 | 0.61 | 0 | 1 | 16 | 82 | 1 | 0 | Green area with short cut grass of apartment buildings next to a multilane street; residential and half-industrial area; regularly cut lawn. |
G8 | 48.7871° N, 11.4577° E | 3.97 | 0.38 | 22 | 0 | 19 | 40 | 0 | 41 | Residential area with freestanding houses with gardens and agricultural land; 2019: field with Poaceae was cut occasionally allowing flowering for short periods; 2020: Field with Poaceae was cut once in August allowing flowering for longer periods. |
G9 | 48.8003° N, 11.4549° E | 4.89 | 0.26 | 0 | 0 | 2 | 9 | 1 | 88 | Agricultural land; unmanaged Poaceae area. |
G10 | 48.8041° N, 11.4672° E | 5.79 | 0.27 | 25 | 4 | 34 | 2 | 1 | 59 | Agricultural land; unmanaged Poaceae area. |
G11 | 48.8030° N, 11.4821° E | 6.48 | 0.26 | 39 | 0 | 52 | 16 | 3 | 29 | Agricultural land; unmanaged Poaceae area. |
G12 | 48.8080° N, 11.4831° E | 6.91 | 0.26 | 11 | 0 | 4 | 30 | 15 | 50 | Green area next the secondary school of Kösching and agricultural land; occasionally cut Poaceae area, allowing flowering for short periods. |
Station Code | Coordinates | Distance from US [km] | Urban Index | Gras Cover [%] | Land Cover Classification [%] | Description of Immediate Surrounding and Management of Poaceae Area within a Radius of 100 m | ||||
---|---|---|---|---|---|---|---|---|---|---|
Forest | Low Vegetation | Built-Up | Bare Soil | Agriculture | ||||||
U1 | 48.7639° N, 11.4182° E | 0.26 | 0.53 | 0 | 2 | 13 | 82 | 3 | 0 | Courtyard of an apartment building. Almost fully enclosed; no Poaceae area. |
U2 | 48.7656° N, 11.4238° E | 0.61 | 0.59 | 1 | 0 | 3 | 96 | 1 | 0 | Open public space and streets, completely sealed area; no Poaceae area. |
U3 | 48.7646° N, 11.4285° E | 0.96 | 0.61 | 0 | 0 | 1 | 95 | 4 | 0 | Wide street in pedestrian zone, completely sealed area; no Poaceae area. |
U4 | 48.7700° N, 11.4295° E | 1.16 | 0.64 | 15 | 16 | 55 | 26 | 2 | 0 | Sidewalk of a main street, little park area with unmanaged Poaceae area. |
R1 | 48.7762° N, 11.4404° E | 2.19 | 0.59 | 0 | 0 | 12 | 88 | 0 | 0 | Residential area with single-family houses with maintained front and back yards; Poaceae areas/lawns cut regularly preventing flowering. |
R2 | 48.7745° N, 11.4411° E | 2.14 | 0.60 | 0 | 0 | 33 | 66 | 0 | 0 | Residential area, maintained public playground surrounded by houses; Poaceae areas/lawns cut regularly preventing flowering. |
R3 | 48.7809° N, 11.4434° E | 2.68 | 0.53 | 6 | 0 | 13 | 81 | 6 | 0 | Residential area with multi-story apartment buildings; Poaceae areas/lawns cut regularly preventing flowering. |
SR1 | 48.7827° N, 11.4549° E | 3.48 | 0.47 | 10 | 18 | 45 | 17 | 0 | 20 | Edge of a residential area with allotment gardens neighbouring agricultural land; unmanaged and occasionally cut Poaceae area. |
SR2 | 48.7894° N, 11.4634° E | 4.42 | 0.32 | 15 | 5 | 28 | 12 | 7 | 47 | Agricultural land; between country road, highway and industrial area; unmanaged Poaceae area. |
SR3 | 48.8003° N, 11.4779° E | 6.01 | 0.27 | 48 | 0 | 46 | 2 | 6 | 46 | Agricultural land; unmanaged Poaceae area. |
SR4 | 48.8081° N, 11.4831° E | 6.88 | 0.26 | 11 | 0 | 8 | 37 | 13 | 42 | Green area next to the secondary school of Kösching and agricultural land; occasionally cut Poaceae area, allowing flowering for short periods. |
US | SRS | |||
---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | |
Seasonal Pollen Index (SPIn) (pollen*day/m³) | 933 | 2104 | 4071 | 5725 |
Length of season (days) | 102 | 99 | 107 | 89 |
Start day/day of year | 16.05/136 | 04.05/125 | 07.05/127 | 05.05/126 |
End day/day of year | 25.08/237 | 10.08/223 | 21.08/233 | 01.08/214 |
Peak day/day of year | 05.06/156 | 02.06/154 | 04.06/155 | 01.06/153 |
Peak value (pollen grains/m³) | 46 | 120 | 371 | 506 |
High pollen days | 0 | 6 | 25 | 33 |
Urban | Semi-Rural | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 | G11 | ||
urban | G2 | 0.756 | - | - | - | - | - | - | - | - | - | - |
G3 | 0.985 | 0.969 | - | - | - | - | - | - | - | - | - | |
G4 | 0.937 | 0.400 | 0.837 | - | - | - | - | - | - | - | - | |
G5 | 0.758 | 0.473 | 0.754 | 0.855 | - | - | - | - | - | - | - | |
G6 | 0.235 | 0.273 | 0.168 | 0.055 | 0.110 | - | - | - | - | - | - | |
G7 | 0.760 | 1 | 0.762 | 0.415 | 0.492 | 0.235 | - | - | - | - | - | |
semi-rural | G8 | 0.235 | 0.489 | 0.400 | 0.220 | 0.201 | 0.836 | 0.534 | - | - | - | - |
G9 | 0.117 | 0.095 | 0.082 | 0.033 | 0.042 | 0.534 | 0.087 | 0.985 | - | - | - | |
G10 | 0.010 | 0.007 | 0.006 | 0.006 | 0.006 | 0.010 | 0.006 | 0.510 | 0.105 | - | - | |
G11 | 0.087 | 0.087 | 0.078 | 0.029 | 0.042 | 0.471 | 0.140 | 0.888 | 0.834 | 0.220 | - | |
G12 | 0.028 | 0.029 | 0.022 | 0.010 | 0.011 | 0.147 | 0.029 | 0.816 | 0.534 | 0.201 | 0.770 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jetschni, J.; Jochner-Oette, S. Spatial and Temporal Variations of Airborne Poaceae Pollen along an Urbanization Gradient Assessed by Different Types of Pollen Traps. Atmosphere 2021, 12, 974. https://doi.org/10.3390/atmos12080974
Jetschni J, Jochner-Oette S. Spatial and Temporal Variations of Airborne Poaceae Pollen along an Urbanization Gradient Assessed by Different Types of Pollen Traps. Atmosphere. 2021; 12(8):974. https://doi.org/10.3390/atmos12080974
Chicago/Turabian StyleJetschni, Johanna, and Susanne Jochner-Oette. 2021. "Spatial and Temporal Variations of Airborne Poaceae Pollen along an Urbanization Gradient Assessed by Different Types of Pollen Traps" Atmosphere 12, no. 8: 974. https://doi.org/10.3390/atmos12080974
APA StyleJetschni, J., & Jochner-Oette, S. (2021). Spatial and Temporal Variations of Airborne Poaceae Pollen along an Urbanization Gradient Assessed by Different Types of Pollen Traps. Atmosphere, 12(8), 974. https://doi.org/10.3390/atmos12080974