A Comparison of Machine Learning Methods to Forecast Tropospheric Ozone Levels in Delhi
Abstract
:1. Introduction
2. Methods and Experimental Design
3. Results
3.1. Data Exploration and Correlations
3.2. Ozone Forecasting Results
3.3. Tuning, Training, and Testing
3.4. Long Short-Term Memory (LSTM)
3.5. Seasonal Model Evaluation
- Summer: March, April and May;
- Monsoon: June, July, August, September;
- Post-Monsoon (Fall): October, November, December;
- Winter: January, February.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martınez-Espana, R.; Bueno-Crespo, A.; Timon, I.; Soto, J.; Munoz, A.; Cecilia, J.M. Air-Pollution Prediction in Smart Cities through Machine Learning Methods: A Case of Study in Murcia, Spain. J. Univ. Comput. Sci. 2018, 24, 261–276. [Google Scholar]
- Chen, T.M.; Kuschner, W.G.; Gokhale, J.; Shofer, S. Outdoor Air Pollution: Ozone Health Effects. Am. J. Med. Sci. 2007, 333, 244–248. [Google Scholar] [CrossRef]
- Käffer, M.I.; Domingos, M.; Lieske, I.; Vargas, V.M. Predicting ozone levels from climatic parameters and leaf traits of Bel-W3 tobacco variety. Environ. Pollut. 2019, 248, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Golaz, J.C.; Caldwell, P.M.; Van Roekel, L.P.; Petersen, M.R.; Tang, Q.; Wolfe, J.D.; Abeshu, G.; Anantharaj, V.; Asay-Davis, X.S.; Bader, D.C.; et al. The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. J. Adv. Model. Earth Syst. 2019, 11, 2089–2129. [Google Scholar] [CrossRef]
- Petersen, M.R.; Asay-Davis, X.S.; Berres, A.S.; Chen, Q.; Feige, N.; Hoffman, M.J.; Jacobsen, D.W.; Jones, P.W.; Maltrud, M.E.; Price, S.F.; et al. An Evaluation of the Ocean and Sea Ice Climate of E3SM Using MPAS and Interannual CORE-II Forcing. J. Adv. Model. Earth Syst. 2019, 11, 1438–1458. [Google Scholar] [CrossRef]
- Petersen, M.; Livescu, D. Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 2010, 22, 116101. [Google Scholar] [CrossRef] [Green Version]
- Rohl, C.A.; Strauss, C.E.M.; Misura, K.M.S.; Baker, D. Protein Structure Prediction Using Rosetta. In Numerical Computer Methods, Part D; Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2004; Volume 383, pp. 66–93. [Google Scholar] [CrossRef]
- Sonnewald, M.; Lguensat, R.; Jones, D.C.; Dueben, P.D.; Brajard, J.; Balaji, V. Bridging observations, theory and numerical simulation of the ocean using machine learning. Env. Res. Let. 2021, 16, 073008. [Google Scholar] [CrossRef]
- Bolton, T.; Zanna, L. Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization. J. Adv. Model. Earth Syst. 2019, 11, 376–399. [Google Scholar] [CrossRef] [Green Version]
- Xi, X.; Wei, Z.; Xiaoguang, R.; Yijie, W.; Xinxin, B.; Wenjun, Y.; Jin, D. A comprehensive evaluation of air pollution prediction improvement by a machine learning method. In Proceedings of the 2015 IEEE International Conference on Service Operations And Logistics, And Informatics (SOLI), Yasmine Hammamet, Tunisia, 15–17 November 2015; pp. 176–181. [Google Scholar] [CrossRef]
- Brownlee, J. Master Machine Learning Algorithms. 2016. Available online: https://machinelearningmastery.com/master-machine-learning-algorithms/ (accessed on 23 December 2021).
- Elkamel, A.; Abdul-Wahab, S.; Bouhamra, W.; Alper, E. Measurement and prediction of ozone levels around a heavily industrialized area: A neural network approach. Adv. Environ. Res. 2001, 5, 47–59. [Google Scholar] [CrossRef]
- Aljanabi, M.; Shkoukani, M.; Hijjawi, M. Ground-level Ozone Prediction Using Machine Learning Techniques: A Case Study in Amman, Jordan. Int. J. Autom. Comput. 2020, 17, 667–677. [Google Scholar] [CrossRef]
- Jumin, E.; Zaini, N.; Ahmed, A.N.; Abdullah, S.; Ismail, M.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Machine learning versus linear regression modelling approach for accurate ozone concentrations prediction. Eng. Appl. Comput. Fluid Mech. 2020, 14, 713–725. [Google Scholar] [CrossRef]
- Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [Google Scholar] [CrossRef] [Green Version]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Liang, Y.C.; Maimury, Y.; Chen, A.H.L.; Juarez, J.R.C. Machine Learning-Based Prediction of Air Quality. Appl. Sci. 2020, 10, 9151. [Google Scholar] [CrossRef]
- Liao, H.; Sun, W. Forecasting and Evaluating Water Quality of Chao Lake based on an Improved Decision Tree Method. Procedia Environ. Sci. 2010, 2, 970–979. [Google Scholar] [CrossRef] [Green Version]
- Lindner, B.L.; Mohlin, P.J.; Caulder, A.C.; Neuhauser, A. Development and Testing of a Decision Tree for the Forecasting of Sea Fog Along the Georgia and South Carolina Coast. J. Oper. Meteorol. 2018, 6, 47–58. [Google Scholar] [CrossRef]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Guo, C.; Liu, G.; Chen, C.H. Air Pollution Concentration Forecast Method Based on the Deep Ensemble Neural Network. Wirel. Commun. Mob. Comput. 2020, 2020, e8854649. [Google Scholar] [CrossRef]
- Kalajdjieski, J.; Zdravevski, E.; Corizzo, R.; Lameski, P.; Kalajdziski, S.; Pires, I.M.; Garcia, N.M.; Trajkovik, V. Air Pollution Prediction with Multi-Modal Data and Deep Neural Networks. Remote Sens. 2020, 12, 4142. [Google Scholar] [CrossRef]
- Rahman, P.A.; Panchenko, A.A.; Safarov, A.M. Using neural networks for prediction of air pollution index in industrial city. IOP Conf. Ser. Earth Environ. Sci. 2017, 87, 042016. [Google Scholar] [CrossRef] [Green Version]
- Maleki, H.; Sorooshian, A.; Goudarzi, G.; Baboli, Z.; Tahmasebi Birgani, Y.; Rahmati, M. Air pollution prediction by using an artificial neural network model. Clean Technol. Environ. Policy 2019, 21, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Krishan, M.; Jha, S.; Das, J.; Singh, A.; Goyal, M.K.; Sekar, C. Air quality modelling using long short-term memory (LSTM) over NCT-Delhi, India. Air Qual. Atmos. Health 2019, 12, 899–908. [Google Scholar] [CrossRef]
- Dua, R.D.; Madaan, D.M.; Mukherjee, P.M.; Lall, B.L. Real Time Attention Based Bidirectional Long Short-Term Memory Networks for Air Pollution Forecasting. In Proceedings of the 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), Newark, CA, USA, 4–9 April 2019; pp. 151–158. [Google Scholar] [CrossRef]
- Xayasouk, T.; Lee, H.; Lee, G. Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE) Models. Sustainability 2020, 12, 2570. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery (KDD’16). New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Ma, Z.; Liu, Y.; Shao, Y.; Zhao, W.; Bi, J. Spatiotemporal distributions of surface ozone levels in China from 2005 to 2017: A machine learning approach. Environ. Int. 2020, 142, 105823. [Google Scholar] [CrossRef]
- Capilla, C. Prediction of hourly ozone concentrations with multiple regression and multilayer perceptron models. Int. J. Sustain. Dev. Plan. 2016, 11, 558–565. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Cui, L.; Hongbo, F.; Li, J.; Zhao, Y.; Chen, J. Satellite-based estimation of full-coverage ozone (O3) concentration and health effect assessment across Hainan Island. J. Clean. Prod. 2020, 244, 118773. [Google Scholar] [CrossRef]
- World’s Most Polluted Cities in 2020—PM2.5 Ranking|AirVisual. Available online: https://www.iqair.com/us/world-most-polluted-cities (accessed on 1 November 2020).
- Central Pollution Control Board of India, Air Pollution Standards. Available online: https://cpcb.nic.in/air-pollution (accessed on 1 July 2021).
- Central Pollution Control Board of India, Automatic Monitoring Data. Available online: https://cpcb.nic.in/automatic-monitoring-data/ (accessed on 1 November 2020).
- Visual Crossing Weather API Documentation (Visual-Crossing-Corporation-Visual-Crossing-Corporation-Default). Available online: https://rapidapi.com/visual-crossing-corporation-visual-crossing-corporation-default/api/visual-crossing-weather (accessed on 1 November 2020).
- Masood, A.; Ahmad, K. A model for particulate matter (PM2.5) prediction for Delhi based on machine learning approaches. Procedia Comput. Sci. 2020, 167, 2101–2110. [Google Scholar] [CrossRef]
- Mahalingam, U.; Elangovan, K.; Dobhal, H.; Valliappa, C.; Shrestha, S.; Kedam, G. A Machine Learning Model for Air Quality Prediction for Smart Cities. In Proceedings of the 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 21–23 March 2019; pp. 452–457. [Google Scholar] [CrossRef]
- Sinha, A.; Singh, S. Review on air pollution of Delhi zone using machine learning algorithm. J. Air Pollut. Health 2020, 5, 259–272. [Google Scholar] [CrossRef]
- Sinha, A.; Singh, S. Dynamic forecasting of air pollution in Delhi zone using machine learning algorithm. Quantum J. Eng. Sci. Technol. 2021, 2, 40–53. [Google Scholar]
- Shukla, K.; Dadheech, N.; Kumar, P.; Khare, M. Regression-based flexible models for photochemical air pollutants in the national capital territory of megacity Delhi. Chemosphere 2021, 272, 129611. [Google Scholar] [CrossRef]
- National Ambient Air Quality Standards. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 1 July 2021).
- Caiafa, C.F.; Solé-Casals, J.; Marti-Puig, P.; Zhe, S.; Tanaka, T. Decomposition Methods for Machine Learning with Small, Incomplete or Noisy Datasets. Appl. Sci. 2020, 10, 8481. [Google Scholar] [CrossRef]
- Chemistry in the Sunlight. 2003. Available online: https://earthobservatory.nasa.gov/features/ChemistrySunlight/chemistry_sunlight3.php (accessed on 1 November 2020).
- Iskandaryan, D.; Ramos, F.; Trilles, S. Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review. Appl. Sci. 2020, 10, 2401. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Park, K.; Jung, Y.; Kim, K.; Park, S.K. Determination of Deep Learning Model and Optimum Length of Training Data in the River with Large Fluctuations in Flow Rates. Water 2020, 12, 3537. [Google Scholar] [CrossRef]
- Maddu, R.; Vanga, A.R.; Sajja, J.K.; Basha, G.; Shaik, R. Prediction of land surface temperature of major coastal cities of India using bidirectional LSTM neural networks. J. Water Clim. Chang. 2021, 12, 3801–3819. [Google Scholar] [CrossRef]
- Liu, B.; Yan, S.; Li, J.; Qu, G.; Li, Y.; Lang, J.; Gu, R. A Sequence-to-Sequence Air Quality Predictor Based on the n-Step Recurrent Prediction. IEEE Access 2019, 7, 43331–43345. [Google Scholar] [CrossRef]
- Zhang, B.; Zou, G.; Qin, D.; Lu, Y.; Jin, Y.; Wang, H. A novel Encoder-Decoder model based on read-first LSTM for air pollutant prediction. Sci. Total Environ. 2021, 765, 144507. [Google Scholar] [CrossRef]
- Tiwari, A.; Gupta, R.; Chandra, R. Delhi air quality prediction using LSTM deep learning models with a focus on COVID-19 lockdown. arXiv 2021, arXiv:2102.10551. [Google Scholar]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, R.; Fang, Y. LSTM Network Based on on Antlion Optimization and its Application in Flight Trajectory Prediction. In Proceedings of the 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 25–27 May 2018; pp. 1658–1662. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Huo, X.; Xu, X.; Li, Y. Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm. Energies 2019, 12, 950. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man, Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, C.; Lei, X.; Yuan, Y.; Muhammad Adnan, R. Monthly runoff forecasting based on LSTM–ALO model. Stoch. Environ. Res. Risk Assess. 2018, 32, 2199–2212. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Kisi, O.; Yaseen, Z.M.; Shahid, S.; Zounemat-Kermani, M. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl.-Based Syst. 2021, 230, 107379. [Google Scholar] [CrossRef]
- Belvederesi, C.; Dominic, J.A.; Hassan, Q.K.; Gupta, A.; Achari, G. Predicting River Flow Using an AI-Based Sequential Adaptive Neuro-Fuzzy Inference System. Water 2020, 12, 1622. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Zhang, Y.; Wu, F.; Chen, F.; Wang, W.; Guo, F. Application of GWO-ELM Model to Prediction of Caojiatuo Landslide Displacement in the Three Gorge Reservoir Area. Water 2020, 12, 1860. [Google Scholar] [CrossRef]
- Jaafari, A.; Panahi, M.; Pham, B.T.; Shahabi, H.; Bui, D.T.; Rezaie, F.; Lee, S. Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. CATENA 2019, 175, 430–445. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.; Islam, A.R.M.T.; Kisi, O.; Kuriqi, A.; Heddam, S. Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms. Comput. Electron. Agric. 2021, 191, 106541. [Google Scholar] [CrossRef]
- Goyal, M.K.; Bharti, B.; Quilty, J.; Adamowski, J.; Pandey, A. Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst. Appl. 2014, 41, 5267–5276. [Google Scholar] [CrossRef]
- Updates To The Air Quality Index (Aqi) For Ozone And Ozone Monitoring Requirements. Available online: https://www.epa.gov/sites/default/files/2015-10/documents/20151001_air_quality_index_updates.pdf (accessed on 1 July 2021).
- Srivastava, C.; Singh, S.; Singh, A.P. Estimation of Air Pollution in Delhi Using Machine Learning Techniques. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 28–29 September 2018; pp. 304–309. [Google Scholar] [CrossRef]
- Gajinkar, A. Exploratory Data Analysis of Indian Rainfall Data. 2019. Available online: https://medium.com/@anusha.gajinkar/exploratory-data-analysis-of-indian-rainfall-data-f9755f2cc81d (accessed on 1 November 2020).
- Kumar, A.; Goyal, P. Forecasting of air quality in Delhi using principal component regression technique. Atmos. Pollut. Res. 2011, 2, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, S.; Nasir, N.; Ismail, M.; Ahmed, A.; Jarkoni, M. Development of Ozone Prediction Model in Urban Area. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 2263–2267. [Google Scholar] [CrossRef]
- Jin, X.; Fiore, A.M.; Murray, L.T.; Valin, L.C.; Lamsal, L.N.; Duncan, B.; Folkert Boersma, K.; De Smedt, I.; Abad, G.G.; Chance, K.; et al. Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends. J. Geophys. Res. Atmos. 2017, 122, 10439–10461. [Google Scholar] [CrossRef] [PubMed]
- Lovrić, M.; Pavlović, K.; Vuković, M.; Grange, S.K.; Haberl, M.; Kern, R. Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning. Environ. Pollut. 2021, 274, 115900. [Google Scholar] [CrossRef] [PubMed]
Variable | Abbv. | Units | Corr. w/ Current O3 | Corr. w/ O3 in 24 h | Used in ML? |
---|---|---|---|---|---|
Ozone (current) | O3 | μg/m3 | 1.000 | 0.579 | Yes |
Ozone (in 24 h) | O3P24 | μg/m3 | 0.579 | 1.000 | N/A |
Particulate matter (<10 microns) | PM10 | μg/m3 | 0.390 | 0.271 | Yes |
Particulate matter (<2.5 microns) | PM2.5 | μg/m3 | 0.170 | 0.125 | Yes * |
Nitrogen oxide | NO | μg/m3 | 0.298 | 0.145 | Yes * |
Nitrogen dioxide | NO2 | μg/m3 | 0.473 | 0.357 | Yes |
Any nitric x-oxide | NOx | ppb | 0.331 | 0.202 | Yes |
Ammonia | NH3 | μg/m3 | −0.044 | −0.088 | Yes |
Carbon monoxide | CO | μg/m3 | −0.320 | −0.281 | Yes |
Sulfur dioxide | SO2 | μg/m3 | 0.448 | 0.352 | Yes |
Benzene | Benzene | μg/m3 | 0.093 | 0.046 | No |
Toluene | Toluene | μg/m3 | 0.228 | 0.099 | Yes |
Xylene | Xylene | μg/m3 | −0.108 | −0.175 | No |
Temperature | Temp | deg C | 0.242 | 0.224 | Yes |
Cloud cover | Cloud | % cover | −0.123 | −0.065 | No |
Humidity | Humid | % humidity | −0.253 | −0.221 | Yes |
Sea level pressure | Press | Millibars | −0.102 | −0.112 | No |
Machine Learning Method | Parameters |
---|---|
Linear Regression | n/a |
KNN | n_neighbors = 4, metric = ‘minkowski’, p = 1 |
SVM | C = 10, gamma = 0.1, kernel = ‘rbf’ |
Random Forest | max_depth = 50, random_state = 0, n_estimators = 250 |
Decision Tree | random_state = 0, max_depth = 6 |
AdaBoost | random_state = 0, learning_rate = 0.1, n_estimators = 100 |
XGBoost | learning_rate = 0.1, max_depth = 10, n_estimators = 300, |
random_state = 0, silent = True | |
BD-LSTM | batch_size = 72, epochs = 25, |
n_neurons = 256 (first layer), 128 (second layer), | |
dropout = 0.2, n_hours = 8, n_steps = 3 | |
optimizer = ‘adam’, loss = ‘mse’ |
Model Name | Correlation Coefficient | R2 | R2 Adjusted | RMSE μg/m3 | MAE μg/m3 | Time s |
---|---|---|---|---|---|---|
XGBoost | 0.784 | 0.6161 | 0.6156 | 20.78 | 13.67 | 315.6 |
Random Forest | 0.782 | 0.6041 | 0.6035 | 21.11 | 13.99 | 740.1 |
KNN | 0.739 | 0.5126 | 0.5120 | 23.41 | 15.55 | 1.9 |
SVM | 0.695 | 0.4633 | 0.4626 | 33.96 | 25.76 | 172.7 |
Decision Tree | 0.656 | 0.4032 | 0.4023 | 25.91 | 17.54 | 1.8 |
Linear Regression | 0.626 | 0.3937 | 0.3929 | 26.12 | 18.06 | 0.3 |
AdaBoost | 0.623 | 0.3523 | 0.3514 | 26.99 | 20.70 | 91.5 |
LSTM | 0.393 | 0.1550 | NA | 44.5 | 33.70 | 429.8 |
Model Name | R | R2 | R2 Adjusted | RMSE μg/m3 | MAE μg/m3 | Time s |
---|---|---|---|---|---|---|
XGBoost | 0.7814 | 0.6106 | 0.6102 | 21.65 | 14.17 | 259.6 |
Random Forest | 0.7803 | 0.6088 | 0.6084 | 21.70 | 14.33 | 795.1 |
KNN | 0.7469 | 0.5579 | 0.5575 | 22.89 | 14.82 | 2.8 |
SVM | 0.7186 | 0.5164 | 0.5159 | 35.20 | 26.50 | 262.8 |
Decision Tree | 0.6923 | 0.4793 | 0.4787 | 25.08 | 16.74 | 2.0 |
AdaBoost | 0.6626 | 0.4390 | 0.4384 | 25.23 | 19.27 | 87.2 |
Linear Regression | 0.6856 | 0.4700 | 0.4694 | 25.79 | 17.30 | 0.4 |
BD-LSTM | 0.8805 | 0.7750 | NA | 14.79 | 11.62 | 618.0 |
Model Name | R | R2 | R2 Adjusted | RMSE μg/m3 | MAE μg/m3 | Time s |
---|---|---|---|---|---|---|
XGBoost | 0.7967 | 0.6347 | 0.6344 | 16.02 | 9.72 | 306.1 |
Random Forest | 0.7917 | 0.6268 | 0.6265 | 16.03 | 9.70 | 1113.1 |
KNN | 0.7469 | 0.5722 | 0.5719 | 17.00 | 10.14 | 5.1 |
SVM | 0.7369 | 0.543 | 0.5426 | 25.12 | 18.01 | 775.5 |
Decision Tree | 0.7121 | 0.5071 | 0.5067 | 18.18 | 11.26 | 2.5 |
Linear Regression | 0.6733 | 0.4534 | 0.4530 | 18.93 | 12.10 | 0.3 |
AdaBoost | 0.6602 | 0.4359 | 0.4354 | 19.76 | 13.41 | 126.1 |
BD-LSTM | 0.7528 | 0.5667 | NA | 11.78 | 8.27 | 613.2 |
Model Name | R | R2 | R2 Adjusted | RMSE μg/m3 | MAE μg/m3 | Time s |
---|---|---|---|---|---|---|
XGBoost | 0.798 | 0.6374 | 0.6368 | 25.23 | 14.65 | 200.8 |
Random Forest | 0.797 | 0.6350 | 0.6344 | 25.08 | 14.91 | 604.3 |
KNN | 0.761 | 0.5783 | 0.5777 | 26.63 | 15.70 | 1.9 |
SVM | 0.677 | 0.4583 | 0.4575 | 43.07 | 30.84 | 158.2 |
Decision Tree | 0.681 | 0.4642 | 0.4633 | 29.90 | 17.70 | 1.9 |
Linear Regression | 0.626 | 0.3925 | 0.3916 | 32.80 | 20.60 | 0.6 |
AdaBoost | 0.704 | 0.4951 | 0.4942 | 31.51 | 20.77 | 57.9 |
BD-LSTM | 0.8187 | 0.6703 | NA | 13.62 | 10.26 | 126.9 |
Model Name | R | R2 | R2 Adjusted | RMSE μg/m3 | MAE μg/m3 | Time s |
---|---|---|---|---|---|---|
XGBoost | 0.8686 | 0.7545 | 0.7542 | 19.19 | 10.89 | 288.6 |
Random Forest | 0.8645 | 0.7474 | 0.7471 | 19.37 | 11.08 | 852.7 |
KNN | 0.8389 | 0.7038 | 0.7035 | 21.68 | 12.35 | 2.1 |
SVM | 0.7980 | 0.6368 | 0.6364 | 39.17 | 25.25 | 247.7 |
Decision Tree | 0.7892 | 0.6229 | 0.6224 | 23.34 | 13.58 | 1.9 |
Linear Regression | 0.7622 | 0.5809 | 0.5804 | 24.75 | 14.82 | 0.4 |
AdaBoost | 0.7407 | 0.5487 | 0.5482 | 24.13 | 15.96 | 288.9 |
BD-LSTM | 0.7235 | 0.5235 | NA | 11.98 | 9.72 | 497.3 |
Season | Correct Index | Within 1 Index |
---|---|---|
Annual | 92.0% | 98.0% |
Winter | 97.3% | 99.6% |
Monsoon | 90.3% | 98.5% |
Post-Monsoon | 92.8% | 98.8% |
Summer | 88.9% | 97.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juarez, E.K.; Petersen, M.R. A Comparison of Machine Learning Methods to Forecast Tropospheric Ozone Levels in Delhi. Atmosphere 2022, 13, 46. https://doi.org/10.3390/atmos13010046
Juarez EK, Petersen MR. A Comparison of Machine Learning Methods to Forecast Tropospheric Ozone Levels in Delhi. Atmosphere. 2022; 13(1):46. https://doi.org/10.3390/atmos13010046
Chicago/Turabian StyleJuarez, Eliana Kai, and Mark R. Petersen. 2022. "A Comparison of Machine Learning Methods to Forecast Tropospheric Ozone Levels in Delhi" Atmosphere 13, no. 1: 46. https://doi.org/10.3390/atmos13010046
APA StyleJuarez, E. K., & Petersen, M. R. (2022). A Comparison of Machine Learning Methods to Forecast Tropospheric Ozone Levels in Delhi. Atmosphere, 13(1), 46. https://doi.org/10.3390/atmos13010046