Downscaling of Future Precipitation in China’s Beijing-Tianjin-Hebei Region Using a Weather Generator
Abstract
:1. Introduction
2. Data and Methods
2.1. Precipitation Data from Observations and GCMs
2.2. Precipitation Indices
2.3. Calculation of WG Parameters
2.4. Precipitation Simulation and Future Changes in Indices
3. Results and Discussion
3.1. Performance of the Precipitation Generator
3.2. Changes in Precipitation
3.3. Changes of Extreme Precipitation
3.4. Changes to Drought Risk
4. Conclusions
- Compared with the baseline during 1961–2005, the regional average annual precipitation is projected to increase in all three future periods across the Beijing-Tianjin-Hebei region under both RCP 4.5 and RCP 8.5. This increase would be particularly large during 2051–2070 under RCP 8.5, with an increase in 10.3%.
- The projected changes in the number of days with precipitation are relatively small across the Beijing-Tianjin-Hebei region. Regional average Nrain increases by 0.2~1.0% under both RCP 4.5 and RCP 8.5, except during 2031–2050 under RCP 8.5 when it decreases by 0.7%.
- The annual intensity of precipitation at most stations across the Beijing-Tianjin-Hebei region is projected to increase except for some southern stations. Especially in 2051–2070 under RCP 8.5, the intensity would increase by more than 10% at most northern stations.
- There would be more extreme precipitation events across the Beijing-Tianjin-Hebei region in the future. Under RCP 4.5, Exc25 would continually increase across the Beijing-Tianjin-Hebei region. The regional average is projected to increase by 14.8%, 15.0%, and 15.3% during 2006–2030, 2031–2050, and 2051–2070, respectively. In 2051–2070 under RCP 8.5, this change reaches 18.9%. At most northern stations, Exc25 is projected to increase by more than 20%, and even more than 50% at some northwest stations.
- The relative increase in Exc40 is the largest among the eight indices. The regional average annual Exc40 across the Beijing-Tianjin-Hebei region would increase by more than 20% under RCP 4.5. Under RCP 8.5 during 2051–2070, this increase would reach 26.3%.
- Although simulated Px1d and Px5d increase overall in the Beijing-Tianjin-Hebei region, there is high variability among stations, which demonstrates the need for downscaling. These indices would increase at some stations, and decrease at others. The regional average of Px1d and Px5d across the Beijing-Tianjin-Hebei region simulated by the five GCMs presented an increase of 8~15% under both RCP 4.5 and RCP 8.5, and there would be decreases in these indices at 20~35% of the stations in the region.
- Generally, the average Pxcdd in the Beijing-Tianjin-Hebei region is projected to decrease in the future, and the drought risk in this area is expected to decrease. This change may be considered a good thing, despite the very small change projected. However, the consistency of change in Pxcdd between stations is the lowest among the eight indices, and around half of the stations showed negative changes under both RCP 4.5 and RCP 8.5 in the future three periods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Sun, F.B.; Liu, W.B.; Liu, J.H.; Wang, H. Spatio-temporal patterns of drought evolution over the Beijing-Tianjin-Hebei region, China. J. Geogr. Sci. 2019, 29, 863–876. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.H.; Peng, X.; Li, X.J. A study of the characteristics of coastal economic development in China under the new situation. Mar. Econ. 2019, 9, 12–19. [Google Scholar]
- Chen, J. Xiongan New Area: New highland of global innovation. Bull. Chin. Acad. Sci. 2017, 32, 1256–1259. [Google Scholar]
- Han, H.; Gong, D.Y. Extreme climate events over northern China during the last 50 years. J. Geogr. Sci. 2003, 13, 469–479. [Google Scholar]
- Yang, W.X.; Li, H.Y.; Zhang, G.H.; Li, Z.T. Analysis on vapor field for the drought causes in Beijing, Tianjin and Hebei districts in recent years. Agric. Sci. Technol. 2010, 11, 117–121. [Google Scholar]
- Chi, Y.Y.; Xu, K.P.; Wang, J.J.; Zhang, L.P. Identifying regional ecological space in Beijing, Tianjin, and Hebei. Acta Ecol. Sin. 2018, 38, 8555–8563. [Google Scholar]
- Song, X.M.; Zou, X.J.; Zhang, C.H.; Zhang, J.Y.; Kong, F.Z. Multiscale spatio-temporal changes of precipitation extremes in Beijing-Tianjin-Hebei region, China during 1958–2017. Atmosphere 2019, 10, 462. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.M.; Huang, D.P. Climate characteristics and change trend of Xiongan New area. Chin. Agric. Sci. Bull. 2020, 36, 99–105. [Google Scholar]
- Xing, C.G.; Zhao, S.Q.; Yan, H.M.; Yang, H.C. Ecological compensation mechanism for Beijing-Tianjin-Hebei region based on footprint balance and footprint deficit. Ecol. Econ. 2020, 16, 218–229. [Google Scholar]
- Zhang, K.H. The impacts of global climate change on extreme weather events in Beijing-Tianjin-Hebei area and the countermeasures for disaster prevention. J. Arid Land Resour. Environ. 2011, 25, 122–125. [Google Scholar]
- Shi, Y.; Han, Z.Y.; Xu, Y.; Zhou, B.T.; Wu, J. Future changes of climate extremes in Xiongan New Area and Jing-Jin-Ji district based on high resolution (6.25 km) combined statistical and dynamical downscaling datasets. Clim. Change Res. 2019, 15, 140–149. [Google Scholar]
- Wang, H.J.; Sun, J.Q.; Chen, H.P.; Zhu, Y.L.; Zhang, Y.; Jiang, D.B.; Lang, X.M.; Fan, K.; Yu, E.T.; Yang, S. Extreme Climate in China: Facts, Simulation and Projection. Meteorol. Z. 2012, 21, 279–304. [Google Scholar] [CrossRef]
- Ou, T.; Chen, D.; Linderholm, H.W.; Jeong, J.H. Evaluation of global climate models in simulating extreme precipitation in China. Tellus A Dyn. Meteorol. Oceanogr. 2013, 65, 1393–1399. [Google Scholar] [CrossRef]
- Ji, Z.M.; Kang, S.C. Evaluation of extreme climate events using a regional climate model for China. Int. J. Climatol. 2014, 35, 888–902. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Z.H.; Zhang, X.B.; Li, L.; Sun, Y. Additional risk in extreme precipitation in China from 1.5 °C to 2.0 °C global warming levels. Sci. Bull. 2018, 63, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.C.; Zhang, L.; Gou, P.; Huang, Q.Q.; Ma, Y.M.; Miao, S.G.; Ma, W.Q.; Xu, Y.L. Assessments of future climate extremes in China by using high-resolution PRECIS 2.0 simulations. Theor. Appl. Climatol. 2021, 145, 295–311. [Google Scholar] [CrossRef]
- Wei, W.; Shi, Z.J.; Yang, X.H.; Wei, Z.; Liu, Y.S.; Zhang, Z.Y.; Ge, G.; Zhang, X.; Guo, H.; Zhang, K.B.; et al. Recent Trends of Extreme Precipitation and Their Teleconnection with Atmospheric Circulation in the Beijing-Tianjin Sand Source Region, China, 1960–2014. Atmosphere 2017, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Schoof, J.T. Statistical downscaling in climatology. Geogr. Compass 2013, 7, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Winkler, J.A.; Guentchev, G.S.; Liszewska, M.; Perdinan; Tan, P.N. Climate scenario development and applications for local/regional climate change impact assessments: An overview for the non-climate scientist. Geogr. Compass 2011, 5, 301–328. [Google Scholar] [CrossRef]
- Feng, J.M.; Wang, Y.L.; Fu, C.B. Simulation of extreme climate events over China with different regional climate models. Atmos. Ocean. Sci. Lett. 2011, 4, 47–56. [Google Scholar]
- Jiang, Z.H.; Song, J.; Li, L.; Chen, W.L.; Wang, Z.F.; Wang, J. Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim. Chang. 2012, 110, 385–401. [Google Scholar] [CrossRef]
- Gao, X.J.; Wang, M.L.; Giorgi, F. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos. Ocean. Sci. Lett. 2013, 6, 381–386. [Google Scholar]
- Zou, L.W.; Zhou, T.J. Near future (2016–2040) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv. Atmos. Sci. 2013, 30, 806–818. [Google Scholar] [CrossRef]
- Yang, S.L.; Feng, J.M.; Dong, W.J.; Chou, J.M. Analyses of extreme climate events over China based on CMIP5 historical and future simulations. Adv. Atmos. Sci. 2014, 31, 1209–1220. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, J.; Shi, Y.; Zhou, B.T.; Li, R.K.; Wu, J. Change in extreme climate events over China based on CMIP5. Atmos. Ocean. Sci. Lett. 2015, 8, 185–192. [Google Scholar]
- Wang, Y.J.; Zhou, B.T.; Qin, D.H.; Wu, J.; Gao, R.; Song, L.C. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv. Atmos. Sci. 2017, 34, 289–305. [Google Scholar] [CrossRef]
- Wang, K.; Shi, H.D.; Gao, J.J.; Wang, C.L.; Hua, S.B.; Gao, Q.X. Potential variation of Beijing-Tianjin-Hebei Region’s air quality in RCP 8.5 scenarios by dynamic downscaling method with CCSM4/wrf-CMAQ model. Res. Environ. Sci. 2017, 30, 1661–1669. [Google Scholar]
- Han, Z.Y.; Tong, Y.; Gao, X.J.; Xu, Y. Correction based on quantile mapping for temperature simulated by the RegCM4. Adv. Clim. Change Res. 2018, 14, 331–340. [Google Scholar]
- Wu, J.; Gao, X.J.; Xu, Y. Climate change projection over Xiong’an District and its adjacent areas: An ensemble of RegCM4 simulations. Chin. J. Atmos. Sci. 2018, 42, 696–705. [Google Scholar]
- Wei, L.X.; Xin, X.G.; Xiao, C.; Li, Y.H.; Wu, Y.; Tang, H.Y. Performance of BCC-CSM models with different horizontal resolutions in simulating extreme climate events in China. J. Meteorol. Res. 2019, 33, 720–733. [Google Scholar] [CrossRef]
- Li, R.K.; Han, Z.Y.; Xu, Y.; Shi, Y.; Wu, J. An ensemble projection of GDP and population exposure to high temperature events over Jing–Jin–Ji district based on high resolution combined dynamical and statistical downscaling datasets. Clim. Chang. Res. 2020, 16, 491–504. [Google Scholar]
- Zhang, D.F.; Gao, X.J. Climate change of the 21st century over China from the ensemble of RegCM4 simulations. Chin. Sci. Bull. 2020, 65, 2516–2526. [Google Scholar] [CrossRef]
- Han, Z.Y.; Shi, Y.; Wu, J.; Xu, Y. Combined dynamical and statistical downscaling for high-resolution projections of multiple climate variables in the Beijing-Tianjin-Hebei region of China. J. Appl. Meteorol. Climatol. 2019, 58, 2387–2403. [Google Scholar] [CrossRef]
- Wang, Y.J.; Song, L.C.; Han, Z.Y.; Liao, Y.M.; Xu, H.M.; Zhai, J.Q.; Zhu, R. Climate-related risks in the construction of Xiongan New Area, China. Theor. Appl. Climatol. 2020, 141, 1301–1311. [Google Scholar] [CrossRef]
- Fan, L.J.; Fu, C.B.; Chen, D. Review on creating future climate change scenarios by statistical downscaling techniques. Adv. Earth Sci. 2005, 20, 320–329. [Google Scholar]
- Xu, Z.; Han, Y.; Yang, Z. Dynamical downscaling of regional climate: A review of methods and limitations. Sci. China Earth Sci. 2019, 62, 365–375. [Google Scholar] [CrossRef]
- Chen, D.; Achberger, C.; Räisänen, J.; Hellström, C. Using statistical downscaling to quantify the GCM-related uncertainty in regional climate change scenarios: A case study of Swedish precipitation. Adv. Atmos. Sci. 2006, 23, 54–60. [Google Scholar] [CrossRef]
- Wilks, D.S.; Wilby, R.L. The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr. 1999, 23, 329–357. [Google Scholar] [CrossRef]
- Kilsby, C.G.; Jones, P.D.; Burton, A.; Ford, A.C.; Fowler, H.J.; Harpham, C.; James, P.; Smith, A.; Wilby, R.L. A daily weather generator for use in climate change studies. Environ. Model. Softw. 2007, 22, 1705–1719. [Google Scholar] [CrossRef]
- Jones, P.D.; Harpham, C.; Goodess, C.M.; Kilsby, C.G. Perturbing a weather generator using change factors derived from regional climate model simulations. Nonlinear Processes Geophys. 2011, 18, 503–511. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.C.; Han, Z.Y. Assessing CMIP5 climate simulations and objective selection of models over the Yellow River basin. J. Meteorol. Environ. 2018, 34, 42–55. [Google Scholar]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein-Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar]
- Chen, D.; Achberger, C.; Ou, T.; Postgård, U.; Walther, A.; Liao, Y.M. Projecting future local precipitation and its extremes for Sweden. Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.M.; Zhang, Q.; Chen, D. Stochastic modeling of daily precipitation in China. J. Geogr. Sci. 2004, 14, 417–426. [Google Scholar]
- Liao, Y.M.; Chen, D.; Gao, G.; Xie, Y. Impacts of climate changes on parameters of a weather generator for daily precipitation in China. Acta Geogr. Sin. 2009, 64, 871–878. [Google Scholar]
- Liao, Y.M.; Liu, L.L.; Chen, D.; Xie, Y. An evaluation of the BCC/RCG-WG’s performance in simulating daily non-precipitation variables in China. Acta Meteorol. Sin. 2011, 69, 310–319. [Google Scholar]
- Liao, Y.M.; Chen, D.; Xie, Y. Spatial variability of the parameters of the Chinese stochastic weather generator for daily non-precipitation variables simulation in China. Acta Meteorol. Sin. 2013, 71, 1103–1114. [Google Scholar]
- Liao, Y.M. Change of parameters of BCC/RCG-WG for daily non-precipitation variables in China: 1951–1978 and 1979–2007. J. Geogr. Sci. 2013, 23, 579–594. [Google Scholar]
- Wight, J.R.; Hanson, C.L. Use of stochastically generated weather records with rangeland simulation models. J. Range Manag. 1991, 44, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Semenov, M.A.; Brooks, R.J. Spatial interpolation of the LARS-WG stochastic weather generator in Great Britain. Clim. Res. 1999, 11, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Hay, L.E.; Wilby, R.L.; Leavesley, G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Wilks, D.S. Use of stochastic weather generators for precipitation downscaling. Wiley Interdiscip. Rev. Clim. Change 2010, 1, 898–907. [Google Scholar] [CrossRef]
- Yang, W.; Andréasson, J.; Graham, L.P.; Olsson, J.; Rosberg, J.; Wetterhall, F. Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrol. Res. 2010, 41, 211–229. [Google Scholar] [CrossRef]
- Semenov, M.A.; Porter, J.R. Climatic variability and the modelling of crop yields. Agric. For. Meteorol. 1995, 173, 265–283. [Google Scholar] [CrossRef]
- Li, P.F.; Liu, W.J.; Zhao, X.Y. The changes of atmospheric temperature, precipitation and potential evapotranspiration in Beijing-Tianjin-Hebei region in recent 50 years. J. Arid Land Resour. Environ. 2015, 29, 137–143. [Google Scholar]
- Yu, Z.J.; Jin, Z.; Zhang, Y.P. Analysis on the change characteristics of precipitation in Beijing-Tianjin-Hebei region in recent 56 years. J. Anhui Agric. Sci. 2019, 47, 215–221. [Google Scholar]
- Miao, Z.W.; Li, N.; Lu, M.; Xu, L.G. Variation characteristics of extreme precipitation event in Beijing-Tianjin-Hebei region during 1961–2017. Water Resour. Hydropower Eng. 2019, 50, 34–44. [Google Scholar]
- Feng, L.; Zhou, T.J.; Wu, B.; Li, T.; Luo, J.J. Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv. Atmos. Sci. 2011, 28, 464–476. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Jiang, F.Q.; Wei, W.S.; Liu, M.Z.; Wang, W.W.; Bai, L.; Li, X.H.; Wang, S. Changes in annual maximum number of consecutive dry and wet days during 1961–2008 in Xinjiang, China. Nat. Hazards Earth Syst. Sci. 2012, 12, 1353–1365. [Google Scholar] [CrossRef]
- Gao, H.; Jiang, W.; Li, W.J. Changed relationships between the East Asian summer monsoon circulations and the summer rainfall in eastern China. J. Meteorol. Res. 2014, 28, 1075–1084. [Google Scholar] [CrossRef]
- Zhang, R.H. Natural and human-induced changes in summer climate over the East Asian monsoon region in the last half century: A review. Adv. Clim. Chang. Res. 2015, 6, 131–140. [Google Scholar] [CrossRef]
- Hao, L.S.; Ding, Y.H.; Min, J.Z. Relationship between summer monsoon changes in East Asia and abnormal summer rainfall in North China. Plateau Meteorol. 2016, 35, 1280–1289. [Google Scholar]
- Wang, G.M.; Liu, L.Y.; Hu, Z.Y. Risk assessment of rainstorm and flood disasters at grid-scale in Beijing-Tianjin-Hebei metropolitan area. J. Catastropho. 2020, 35, 186–193. [Google Scholar]
- Chen, H.P.; Sun, J.Q.; Li, H.X. Future changes in precipitation extremes over China using the NEX-GDDP high-resolution daily downscaled data-set. Atmos. Ocean. Sci. Lett. 2017, 10, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.F.; Shi, Y. Numerical simulation of climate changes over North China by RegCM3 model. Chin. J. Geophys. 2012, 55, 2854–2866. [Google Scholar] [CrossRef]
- Duan, Y.W.; Ma, Z.G.; Yang, Q. Characteristics of consecutive dry days variations in China. Theor. Appl. Climatol. 2017, 130, 701–709. [Google Scholar] [CrossRef] [Green Version]
Index | Description (Unit) |
---|---|
Arain | Amount of annual precipitation (mm) |
Nrain | Number of days with precipitation ≥0.1 mm (d) |
Pint | Daily precipitation intensity (precipitation total per rainy day, mm/d) |
Exc25 | Number of days with precipitation ≥25 mm (d) |
Exc40 | Number of days with precipitation ≥40 mm (d) |
Px1d | Greatest one-day precipitation (mm) |
Px5d | Greatest five-day total precipitation (mm) |
Pxcdd | Maximum number of consecutive days without precipitation (d) |
Time Period (Climate Change Scenario) | Data Source | Arain | Nrain | Pint | Exc25 | Exc40 | Px1d | Px5d | Pxcdd |
---|---|---|---|---|---|---|---|---|---|
2006–2030 (RCP4.5) | GCMs | 3.2 | −1.1 | 4.5 | 9.4 | 21.1 | −0.7 | 5.6 | −5.3 |
Downscaling | 7.8 | 0.2 | 7.4 | 14.8 | 25.4 | 12.8 | 14.5 | −0.3 | |
2031–2050 (RCP4.5) | GCMs | 7.5 | 0.0 | 7.5 | 16.6 | 31.8 | 1.0 | 6.7 | −10.2 |
Downscaling | 8.5 | 0.5 | 7.9 | 15.0 | 21.7 | 8.3 | 10.4 | −0.5 | |
2051–2070 (RCP4.5) | GCMs | 7.6 | −0.6 | 8.3 | 18.2 | 39.7 | 9.0 | 9.8 | −18.0 |
Downscaling | 8.9 | 0.4 | 8.3 | 15.3 | 23.5 | 12.6 | 14.5 | −0.2 | |
2006–2030 (RCP8.5) | GCMs | 4.4 | 0.3 | 4.3 | 7.7 | 13.0 | -0.7 | 1.1 | −7.0 |
Downscaling | 5.6 | 0.6 | 4.9 | 9.8 | 17.7 | 10.8 | 11.9 | −0.5 | |
2031–2050 (RCP8.5) | GCMs | 5.8 | −0.6 | 6.5 | 15.0 | 27.7 | 0.9 | 4.6 | −12.6 |
Downscaling | 5.1 | −0.7 | 5.7 | 10.5 | 18.4 | 11.4 | 12.3 | −1.0 | |
2051–2070 (RCP8.5) | GCMs | 11.3 | −0.5 | 11.7 | 30.5 | 64.9 | 10.8 | 16.7 | −14.7 |
Downscaling | 10.3 | 1.0 | 9.3 | 18.9 | 26.3 | 8.6 | 9.1 | −1.0 |
Time Period (Climate Change Scenario) | GCMs | Arain | Nrain | Pint | Exc25 | Exc40 | Px1d | Px5d | Pxcdd |
---|---|---|---|---|---|---|---|---|---|
2006–2030 (RCP4.5) | CNRM-CM5 | 16.0 | 4.9 | 10.5 | 22.8 | 35.4 | 20.5 | 23.2 | −0.6 |
CSIRO-Mk3-6-0 | 9.7 | 0.5 | 9.1 | 21.7 | 37.4 | 15.6 | 17.1 | 0.6 | |
EC-EARTH | 4.6 | −0.6 | 5.2 | 9.1 | 16.2 | 7.8 | 10.9 | −1.0 | |
MIROC-ESM-CHEM | 11.5 | −0.3 | 11.9 | 19.8 | 34.5 | 17.8 | 19.5 | −2.5 | |
NorESM1-M | −3.0 | −3.5 | 0.5 | 0.5 | 3.3 | 2.5 | 1.9 | 2.0 | |
Ensemble Mean | 7.8 | 0.2 | 7.4 | 14.8 | 25.4 | 12.8 | 14.5 | −0.3 | |
2031–2050 (RCP4.5) | CNRM-CM5 | 17.9 | 1.9 | 15.7 | 28.5 | 41.5 | 20.6 | 21.3 | 3.7 |
CSIRO-Mk3-6-0 | 0.3 | −1.4 | 1.8 | 2.8 | 8.9 | 5.0 | 6.6 | 2.1 | |
EC-EARTH | 18.1 | 4.0 | 13.5 | 30.3 | 44.5 | 16.1 | 19.7 | −2.1 | |
MIROC-ESM-CHEM | 2.8 | −2.5 | 5.5 | 5.6 | 8.3 | 5.1 | 5.5 | −3.6 | |
NorESM1-M | 3.5 | 0.7 | 2.8 | 7.9 | 5.3 | −5.4 | −1.0 | −2.4 | |
Ensemble Mean | 8.5 | 0.5 | 7.9 | 15.0 | 21.7 | 8.3 | 10.4 | −0.5 | |
2051–2070 (RCP4.5) | CNRM-CM5 | 25.6 | 6.1 | 18.3 | 40.0 | 56.7 | 25.9 | 29.2 | −2.1 |
CSIRO-Mk3-6-0 | −7.1 | −2.6 | −4.5 | −10.5 | −5.0 | 4.5 | 5.3 | 1.1 | |
EC-EARTH | 10.7 | 1.3 | 9.3 | 17.6 | 30.7 | 21.3 | 21.2 | 2.1 | |
MIROC-ESM-CHEM | 6.6 | 0.8 | 5.7 | 8.1 | 10.1 | 5.6 | 8.6 | −5.5 | |
NorESM1-M | 8.6 | −3.5 | 12.5 | 21.1 | 25.1 | 5.6 | 8.0 | 3.7 | |
Ensemble Mean | 8.9 | 0.4 | 8.3 | 15.3 | 23.5 | 12.6 | 14.5 | −0.2 | |
2006–2030 (RCP8.5) | CNRM-CM5 | 4.7 | 0.8 | 3.9 | 7.3 | 13.5 | 9.2 | 10.1 | 0.4 |
CSIRO-Mk3-6-0 | 5.8 | 3.0 | 2.7 | 8.1 | 18.5 | 12.5 | 13.0 | −3.7 | |
EC-EARTH | 11.7 | 2.0 | 9.5 | 20.2 | 35.0 | 18.8 | 22.0 | −2.2 | |
MIROC-ESM-CHEM | −1.1 | −3.5 | 2.5 | 0.2 | 7.0 | 11.9 | 10.1 | 1.2 | |
NorESM1-M | 7.0 | 0.8 | 6.1 | 13.4 | 14.7 | 1.4 | 4.5 | 1.8 | |
Ensemble Mean | 5.6 | 0.6 | 4.9 | 9.8 | 17.7 | 10.8 | 11.9 | −0.5 | |
2031–2050 (RCP8.5) | CNRM-CM5 | 4.9 | 1.3 | 3.5 | 10.3 | 16.8 | 7.8 | 11.1 | −0.9 |
CSIRO-Mk3-6-0 | 6.7 | −0.2 | 6.9 | 15.1 | 33.7 | 17.9 | 18.7 | −4.4 | |
EC-EARTH | 14.3 | 1.5 | 12.7 | 23.8 | 31.3 | 17.1 | 18.1 | −0.1 | |
MIROC-ESM-CHEM | −3.8 | −5.9 | 2.2 | −4.7 | −6.5 | 3.0 | 2.4 | 0.0 | |
NorESM1-M | 3.2 | −0.2 | 3.4 | 7.9 | 16.5 | 11.3 | 11.2 | 0.4 | |
Ensemble Mean | 5.1 | −0.7 | 5.7 | 10.5 | 18.4 | 11.4 | 12.3 | −1.0 | |
2051–2070 (RCP8.5) | CNRM-CM5 | 15.6 | −0.5 | 16.3 | 29.1 | 35.8 | 8.2 | 9.1 | -0.2 |
CSIRO-Mk3-6-0 | 1.7 | 2.9 | −0.9 | 1.4 | 10.0 | 9.5 | 9.0 | 1.6 | |
EC-EARTH | 13.9 | 1.3 | 12.5 | 27.5 | 43.5 | 15.6 | 17.9 | −1.2 | |
MIROC-ESM-CHEM | 3.3 | −2.8 | 6.2 | 6.0 | 8.4 | 6.2 | 3.0 | −3.6 | |
NorESM1-M | 17.0 | 4.2 | 12.3 | 30.3 | 34.0 | 3.3 | 6.6 | −1.7 | |
Ensemble Mean | 10.3 | 1.0 | 9.3 | 18.9 | 26.3 | 8.6 | 9.1 | −1.0 |
Time Period (Climate Change Scenario) | Regions | Arain | Nrain | Pint | Exc25 | Exc40 | Px1d | Px5d | Pxcdd |
---|---|---|---|---|---|---|---|---|---|
2006–2030 (RCP4.5) | Beijing | 7.5 | −0.1 | 7.5 | 14.0 | 21.7 | 10.3 | 9.7 | −3.2 |
Tianjin | 8.0 | 0.1 | 7.9 | 12.4 | 24.1 | 7.3 | 16.0 | −2.5 | |
Xiongan New Area | 8.4 | −0.1 | 8.5 | 15.5 | 29.3 | 16.8 | 12.9 | 8.6 | |
2031–2050 (RCP4.5) | Beijing | 8.9 | −0.1 | 9.0 | 16.4 | 20.4 | 4.8 | 3.2 | −0.9 |
Tianjin | 8.4 | 0.3 | 8.0 | 12.8 | 18.9 | −3.3 | 5.7 | −1.0 | |
Xiongan New Area | 10.8 | 0.8 | 9.8 | 18.6 | 29.9 | 11.6 | 14.4 | 7.2 | |
2051–2070 (RCP4.5) | Beijing | 7.0 | −0.8 | 7.8 | 13.2 | 19.7 | 6.5 | 10.5 | 0.5 |
Tianjin | 8.6 | −0.2 | 8.7 | 13.3 | 22.4 | 2.8 | 13.1 | 0.1 | |
Xiongan New Area | 8.4 | 0.2 | 7.9 | 15.4 | 25.4 | 12.9 | 7.9 | 16.8 | |
2006–2030 (RCP8.5) | Beijing | 5.9 | −0.2 | 6.2 | 11.4 | 19.6 | 10.4 | 11.4 | −2.0 |
Tianjin | 5.9 | 0.4 | 5.5 | 7.7 | 16.6 | 0.4 | 10.6 | −0.6 | |
Xiongan New Area | 5.2 | 0.5 | 4.8 | 9.1 | 18.4 | 9.8 | 10.1 | 1.1 | |
2031–2050 (RCP8.5) | Beijing | 4.6 | −1.2 | 5.8 | 9.5 | 15.4 | 9.0 | 10.1 | −2.1 |
Tianjin | 4.8 | −1.0 | 5.7 | 7.4 | 16.0 | 1.7 | 13.1 | −1.1 | |
Xiongan New Area | 4.8 | −1.1 | 5.9 | 9.9 | 19.4 | 9.4 | 10.4 | 1.4 | |
2051–2070 (RCP8.5) | Beijing | 12.3 | 0.6 | 11.6 | 22.5 | 31.5 | 10.3 | 13.3 | −3.0 |
Tianjin | 11.7 | 0.4 | 11.3 | 17.9 | 26.2 | 1.1 | 7.2 | 0.8 | |
Xiongan New Area | 9.3 | 0.5 | 8.8 | 15.6 | 23.3 | 7.0 | 9.7 | 13.2 |
Time Period | Climate Change Scenario | Arain | Nrain | Pint | Exc25 | Exc40 | Px1d | Px5d | Pxcdd |
---|---|---|---|---|---|---|---|---|---|
2006–2030 | RCP4.5 | 1.1 | 44.8 | 0.0 | 1.1 | 1.1 | 25.3 | 21.8 | 54.0 |
RCP8.5 | 4.0 | 32.2 | 3.4 | 6.9 | 3.4 | 31.6 | 26.4 | 52.9 | |
2031–2050 | RCP4.5 | 0.0 | 33.9 | 0.0 | 0.6 | 1.7 | 33.9 | 32.2 | 53.4 |
RCP8.5 | 2.9 | 70.7 | 1.1 | 2.9 | 2.3 | 31.6 | 25.9 | 51.7 | |
2051–2070 | RCP4.5 | 0.0 | 45.4 | 0.0 | 0.6 | 0.6 | 29.3 | 24.1 | 47.7 |
RCP8.5 | 0.0 | 27.6 | 0.0 | 1.1 | 1.1 | 33.3 | 31.6 | 49.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Chen, D.; Han, Z.; Huang, D. Downscaling of Future Precipitation in China’s Beijing-Tianjin-Hebei Region Using a Weather Generator. Atmosphere 2022, 13, 22. https://doi.org/10.3390/atmos13010022
Liao Y, Chen D, Han Z, Huang D. Downscaling of Future Precipitation in China’s Beijing-Tianjin-Hebei Region Using a Weather Generator. Atmosphere. 2022; 13(1):22. https://doi.org/10.3390/atmos13010022
Chicago/Turabian StyleLiao, Yaoming, Deliang Chen, Zhenyu Han, and Dapeng Huang. 2022. "Downscaling of Future Precipitation in China’s Beijing-Tianjin-Hebei Region Using a Weather Generator" Atmosphere 13, no. 1: 22. https://doi.org/10.3390/atmos13010022
APA StyleLiao, Y., Chen, D., Han, Z., & Huang, D. (2022). Downscaling of Future Precipitation in China’s Beijing-Tianjin-Hebei Region Using a Weather Generator. Atmosphere, 13(1), 22. https://doi.org/10.3390/atmos13010022