Circulatory and Nervous Diseases Mortality Patterns—Comparison of Geomagnetic Storms and Quiet Periods
Abstract
:1. Introduction
- -
- class X5 storm on 14 July 2000 Bastille Day Event;
- -
- class X17 storm on 28 October 2003 Halloween Solar Storms;
- -
- class G4 storm on 17 March 2015 St. Patrick’s Day Event.
- -
- 13 September–24 October 1996;
- -
- 21 July–20 August 2008;
- -
- 31 July–31 August 2009.
2. Data and Methods
2.1. Data Sets
2.2. Method
3. Results
Solar storm X5 14 July 2000 Bastille Day Event | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Males 40+ | 1.12680 | - | X | - | 1 | 46 | 0.26918 | |
Females 0–39 | 0.37453 | - | X | - | 1 | 6 | 0.43892 | |
Females 40+ | 1.23286 | - | - | - | 0 | 55 | 0.01914 | |
Solar storm X17 28 October 2003 Halloween Solar Storms | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | 0.71428 | X | - | X | 2 | 12 | 0.37100 | |
Males 40+ | 1.10720 | X | - | X | 2 | 65 | 0.21850 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 2.12049 | X | - | X | 2 | 77 | 0.21858 | |
Solar storm G4 17 March 2015 St. Patrick’s Day Event | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Males 40+ | 1.55689 | X | - | X | 2 | 110 | 0.11307 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 1.99264 | X | - | - | 1 | 138 | 0.14996 |
Solar storm X5 14 July 2000 Bastille Day Event | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Males 40+ | 6.29273 | X | X | X | 3 | 2060 | 0.17833 | |
Females 0–39 | 0.32790 | - | X | - | 1 | 5 | 0.73121 | |
Females 40+ | 9.00699 | X | - | - | 1 | 2506 | 0.06246 | |
Solar storm X17 28 October 2003 Halloween Solar Storms | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | 0.46596 | X | - | X | 2 | 18 | 0.28350 | |
Males 40+ | 8.08860 | - | - | X | 1 | 2022 | 0.06981 | |
Females 0–39 | 0.10372 | X | - | X | 2 | 5 | 0.96414 | |
Females 40+ | 8.71907 | X | X | X | 3 | 2486 | 0.09763 | |
Solar storm G4 17 March 2015 St. Patrick’s Day Event | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | 0.81789 | - | - | - | 0 | 13 | 0.06826 | |
Males 40+ | 8.40326 | X | - | X | 2 | 2105 | 0.03101 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 10.39334 | X | - | - | 1 | 2626 | 0.09645 |
13 September 1996–24 October 1996 | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Males 40+ | 0.34000 | X | - | - | 1 | 27 | 0.73121 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 0.40022 | X | - | - | 1 | 78 | 0.24884 | |
21 July 2008–20 August 2008 | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Males 40+ | 0.33080 | X | - | - | 1 | 43 | 0.35009 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 11.03420 | - | - | - | 0 | 47 | 0.034611 | |
31 July 2009–31 August 2009 | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Males 40+ | 8.19562 | - | - | - | 0 | 11 | 0.19784 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 11.09207 | - | - | - | 0 | 32 | 0.24884 |
13 September 1996–24 October 1996 | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Males 40+ | 8.47768 | X | X | - | 2 | 18 | 0.19869 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 0.91364 | - | - | - | 0 | 29 | 0.75376 | |
21 July 2008–20 August 2008 | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Males 40+ | 0.29791 | - | X | X | 2 | 76 | 0.37100 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 1.03767 | - | - | - | 0 | 34 | 0.02735 | |
31 July 2009–31 August 2009 | ||||||||
Model | Deviance of minimized graphical model | F10.7 | Kp | PF30 | Edge number of minimized graphical model | f | p-value | |
Males 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Males 40+ | 0.90116 | - | - | - | 0 | 15 | 0.22743 | |
Females 0–39 | does not pass the test for normality and independence of logarithmic data | |||||||
Females 40+ | 0.91364 | - | - | - | 0 | 62 | 0.16517 |
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katsavrias, C.; Preka-Papadema, P.; Moussas, X.; Apostolou, T.; Theodoropoulou, A.; Papadima, T. Helio-geomagnetic influence in cardiological cases. Adv. Space Res. 2013, 51, 96–106. [Google Scholar] [CrossRef]
- Cornelissen, G.; Halberg, F.; Breus, T.; Syutkina, E.V.; Baevsky, R.; Weydahl, A.; Watanabe, Y.; Otsuka, K.; Siegelova, J.; Fiser, B.; et al. Non-photic solar associations of heart rate variability and myocardial infarction. J. Atmos. Sol. Terr. Phys. 2002, 64, 707–720. [Google Scholar] [CrossRef]
- Otsuka, K.; Cornélissen, G.; Weydahl, A.; Holmeslet, B.; Hansen, T.; Shinagawa, M.; Kubo, Y.; Nishimura, Y.; Omori, K.; Yano, S.; et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed. Pharmacother. 2000, 55, 51–56. [Google Scholar] [CrossRef]
- Azcárate, T.; Mendoza, B.; Levi, J. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24. Adv. Space Res. 2016, 58, 2116–2125. [Google Scholar] [CrossRef]
- Gurfinkel, Y.; Vasin, A.L.; Pishchalnikov, R.Y.; Sarimov, R.M.; Sasonko, M.L.; Matveeva, T.A. Geomagnetic storm under laboratory conditions: Randomized experiment. Int. J. Biometeorol. 2017, 62, 501–512. [Google Scholar] [CrossRef]
- Gurfinkel, Y.I.; At’kov, O.Y.; Vasin, A.L.; Breus, T.K.; Sasonko., M.L.; Pishchalnikov, R.Y. Effect of zero magnetic field on cardiovascular system and microcirculation. Life Sci. Space Res. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Johnsen, S.; Lohmann, K.J. The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 2005, 6, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Gjerloev, J.W. A Global Ground-Based Magnetometer Initiative. EOS 2009, 90, 230–231. [Google Scholar] [CrossRef]
- Gjerloev, J.W. The SuperMAG data processing technique. J. Geophys. Res. 2012, 117, A09213. [Google Scholar] [CrossRef]
- Jursa, A.S. Handbook of Geophysics and the Space Environment; Air force geophysics laboratory; National Technical Information Service: Springfield, MA, USA, 1985. [Google Scholar]
- Stoupel, E.; Kalediene, R.; Petrauskiene, J.; Starkuviene, S.; Abramson, E.; Israelevich, P.; Sulkes, J. Clinical Cosmobiology: Distribution of Deaths during 180 Months and Cosmo Physical Activity. The Lithuanian Study, 1990–2004. In The Role of Cosmic Rays. Study Report; Division of Cardiology Rabin Medical Center Tel Aviv University: Tel Aviv, Israel, 2004. [Google Scholar]
- Watanabe, Y.; Cornellissen, G.; Halberg, F.; Otsuka, K.; Ohkawa, S.I. Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity. Biomed. Pharmacother. 2001, 55 (Suppl. 1), 76–83. [Google Scholar] [CrossRef]
- Stoupel, E.; Kalediene, R.; Petrauskiene, J.; Starkuviene, S.; Abramson, E.; Israelevich, P.; Sulkes, J. Twenty years study of solar, geomagnetic, cosmic ray activity links with monthly deaths number (n-850304). J. Biomed. Sci. Eng. 2011, 4, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Stoupel, E. The effect of geomagnetic activity on cardiovascular parameters. Biomed. Pharmacother. 2002, 56, 247. [Google Scholar] [CrossRef] [Green Version]
- Stoupel, E.; Birk, E.; Kogan, A.; Klinger, G.; Abramson, E.; Israelevich, P.; Sulkes, J.; Linder, N. Congenital heart disease: Correlation with fluctuations in cosmophysical activity, 1995–2005. Int. J. Cardiol. 2009, 135, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Halberg, F.; Cornelissen, G.; Otsuka, K.; Watanabe, Y.; Katinas, G.; Burioka, N.; Delyukov, A.; Gorgo, Y.; Zhao, Z.; Weydahl, A.; et al. 21-year biological and physical cycles, magnetic storms and myocardial infarctions. Neuro Endocrinol. Lett. 2000, 21, 233. [Google Scholar] [PubMed]
- Halberg, F.; Cornélissen, G.; Otsuka, K.; Fiser, B.; Mitsutake, G.; Wendt, H.; Johnson, P.; Gigolashvili, M.; Breus, T.; Sonkowsky, R.; et al. Near 10-Year and Longer Periods Modulate Circadians: Intersecting Anti-aging and Chronoastrobiological Research. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M304–M324. [Google Scholar] [CrossRef] [Green Version]
- Halberg, F.; Cornélissen, G.; Otsuka, K.; Fiser, B.; Mitsutake, G.; Wendt, H.; Johnson, P.; Gigolashvili, M.; Breus, T.; Sonkowsky, R.; et al. Incidence of sudden cardiac death, myocardial infarction and far- and near-transyears. Biomed. Pharmacother. 2005, 59, S239–S261. [Google Scholar] [CrossRef]
- Dorman, L.I.; Iucci, N.; Ptitsyna, N.G.; Villoresi, G. Cosmic rays as indicator of space weather influence on frequency of infract myocardial, brain strokes, car and train accidents. In Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, 7–15 August 2001; p. 3511. [Google Scholar]
- Ebrille, E.; Konecny, T.; Konecny, D.; Spacek, R.; Jones, P.; Ambroz, P.; DeSimone, C.V.; Powell, B.D.; Hayes, D.L.; Friedman, P.A.; et al. Correlation of Geomagnetic Activity With Implantable Cardioverter Defibrillator Shocks and Antitachycardia Pacing. Mayo Clin. Proc. 2015, 90, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Podolská, K. The Impact of Ionospheric and Geomagnetic Changes on Mortality from Diseases of the Circulatory System. J. Stroke Cerebrovasc. Dis. 2018, 27, 404–417. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Preka-Papadema, P.; Theodoropoulou, A.; Paouris, E.; Apostolou, T. A study of the possible relation of the cardiac arrhythmias occurrence to the polarity reversal of the solar magnetic field. Adv. Space Res. 2017, 59, 366–378. [Google Scholar] [CrossRef]
- Vencloviene, J.; Babarskiene, R.; Milvidaite, I.; Kubilius, R.; Stasionyte, J. The effect of solar–geomagnetic activity during hospital admission on coronary events within 1 year in patients with acute coronary syndromes. Adv. Space Res. 2013, 52, 2192–2198. [Google Scholar] [CrossRef]
- Vencloviene, J.; Antanaitiene, J.; Babarskiene, R. The association between space weather conditions and emergency hospital admissions for myocardial infarction during different stages of Solar activity. J. Atmos. Sol. Terr. Phys. 2016, 149, 52–58. [Google Scholar] [CrossRef]
- Jaruševičius, G.; Rugelis, T.; McCraty, R.; Landauskas, M.; Berškienė, K.; Vainoras, A. Correlation between Changes in Local Earth’s Magnetic Field and Cases of Acute Myocardial Infarction. Int. J. Environ. Res. Public Health 2018, 15, 399. [Google Scholar] [CrossRef] [Green Version]
- Geronikolou, S.; Leontitsis, A.; Petropoulos, V.; Davos, C.; Cokkinos, D.; Chrousos, G. Cyclic stroke mortality variations follow sunspot patterns. F1000Research 2020, 9, 1088. [Google Scholar] [CrossRef] [PubMed]
- Vencloviene, J.; Radisauskas, R.; Vaiciulis, V.; Kiznys, D.; Bernotiene, G.; Kranciukaite-Butylkiniene, D.; Tamosiunas, A. Associations between Quasi-biennial Oscillation phase, solar wind, geomagnetic activity, and the incidence of acute myocardial infarction. Int. J. Biometeorol. 2020, 64, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Kiznys, D.; Vencloviene, J.; Milvidaite, I. The associations of geomagnetic storms, fast solar wind, and stream interaction regions with cardiovascular characteristic in patients with acute coronary syndrome. Life Sci. Space Res. 2020, 25, 1–8. [Google Scholar] [CrossRef]
- Vencloviene, J.; Babarskiene, R.; Slapikas, R.; Sakalyte, G. The association between phenomena on the sun, geomagnetic activity, meteorological variables, and cardiovascular characteristic of patients with myocardial infarction. Int. J. Biometeorol. 2013, 57, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Pishchalnikov, R.Y.; Gurfinkel, Y.I.; Sarimov, R.M.; Vasin, A.L.; Sasonko, M.L.; Matveeva, T.A.; Binhi, V.N.; Baranov, M.V. Cardiovascular response as a marker of environmental stress caused by variations in geomagnetic field and local weather. Biomed. Signal Process. Control. 2019, 51, 401–410. [Google Scholar] [CrossRef]
- Vencloviene, J.; Radisauskas, R.; Tamosiunas, A.; Luksiene, D.; Sileikiene, L.; Milinaviciene, E.; Rastenyte, D. Possible Associations between Space Weather and the Incidence of Stroke. Atmosphere 2021, 12, 334. [Google Scholar] [CrossRef]
- Vaičiulis, V.; Venclovienė, J.; Tamošiūnas, A.; Kiznys, D.; Lukšienė, D.; Krančiukaitė-Butylkinienė, D.; Radišauskas, R. Associations between Space Weather Events and the Incidence of Acute Myocardial Infarction and Deaths from Ischemic Heart Disease. Atmosphere 2021, 12, 306. [Google Scholar] [CrossRef]
- ÚZIS ČR: Czech Health Statistics Yearbook 2015; ÚZIS ČR: Prague, Czech Republic, 2016.
- Poppová, M. IRIS: Language-Independent Software for Coding Causes of Death—Implementation in Czech Republic. IRIS: Jazykově nezávislý software pro kódování příčin smrti—implementace v ČR. Demografie 2011, 53, 392–396. [Google Scholar]
- Cífková, R.; Škodová, Z.; Bruthans, J.; Holub, J.; Adámková, V.; Jozífová, M.; Galovcová, M.; Wohlfahrt, P.; Krajčoviechová, A.; Petržílková, Z.; et al. Longitudinal trends in cardiovascular mortality and blood pressure levels, prevalence, awareness, treatment, and control of hypertension in the Czech population from 1985 to 2007/2008. J. Hypertens. 2010, 28, 2196–2203. [Google Scholar] [CrossRef]
- Cífková, R.; Bruthans, J.; Wohlfahrt, P.; Krajčoviechová, A.; Šulc, P.; Jozífová, M.; Eremiášová, L.; Pudil, J.; Linhart, A.; Widimský, J.; et al. 30-year trends in major cardiovascular risk factors in the Czech population, Czech MONICA and Czech post-MONICA, 1985-2016/17. PLoS ONE 2020, 15, e0232845. [Google Scholar] [CrossRef]
- Cífková, R.; Bruthans, J.; Wohlfahrt, P.; Krajčoviechová, A.; Šulc, P.; Eremiášová, L.; Pudil, J.; Linhart, A.; Widimský, J.; Filipovský, J.; et al. The prevalence of major cardiovascular risk factors in the Czech population in 2015–2018. The Czech post-MONICA study. COR ET VASA 2020, 62, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Bruthans, J.; Cífková, R.; Lánská, V.; O’Flaherty, M.; Critchley, J.A.; Holub, J.; Janský, P.; Zvárová, J.; Capewell, S. Explaining the decline in coronary heart disease mortality in the Czech Republic between 1985 and 2007. Eur. J. Prev. Cardiol. 2014, 21, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Riffe, T.; Acosta, E. Data Resource Profile: COVerAGE-DB: A global demographic database of COVID-19 cases and deaths. Int. J. Epidemiol. 2021, 50, 390–390f. [Google Scholar] [CrossRef]
- Hulíková Tesárková, K. Demographic aspects of the COVID-19 pandemic in Italy, Spain, Germany, and South Korea. Geografie 2020, 125, 139–170. [Google Scholar] [CrossRef]
- Jürgen, M.; Oliver, B.; Katrin, T.; Kirsten, E.; Claudia, S. Geomagnetic Kp index. V. 1.0. GFZ Data Serv. 2021. [Google Scholar] [CrossRef]
- Matzka, J.; Stolle, C.; Yamazaki, Y.; Bronkalla, O.; Morschhauser, A. The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather 2021, 19, e2020SW002641. [Google Scholar] [CrossRef]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Ebert-Uphoff, I.; Deng, Y. Causal discovery for climate networks. Res. Rep. 2010. Available online: http://smartech.gatech.edu/handle/1853/36564 (accessed on 11 July 2019).
- Ebert-Uphoff, I.; Deng, Y. Causal discovery for climate research using graphical models. J. Clim. 2012, 25, 5648–5665. [Google Scholar] [CrossRef] [Green Version]
- Bannerjee, A. Probabilistic graphical models for climate data analysis, paper presented at Supercomputing Workshop on Climate Knowledge Discovery (CKD-SC11). IEEE Comput. Soc. Seattle Wash 2011, 13. [Google Scholar] [CrossRef]
- Whittaker, J. Graphical Models in Applied Multivariate Statistics; Wiley: New York, NY, USA, 1990; pp. 182–185. [Google Scholar]
- Lauritzen, S.L. Graphical Models; Oxford Science Publications: New York, NY, USA, 1996; ISBN 0-19-852219-3. [Google Scholar]
- Podolská, K.; Koucká Knížová, P.; Chum, J.; Kozubek, M.; Burešová, D. Analysis of relationship between ionospheric and solar parameters using graphical models. J. Geophys. Res. Space Phys. 2021, 126, e2020JA029063. [Google Scholar] [CrossRef]
- Podolská, K. Changes of Circulatory and Nervous Diseases Mortality Patterns during Periods of Exceptional Solar Events. Atmosphere 2021, 12, 203. [Google Scholar] [CrossRef]
- Buhl, S. On the existence of maximum likelihood estimators for graphical Gaussian models. Scand. J. Statist. 1993, 20, 263–270. [Google Scholar]
- Cramer, E. Conditional iterative proportional fitting for Gaussian distributions. J. Multivar. Anal. 1998, 65, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Jordan, M.I. Graphical models. Stat. Sci. 2004, 19, 140–155. [Google Scholar] [CrossRef]
- Koller, D.; Friedman, N. Probabilistic Graphical Models–Principles and Techniques, 1st ed.; MIT Press: Cambridge, MA, USA, 2009; 1280p, ISBN 978-0-262-01319-2. [Google Scholar]
- Edwards, D. Introductions to Graphical Modeling, 2nd ed.; Includes MIM software; Springer: New York, NY, USA, 2000; ISBN 978-1-4612-0493-0. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podolská, K. Circulatory and Nervous Diseases Mortality Patterns—Comparison of Geomagnetic Storms and Quiet Periods. Atmosphere 2022, 13, 13. https://doi.org/10.3390/atmos13010013
Podolská K. Circulatory and Nervous Diseases Mortality Patterns—Comparison of Geomagnetic Storms and Quiet Periods. Atmosphere. 2022; 13(1):13. https://doi.org/10.3390/atmos13010013
Chicago/Turabian StylePodolská, Kateřina. 2022. "Circulatory and Nervous Diseases Mortality Patterns—Comparison of Geomagnetic Storms and Quiet Periods" Atmosphere 13, no. 1: 13. https://doi.org/10.3390/atmos13010013