Ambient BTEX Concentrations during the COVID-19 Lockdown in a Peri-Urban Environment (Orléans, France)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Instrumentation
2.2.1. BTEX Measurements
2.2.2. NOx, O3, PM10, and BC Measurements
2.2.3. Meteorological Data
3. Results and Discussion
3.1. Data Overview
3.2. Diurnal Variation and Correlations
3.3. BTEX Ratios Assessment
3.4. Impact from Community Mobility and Meteorological Effects on the Measured BTEX
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barré, J.; Petetin, H.; Colette, A.; Guevara, M.; Peuch, V.-H.; Rouil, L.; Engelen, R.; Inness, A.; Flemming, J.; Pérez García-Pando, C.; et al. Estimating Lockdown Induced European NO2 Changes using satellite and surface observations and air quality models. Atmos. Chem. Phys. 2020, 21, 7373–7394. [Google Scholar] [CrossRef]
- Guevara, M.; Jorba, O.; Soret, A.; Petetin, H.; Bowdalo, D.; Serradell, K.; Tena, C.; Denier van der Gon, H.; Kuenen, J.; Peuch, V.-H.; et al. Time-Resolved Emission Reductions for Atmospheric Chemistry Modelling in Europe during the COVID-19 Lockdowns. Atmos. Chem. Phys. 2021, 21, 773–797. [Google Scholar] [CrossRef]
- Shi, X.; Brasseur, G.P. The Response in Air Quality to the Reduction of Chinese Economic Activities during the COVID-19 Outbreak. Geophys. Res. Lett. 2020, 47, e2020GL088070. [Google Scholar] [CrossRef] [PubMed]
- Briz-Redón, Á.; Belenguer-Sapiña, C.; Serrano-Aroca, Á. Changes in Air Pollution during COVID-19 Lockdown in Spain: A Multi-City Study. J. Environ. Sci. 2021, 101, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected Air Pollution with Marked Emission Reductions during the COVID-19 Outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and Temporal Changes in Air Pollution during COVID-19 Strict Lockdown over Different Regions of India. Environ. Pollut. 2020, 266, 115368. [Google Scholar] [CrossRef] [PubMed]
- Kroll, J.H.; Heald, C.L.; Cappa, C.D.; Farmer, D.K.; Fry, J.L.; Murphy, J.G.; Steiner, A.L. The Complex Chemical Effects of COVID-19 Shutdowns on Air Quality. Nat. Chem. 2020, 12, 777–779. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of Lockdown Measures to Combat COVID-19 on Air Quality over Western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for COVID-2019 in Milan: What Are the Effects on Air Quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Schripp, T.; Langer, S.; Salthammer, T. Interaction of Ozone with Wooden Building Products, Treated Wood Samples and Exotic Wood Species. Atmos. Environ. 2012, 54, 365–372. [Google Scholar] [CrossRef]
- Lee, S.C.; Chiu, M.Y.; Ho, K.F.; Zou, S.C.; Wang, X. Volatile Organic Compounds (VOCs) in Urban Atmosphere of Hong Kong. Chemosphere 2002, 48, 375–382. [Google Scholar] [CrossRef]
- Liu, J.; Mu, Y.; Zhang, Y.; Zhang, Z.; Wang, X.; Liu, Y.; Sun, Z. Atmospheric Levels of BTEX Compounds during the 2008 Olympic Games in the Urban Area of Beijing. Sci. Total Environ. 2009, 408, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Mehlman, M.A. Dangerous Properties of Petroleum-Refining Products: Carcinogenicity of Motor Fuels (Gasoline). Teratog. Carcinog. Mutagenes. 1990, 10, 399–408. [Google Scholar] [CrossRef]
- Demir, S.; Saral, A.; Ertürk, F.; Kuzu, S.L.; Goncaloğlu, B.İ.; Demir, G. Effect of Diurnal Changes in VOC Source Strengths on Performances of Receptor Models. Environ. Sci. Pollut. Res. 2012, 19, 1503–1514. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; So, K.L.; Simpson, I.J.; Barletta, B.; Meinardi, S.; Blake, D.R. C1–C8 Volatile Organic Compounds in the Atmosphere of Hong Kong: Overview of Atmospheric Processing and Source Apportionment. Atmos. Environ. 2007, 41, 1456–1472. [Google Scholar] [CrossRef] [Green Version]
- Kansal, A. Sources and Reactivity of NMHCs and VOCs in the Atmosphere: A Review. J. Hazard. Mater. 2009, 166, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Lanz, V.A.; Hueglin, C.; Buchmann, B.; Hill, M.; Locher, R.; Staehelin, J.; Reimann, S. Receptor modeling of C-2-C-7 hydrocarbon sources at an urban background site in Zurich, Switzerland. Changes between 1993–1994 and 2005–2006. Atmos. Chem. Phys. 2008, 8, 2313–2332. [Google Scholar] [CrossRef] [Green Version]
- Finlayson-Pitts, B.J.; Pitts, J.N. Atmospheric Chemistry of Tropospheric Ozone Formation: Scientific and Regulatory Implications. Air Waste 1993, 43, 1091–1100. [Google Scholar] [CrossRef]
- Calvert, J.; Mellouki, A.; Orlando, J.; Pilling, M.; Wallington, T. Mechanisms of Atmospheric Oxidation of the Oxygenates; Oxford University Press: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Nelson, P.F.; Quigley, S.M. The m,p-Xylenes:Ethylbenzene Ratio. A Technique for Estimating Hydrocarbon Age in Ambient Atmospheres. Atmos. Environ. 1967 1983, 17, 659–662. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Carslaw, D.C.; Ropkins, K. Openair—An R Package for Air Quality Data Analysis. Environ. Model. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Jiang, Z.; Grosselin, B.; Daële, V.; Mellouki, A.; Mu, Y. Seasonal and Diurnal Variations of BTEX Compounds in the Semi-Urban Environment of Orleans, France. Sci. Total Environ. 2017, 574, 1659–1664. [Google Scholar] [CrossRef] [PubMed]
- Hajizadeh, Y.; Mokhtari, M.; Faraji, M.; Mohammadi, A.; Nemati, S.; Ghanbari, R.; Abdolahnejad, A.; Fard, R.F.; Nikoonahad, A.; Jafari, N.; et al. Trends of BTEX in the Central Urban Area of Iran: A Preliminary Study of Photochemical Ozone Pollution and Health Risk Assessment. Atmos. Pollut. Res. 2018, 9, 220–229. [Google Scholar] [CrossRef]
- Borbon, A.; Boynard, A.; Salameh, T.; Baudic, A.; Gros, V.; Gauduin, J.; Perrussel, O.; Pallares, C. Is Traffic Still an Important Emitter of Monoaromatic Organic Compounds in European Urban Areas? Environ. Sci. Technol. 2018, 52, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Gelencsér, A.; Siszler, K.; Hlavay, J. Toluene−Benzene Concentration Ratio as a Tool for Characterizing the Distance from Vehicular Emission Sources. Environ. Sci. Technol. 1997, 31, 2869–2872. [Google Scholar] [CrossRef]
- Sauvage, S.; Plaisance, H.; Locoge, N.; Wroblewski, A.; Coddeville, P.; Galloo, J.C. Long Term Measurement and Source Apportionment of Non-Methane Hydrocarbons in Three French Rural Areas. Atmos. Environ. 2009, 43, 2430–2441. [Google Scholar] [CrossRef]
- Salameh, T.; Sauvage, S.; Locoge, N.; Gauduin, J.; Perrussel, O.; Borbon, A. Spatial and Temporal Variability of BTEX in Paris Megacity: Two-Wheelers as a Major Driver. Atmos. Environ. X 2019, 1, 100003. [Google Scholar] [CrossRef]
- Kleinman, L.I.; Daum, P.H.; Lee, Y.-N.; Nunnermacker, L.J.; Springston, S.R.; Weinstein-Lloyd, J.; Hyde, P.; Doskey, P.; Rudolph, J.; Fast, J.; et al. Photochemical Age Determinations in the Phoenix Metropolitan Area. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.M.; Fehsenfeld, F.C.; Liu, S.C.; Bollinger, M.J.; Hahn, C.; Albritton, D.L.; Sievers, R.E. Measurements of Aromatic Hydrocarbon Ratios and NOx Concentrations in the Rural Troposphere: Observation of Air Mass Photochemical Aging and NOx Removal. Atmos. Environ. 1967 1984, 18, 2421–2432. [Google Scholar] [CrossRef]
- Warneke, C.; McKeen, S.A.; de Gouw, J.A.; Goldan, P.D.; Kuster, W.C.; Holloway, J.S.; Williams, E.J.; Lerner, B.M.; Parrish, D.D.; Trainer, M.; et al. Determination of Urban Volatile Organic Compound Emission Ratios and Comparison with an Emissions Database. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Languille, B.; Gros, V.; Petit, J.-E.; Honoré, C.; Baudic, A.; Perrussel, O.; Foret, G.; Michoud, V.; Truong, F.; Bonnaire, N.; et al. Wood Burning: A Major Source of Volatile Organic Compounds during Wintertime in the Paris Region. Sci. Total Environ. 2020, 711, 135055. [Google Scholar] [CrossRef] [PubMed]
- Monod, A.; Sive, B.C.; Avino, P.; Chen, T.; Blake, D.R.; Sherwood Rowland, F. Monoaromatic Compounds in Ambient Air of Various Cities: A Focus on Correlations between the Xylenes and Ethylbenzene. Atmos. Environ. 2001, 35, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Rad, H.D.; Babaei, A.A.; Goudarzi, G.; Angali, K.A.; Ramezani, Z.; Mohammadi, M.M. Levels and Sources of BTEX in Ambient Air of Ahvaz Metropolitan City. Air Qual. Atmos. Health 2014, 7, 515–524. [Google Scholar] [CrossRef]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence That the Spectral Dependence of Light Absorption by Aerosols Is Affected by Organic Carbon. J. Geophys. Res. Atmos. 2004, 109, D21208. [Google Scholar] [CrossRef] [Green Version]
- Logan, J.A. Nitrogen Oxides in the Troposphere: Global and Regional Budgets. J. Geophys. Res. Oceans 1983, 88, 10785–10807. [Google Scholar] [CrossRef]
Before Lockdown 26 February–16 March | Lockdown 17 March–10 May | After Lockdown 11 May –31 May | ||||
---|---|---|---|---|---|---|
Mean ± SD | IQR | Mean ± SD | IQR | Mean ± SD | IQR | |
N° samples | 620 | 1860 | 595 | |||
Benzene | 83 ± 48 | 30 | 271 ± 143 | 233 | 280 ± 163 | 191 |
Toluene | 56 ± 36 | 32 | 121 ± 80 | 112 | 118 ± 63 | 79 |
Ethylbenzene | 99 ± 37 | 47 | 172 ± 80 | 125 | 205 ± 113 | 121 |
m,p-xylene | 86 ± 29 | 37 | 124 ± 59 | 92 | 122 ± 58 | 76 |
o-xylene | 79 ± 20 | 27 | 113 ± 49 | 65 | 128 ± 64 | 59 |
Total BTEX | 402 ± 143 | 155 | 800 ± 378 | 626 | 851 ± 445 | 523 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, M.; Ren, Y.; Gibilisco, R.G.; Grosselin, B.; McGillen, M.R.; Xue, C.; Mellouki, A.; Daële, V. Ambient BTEX Concentrations during the COVID-19 Lockdown in a Peri-Urban Environment (Orléans, France). Atmosphere 2022, 13, 10. https://doi.org/10.3390/atmos13010010
Cai M, Ren Y, Gibilisco RG, Grosselin B, McGillen MR, Xue C, Mellouki A, Daële V. Ambient BTEX Concentrations during the COVID-19 Lockdown in a Peri-Urban Environment (Orléans, France). Atmosphere. 2022; 13(1):10. https://doi.org/10.3390/atmos13010010
Chicago/Turabian StyleCai, Min, Yangang Ren, Rodrigo G. Gibilisco, Benoit Grosselin, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, and Véronique Daële. 2022. "Ambient BTEX Concentrations during the COVID-19 Lockdown in a Peri-Urban Environment (Orléans, France)" Atmosphere 13, no. 1: 10. https://doi.org/10.3390/atmos13010010
APA StyleCai, M., Ren, Y., Gibilisco, R. G., Grosselin, B., McGillen, M. R., Xue, C., Mellouki, A., & Daële, V. (2022). Ambient BTEX Concentrations during the COVID-19 Lockdown in a Peri-Urban Environment (Orléans, France). Atmosphere, 13(1), 10. https://doi.org/10.3390/atmos13010010