Odour Impact Assessment in a Changing Climate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stability Classes
3.2. Separation Distances
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leelőssy, Á.; Molnár, F., Jr.; Izsák, F.; Havasi, Á.; Lagzi, I.; Mészáros, R. Dispersion modeling of air pollutants in the atmosphere: A review. Cent. Euro. J. Geosci. 2014, 6, 257–278. [Google Scholar] [CrossRef]
- Brancher, M.; Griffiths, K.D.; Franco, D.; De MeloLisboa, H. A review of odour impact criteria in selected countries around the world. Chemosphere 2017, 168, 1531–1570. [Google Scholar] [CrossRef] [PubMed]
- Sommer-Quabach, E.; Piringer, M.; Petz, E.; Schauberger, G. Comparability of separation distances between odour sources and residential areas determined by various national odour impact criteria. Atmos. Environ. 2014, 95, 20–28. [Google Scholar] [CrossRef]
- Piringer, M.; Knauder, W.; Petz, E.; Schauberger, G. Factors influencing separation distances against odour annoyance calculated by Gaussian and Langrangian dispersion models. Atmos. Environ. 2016, 140, 69–83. [Google Scholar] [CrossRef]
- Piringer, M.; Knauder, W.; Anders, I.; Andre, K.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Hennig-Pauka, I.; Schönhart, M.; et al. Climate change impact on the dispersion of airborne emissions and the resulting separation distances to avoid odour annoyance. Atmos. Environ. X 2019, 2, 100021. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rockel, B.; Will, A.; Hense, A. The Regional Climate Model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Smiatek, G.; Kunstmann, H.; Senatore, A. EURO-CORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change. J. Geophys. Res. Atmos. 2016, 121, 7710–7728. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Bøssing Christensen, O.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563. [Google Scholar] [CrossRef]
- Janicke Consulting. Dispersion Model LASAT Version 3.4, Reference Book; Janicke Consulting Environmental Physics: Überlingen, Germany, 2019. [Google Scholar]
- Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. Erste Allgemeine Verwaltungsvorschrift zum Bundes–Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft—TA Luft); Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Berlin, Germany, 2002.
- EPA. Meteorological Monitoring Guidance for Regulatory Modeling Applications; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2000.
- VDI. Emissions and Immissions from Animal Husbandry—Housing Systems and Emissions—Pigs, Cattle, Poultry, Horses; VDI 3894 Part 1; Verein Deutscher Ingenieure, VDI Verlag: Düsseldorf, Germany, 2011. [Google Scholar]
- Zahn, J.A.; DiSpirito, A.A.; Do, Y.S.; Brooks, B.E.; Cooper, E.E.; Hatfield, J.L. Correlation of human olfactory responses to airborne concentrations of malodorous volatile organic compounds emitted from swine effluent. J. Environ. Qual. 2001, 30, 624–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D. Application of PTR-MS for Optimization of Odour Removal from Intensive Pig Production with Emphasis on Biofiltration; Department of Engineering—Biological and Chemical Engineering, Aarhus University: Aarhus, Denmark, 2013. [Google Scholar]
- GOAA. Guideline on Odour in Ambient Air. In Detection and Assessment of Odour in Ambient Air, 2nd ed.; GOAA: Berlin, Germany, 2008. [Google Scholar]
- Piringer, M.; Knauder, W.; Petz, E.; Schauberger, G. A comparison of separation distances against odour annoyance calculated with two models. Atmos. Environ. 2015, 116, 22–35. [Google Scholar] [CrossRef]
- Brancher, M.; Knauder, W.; Piringer, M.; Schauberger, G. Temporal variability in odour emissions: To what extent this matters for the assessment of annoyance using dispersion modelling. Atmos. Environ. X 2020, 5, 100054. [Google Scholar] [CrossRef]
- Schauberger, G.; Piringer, M.; Heber, A.J. Odour emission scenarios for fattening pigs as input for dispersion models: A step from an annual mean value to time series. Agric. Ecosyst. Environ. 2014, 93, 108–116. [Google Scholar] [CrossRef]
- Baumann-Stanzer, K.; Piringer, M.; Polreich, E.; Hirtl, M.; Petz, E.; Bügelmayer, M. User experience with model validation exercises. Croat. Meteorol. J. 2008, 43, 52–56. [Google Scholar]
- Piringer, M.; Baumann-Stanzer, K. Selected results of a model validation exercise. Adv. Sci. Res. 2009, 3, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Baumann-Stanzer, K.; Piringer, M. Validation of regulatory micro-scale air quality models: Modeling odour dispersion and built-up areas. World Rev. Sci. Technol. Sustain. Dev. 2011, 8, 203–213. [Google Scholar] [CrossRef]
- Di Sabatino, S.; Buccolieri, R.; Olesen, H.R.; Ketzel, M.; Berkowicz, R.; Franke, J.; Schatzmann, M.; Schlünzen, K.H.; Leitl, B.; Britter, R.; et al. COST 732 in practice: The MUST model evaluation exercise. Int. J. Environ. Pollut. 2011, 44, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Schauberger, G.; Hennig-Pauka, I.; Zollitsch, W.; Hörtenhuber, S.J.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Knauder, W.; Anders, I.; Andre, K.; et al. Efficacy of adaptation measures to alleviate heat stress in confined livestock buildings in temperate climate zones. Biosyst. Eng. 2020, 200, 157–175. [Google Scholar] [CrossRef]
DAYTIME (Global Radiation ≥ 20 Wm−2) | ||||
Global Radiation (Wm−2) | ||||
Wind Speed (ms−1) | ≥925 | 925–675 | 675–175 | 175–20 |
<2 | V | V | IV | III/1 |
2–2.9 | V | IV | III/2 | III/1 |
3–4.9 | IV | IV | III/2 | III/1 |
5–5.9 | III/2 | III/2 | III/1 | III/1 |
≥6 | III/2 | III/1 | III/1 | III/1 |
NIGHTTIME (Global Radiation < 20 Wm−2) | ||||
Vertical Temperature Gradient (K(100 m)−1) | ||||
Wind Speed (ms−1) | <0 | ≥0 | ||
<2 | II | I | ||
2–2.9 | III/1 | II | ||
≥3 | III/1 | III/1 |
Wind Speed υ10 at 10 m Height (z0 = 0.1 m) | Night-Time | Daytime | |||
---|---|---|---|---|---|
Total Cloud Cover | Total Cloud Cover | ||||
in ms−1 | 0/8 to 6/8 | 7/8 to 8/8 | 0/8 to 2/8 | 3/8 to 5/8 | 6/8 to 8/8 |
≤1.2 | I | II | IV | IV | IV |
1.3 to 2.3 | I | II | IV | IV | III/2 |
2.4 to 3.3 | II | III/1 | IV | IV | III/2 |
3.4 to 4.3 | III/1 | III/1 | IV | III/2 | III/2 |
≥4.4 | III/1 | III/1 | III/2 | III/1 | III/1 |
Wind Speed υ10 at 10 m Height | Radiation Balance in Wm−2 | ||||
---|---|---|---|---|---|
Limits of Categories | |||||
In ms−1 | A/B | B/C | C/D | D/E | E/F |
0 to 0.9 | 214 | 125 | 60 | −2 | −9 |
1.0 to 1.9 | 214 | 126 | 60 | −4 | −13 |
2.0 to 2.9 | 301 | 162 | 60 | −6 | −21 |
3.0 to 3.9 | 400 | 232 | 63 | −12 | −34 |
4.0 to 4.9 | 495 | 305 | 67 | −28 | −55 |
5.0 to 5.9 | ─ | 376 | 84 | −55 | ─ |
6.0 to 6.9 | ─ | 450 | 108 | ─ | ─ |
7.0 to 7.9 | ─ | ─ | 150 | ─ | ─ |
8.0 to 9.9 | ─ | ─ | 240 | ─ | ─ |
≥10.0 | All values category D | ||||
Example: | |||||
If the conditions 2.0 ms−1 ≤ u10 < 3.0 ms−1 and 162 Wm−2 ≥ radiation balance > 60 Wm−2 were fulfilled, then category C was used. |
Stack height | (m) | 5.0 |
Stack diameter | (m) | 1.88 |
Number of stacks | 9 | |
Outlet air velocity | (ms−1) | 2.0 |
Volume flow rate | (m3 h−1) | 180,000 |
Temperature | (°C) | 0 |
Odour emission rate | (ouEs−1) | 13,500 |
Concentration | (ouEm−3) | 270 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piringer, M.; Knauder, W.; Baumann-Stanzer, K.; Anders, I.; Andre, K.; Schauberger, G. Odour Impact Assessment in a Changing Climate. Atmosphere 2021, 12, 1149. https://doi.org/10.3390/atmos12091149
Piringer M, Knauder W, Baumann-Stanzer K, Anders I, Andre K, Schauberger G. Odour Impact Assessment in a Changing Climate. Atmosphere. 2021; 12(9):1149. https://doi.org/10.3390/atmos12091149
Chicago/Turabian StylePiringer, Martin, Werner Knauder, Kathrin Baumann-Stanzer, Ivonne Anders, Konrad Andre, and Günther Schauberger. 2021. "Odour Impact Assessment in a Changing Climate" Atmosphere 12, no. 9: 1149. https://doi.org/10.3390/atmos12091149
APA StylePiringer, M., Knauder, W., Baumann-Stanzer, K., Anders, I., Andre, K., & Schauberger, G. (2021). Odour Impact Assessment in a Changing Climate. Atmosphere, 12(9), 1149. https://doi.org/10.3390/atmos12091149