Santa Ana Winds: Fractal-Based Analysis in a Semi-Arid Zone of Northern Mexico
Abstract
:1. Introduction
2. Theory
2.1. Rescaled Range
- It starts with a series of M size. The input profile is defined; this is obtained from the difference between the records of two consecutive points:
- The average of differences for the selected window width is obtained as:
- The average of the differences obtained in the previous step is subtracted from the input profile , defined as:
- Finally, range (R) and standard deviation (S) are given by:
- Gaussian random walks, or, in general, independent processes, have an H = 0.5.
- If 0.5 < H < 1, positive dependence is indicated, and the series is called persistent.
- If 0 < H < 0.5, negative dependence is indicated, producing anti-persistence.
2.2. Climate Predictability Index
2.3. Inverse Distance Weighting (IDW)
3. Materials and Methods
3.1. Databases
3.2. Santa Ana
3.3. Rescaled Range (R/S)
3.4. Predictability Index
3.5. Spatialization
4. Results and Discussion
4.1. Fractal Analysis
Hurst Exponent
4.2. Predictability Index
4.2.1. Climatic Predictability Index
4.2.2. Correlation Matrix Predictability Index
4.3. Geospatialization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Álvarez, C.A.; Carbajal, N. Regions of influence and environmental effects of Santa Ana wind event. Air Qual. Atmos. Health 2019, 12, 1019–1034. [Google Scholar] [CrossRef]
- Glickman, T.S.; Zenk, W. Glossary of Meteorology; Ametican Meteorogical Society: Boston, MA, USA, 2021. [Google Scholar]
- Schwarz, L.; Malig, B.; Guzman-Morales, J.; Guirguis, K.; Ilango, S.D.; Sheridan, P.; Gershunov, A.; Basu, R.; Benmarhnia, T. The health burden of fall, winter and spring extreme heat events in Southern California and contribution of Santa Ana Winds. Environ. Res. Lett. 2020, 15, 054017. [Google Scholar] [CrossRef]
- Raphael, M.N. The Santa Ana Winds of California. Earth Interact. 2003, 7, 1–13. [Google Scholar] [CrossRef]
- Jones, C.; Fujioka, F.; Carvalho, L.M.V. Forecast skill of synoptic conditions associated with Santa Ana winds in Southern California. Mon. Weather Rev. 2010, 138, 4528–4541. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Barbero, R.; Nauslar, N.J. Diagnosing santa ana winds in Southern California with synoptic-scale analysis. Weather Forecast. 2013, 28, 704–710. [Google Scholar] [CrossRef]
- Guzman-Morales, J.; Gershunov, A.; Theiss, J.; Li, H.; Cayan, D. Santa Ana Winds of Southern California: Their climatology, extremes, and behavior spanning six and a half decades. Geophys. Res. Lett. 2016, 43, 2827–2834. [Google Scholar] [CrossRef] [Green Version]
- Conil, S.; Hall, A. Local regimes of atmospheric variability: A case study of Southern California. J. Clim. 2006, 19, 4308–4324. [Google Scholar] [CrossRef]
- Hughes, M.; Hall, A. Local and synoptic mechanisms causing Southern California’s Santa Ana winds. Clim. Dyn. 2010, 34, 847–857. [Google Scholar] [CrossRef] [Green Version]
- Dye, A.W.; Kim, J.B.; Riley, K.L. Spatial heterogeneity of winds during Santa Ana and non-Santa Ana wildfires in Southern California with implications for fire risk modeling. Heliyon 2020, 6, e04159. [Google Scholar] [CrossRef]
- Rolinski, T.; Capps, S.B.; Fovell, R.G.; Cao, Y.; D’Agostino, B.J.; Vanderburg, S. The Santa Ana wildfire threat index: Methodology and operational implementation. Weather Forecast. 2016, 31, 1881–1897. [Google Scholar] [CrossRef]
- Billmire, M.; French, N.H.F.; Loboda, T.; Owen, R.C.; Tyner, M. Santa Ana winds and predictors of wildfire progression in southern California. Int. J. Wildland Fire 2014, 23, 1119–1129. [Google Scholar] [CrossRef]
- Cao, Y. The Santa Ana Winds of Southern California in the Context of Fire Weather. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2015. [Google Scholar]
- Cao, Y.; Fovell, R.G. Downslope windstorms of San Diego County. Part I: A case study. Mon. Weather Rev. 2016, 144, 529–552. [Google Scholar] [CrossRef]
- Navarro-Olache, L.F.; Castro, R.; Durazo, R.; Hernández-Walls, R.; Mejía-Trejo, A.; Flores-Vidal, X.; Flores-Morales, A.L. Influence of Santa Ana winds on the surface circulation of Todos Santos Bay, Baja California, Mexico. Atmósfera 2021, 34, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Trasviña, A.; Ortiz-Figueroa, M.; Herrera, H.; Cosío, M.A.; González, E. “Santa Ana” winds and upwelling filaments off Northern Baja California. Dyn. Atmos. Ocean. 2003, 37, 113–129. [Google Scholar] [CrossRef]
- Castro, R.; Parés-Sierra, A.; Marinone, S. Evolution and extension of the Santa Ana winds of February 2002 over the ocean, off California and the Baja California Peninsula. Cienc. Mar. 2003, 29, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Zamora, M.; Lambert, A.; Montero, G. Effect of some meteorological phenomena on the wind potential of Baja California. Energy Procedia 2014, 57, 1327–1336. [Google Scholar] [CrossRef] [Green Version]
- Sosa-Avalos, R.; Gaxiola-Castro, G.; Durazo, R.; Greg-Mitchell, B. Effect of Santa Ana winds on bio-optical properties off Baja California. Cienc. Mar. 2005, 31, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Millán, H.; Kalauzi, A.; Cukic, M.; Biondi, R. Nonlinear dynamics of meteorological variables: Multifractality and chaotic invariants in daily records from Pastaza, Ecuador. Theor. Appl. Climatol. 2010, 102, 75–85. [Google Scholar] [CrossRef]
- López-Lambraño, A.A.; Fuentes, C.; López-Ramos, A.A.; Mata-Ramírez, J.; López-Lambraño, M. Spatial and temporal Hurst exponent variability of rainfall series based on the climatological distribution in a semiarid region in Mexico. Atmosfera 2018, 31, 199–219. [Google Scholar] [CrossRef]
- Caldeira, R.; Fernández, I.; Pacheco, J.M. On NAO’s predictability through the DFA method. Meteorol. Atmos. Phys. 2007, 96, 221–227. [Google Scholar] [CrossRef]
- Maruyama, F.; Kai, K.; Morimoto, H. Wavelet-based multifractal analysis on a time series of solar activity and PDO climate index. Adv. Space Res. 2017, 60, 1363–1372. [Google Scholar] [CrossRef]
- Diodato, N.; de Guenni, L.B.; Garcia, M.; Bellocchi, G. Decadal oscillation in the predictability of Palmer Drought Severity Index in California. Climate 2019, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- da Silva, H.S.; Silva, J.R.S.; Stosic, T. Multifractal analysis of air temperature in Brazil. Phys. A Stat. Mech. Its Appl. 2020, 549, 124333. [Google Scholar] [CrossRef]
- Harrouni, S.; Guessoum, A. Using fractal dimension to quantify long-range persistence in global solar radiation. Chaos Solitons Fractals 2009, 41, 1520–1530. [Google Scholar] [CrossRef]
- López-Lambraño, A.; Carrillo-Yee, E.; Fuentes, C.; López-Ramos, A.; López-Lambraño, M. Una revisión de los métodos para estimar el exponente de Hurst y la dimensión fractal en series de precipitación y temperatura. Rev. Mex. Fis. 2017, 63, 244–267. [Google Scholar]
- Rehman, S.; Siddiqi, A.H. Wavelet based correlation coefficient of time series of Saudi Meteorological Data. Chaos Solitons Fractals 2009, 39, 1764–1789. [Google Scholar] [CrossRef]
- Rangarajan, G.; Sant, D.A. A climate predictability index and its applications. Geophys. Res. Lett. 1997, 24, 1239–1242. [Google Scholar] [CrossRef]
- Rehman, S. Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index. Chaos Solitons Fractals 2009, 39, 499–509. [Google Scholar] [CrossRef]
- Li, M.; Xia, J.; Meng, D.J. DFA based predictability indices analysis of climatic dynamics in Beijing area, China. Adv. Mater. Res. 2012, 382, 60–64. [Google Scholar] [CrossRef]
- Ryu, S.; Song, J.J.; Kim, Y.; Jung, S.H.; Do, Y.; Lee, G.W. Spatial Interpolation of Gauge Measured Rainfall Using Compressed Sensing. Asia-Pac. J. Atmos. Sci. 2021, 57, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Acosta, L.; Medrano-Barboza, J.P.; López-Ramos, Á.; Remolina López, J.; López-Lambraño, A.A. SARIMA Approach to Generating Synthetic Monthly Rainfall in the Sin ú River Watershed in Colombia. Atmosphere 2020, 11, 602. [Google Scholar] [CrossRef]
- Rolinski, T.; Capps, S.B.; Zhuang, W. Santa Ana winds: A descriptive climatology. Weather Forecast. 2019, 34, 257–275. [Google Scholar] [CrossRef]
- Edinger, J.G.; Helvey, R.A.; Baumhefner, D. Surface Wind Patterns in the Los Angeles Basing during “Santa Ana” Conditions; University of California: Los Angeles, CA, USA, 1964; pp. 1–73. [Google Scholar]
- Broday, D.M. Studying the time scale dependence of environmental variables predictability using fractal analysis. Environ. Sci. Technol. 2010, 44, 4629–4634. [Google Scholar] [CrossRef] [PubMed]
- Korvin, G.; Boyd, D.M.; O’Dowd, R. Fractal characterization of the South Australian gravity station network. Geophys. J. Int. 1990, 100, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Peñate, I.; Martín-González, J.M.; Rodríguez, G.; Cianca, A. Scaling properties of rainfall and desert dust in the Canary Islands. Nonlinear Process. Geophys. 2013, 20, 1079–1094. [Google Scholar] [CrossRef] [Green Version]
- Valle, M.A.V.; García, G.M.; Cohen, I.S.; Oleschko, L.K.; Corral, J.A.R.; Korvin, G. Spatial variability of the hurst exponent for the daily scale rainfall series in the state of zacatecas, Mexico. J. Appl. Meteorol. Climatol. 2013, 52, 2771–2780. [Google Scholar] [CrossRef]
- Lambraño, A.L. Análisis Multifractal y Modelación de la Precipitación. Ph.D. Thesis, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico, 2012. [Google Scholar]
- Mianabadi, A.; Faridhosseini, A. The Investigation of Mashhad’s Heat Island by using Satellite Images and Fractal Theory (Box Counting method). Int. J. Appl. Environ. Sci. 2011, 6, 229–240. [Google Scholar]
- Kalamaras, N.; Philippopoulos, K.; Deligiorgi, D.; Tzanis, C.G.; Karvounis, G. Multifractal scaling properties of daily air temperature time series. Chaos Solitons Fractals 2017, 98, 38–43. [Google Scholar] [CrossRef]
- Tatli, H. Detecting Persistence of Meteorological Drought via the Hurst Exponent. Meteorol. Appl. 2015, 22, 763–769. [Google Scholar] [CrossRef]
- Zhao, X.; Shang, P.; Huang, J. Several fundamental properties of DCCA cross-correlation coefficient. Fractals 2017, 25, 1750017. [Google Scholar] [CrossRef]
- Jonah, K.; Wen, W.; Shahid, S.; Ali, M.A.; Bilal, M.; Habtemicheal, B.A.; Iyakaremye, V.; Qiu, Z.; Almazroui, M.; Wang, Y.; et al. Spatiotemporal variability of rainfall trends and influencing factors in Rwanda. J. Atmos. Sol.-Terr. Phys. 2021, 219, 105631. [Google Scholar] [CrossRef]
Code | Name | Latitude | Longitude | Altitude | P | T | R | H | W |
---|---|---|---|---|---|---|---|---|---|
2035 | Ojos Negros | 31.910 | −116.270 | 680 | 0.77 | 0.93 | 0.73 | 0.81 | 0.66 |
2066 | Sierra de Juárez | 32.000 | −115.950 | 1580 | 0.80 | 0.96 | 0.69 | 0.85 | 0.68 |
2079 | El Alamar | 31.840 | −116.200 | 710 | 0.78 | 0.93 | 0.73 | 0.81 | 0.66 |
2118 | Valle San Rafael | 31.920 | −116.230 | 721 | 0.77 | 0.94 | 0.72 | 0.82 | 0.66 |
2164 | Ejido El Porvenir | 32.110 | −115.850 | 330 | 0.82 | 0.96 | 0.68 | 0.86 | 0.68 |
2001 | Agua Caliente | 32.110 | −116.450 | 400 | 0.79 | 0.93 | 0.74 | 0.81 | 0.65 |
2004 | Ignacio Zaragoza Belén | 32.200 | −116.490 | 540 | 0.80 | 0.93 | 0.74 | 0.81 | 0.64 |
2005 | Boquilla Santa Rosa de la Misión | 32.020 | −116.780 | 250 | 0.83 | 0.91 | 0.76 | 0.75 | 0.65 |
2021 | El Pinal | 32.180 | −116.290 | 1320 | 0.77 | 0.94 | 0.72 | 0.83 | 0.64 |
2025 | Ensenada (Obs) | 31.860 | −116.610 | 21 | 0.82 | 0.92 | 0.76 | 0.77 | 0.66 |
2036 | Olivares Mexicanos | 32.050 | −116.680 | 340 | 0.82 | 0.92 | 0.76 | 0.77 | 0.65 |
2049 | San Juan de Dios Norte | 32.130 | −116.170 | 1280 | 0.78 | 0.95 | 0.70 | 0.83 | 0.65 |
2094 | El Farito | 31.980 | −116.670 | 250 | 0.82 | 0.92 | 0.75 | 0.77 | 0.65 |
2122 | Real del Castillo Viejo | 31.950 | −116.750 | 610 | 0.83 | 0.90 | 0.76 | 0.75 | 0.65 |
2077 | La Misión | 32.100 | −116.810 | 20 | 0.83 | 0.91 | 0.76 | 0.74 | 0.65 |
2114 | Ejido Carmen Serdán | 32.240 | −116.580 | 560 | 0.81 | 0.93 | 0.75 | 0.80 | 0.64 |
Stations | Days with Santa Ana Winds | ||||||
---|---|---|---|---|---|---|---|
Code | Name | Latitude | Longitude | Altitude | Criterion of W a | Criterion of WD b | W and WD c |
2035 | Ojos Negros | 31.91 | −116.26 | 680 | 1644 | 2859 | 463 |
2066 | Sierra de Juárez | 32.00 | −115.95 | 1580 | 1673 | 2905 | 163 |
2079 | El Alamar | 31.84 | −116.20 | 710 | 1675 | 2863 | 460 |
2118 | Valle San Rafael | 31.92 | −116.23 | 721 | 1661 | 2889 | 447 |
2164 | Ejido El Porvenir | 32.11 | −115.85 | 330 | 1778 | 2479 | 83 |
2001 | Agua Caliente | 32.11 | −116.46 | 400 | 1535 | 2622 | 364 |
2004 | Ignacio Zaragoza Belén | 32.20 | −116.49 | 540 | 1659 | 2578 | 360 |
2005 | Boquilla Santa Rosa de la Misión | 32.02 | −116.78 | 250 | 1290 | 1992 | 349 |
2021 | El Pinal | 32.18 | −116.29 | 1320 | 2175 | 2774 | 342 |
2025 | Ensenada (Obs) | 31.86 | −116.61 | 21 | 1412 | 2134 | 332 |
2036 | Olivares Mexicanos | 32.05 | −116.68 | 340 | 1296 | 2215 | 361 |
2049 | San Juan de Dios Norte | 32.13 | −116.15 | 1280 | 1998 | 2818 | 266 |
2094 | El Farito | 31.98 | −116.67 | 250 | 1288 | 2154 | 351 |
2122 | Real del Castillo Viejo | 31.95 | −116.75 | 610 | 1346 | 1952 | 325 |
2077 | La Misión | 32.10 | −116.81 | 20 | 1285 | 2052 | 370 |
2114 | Ejido Carmen Serdán | 32.24 | −116.58 | 560 | 1580 | 2494 | 372 |
Stations | Days with Santa Ana Conditions | Days without Santa Ana Conditions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Code | Name | P | T | R 1 | H | W | WD | P | T | R. | H | W | WD |
2035 | Ojos Negros | 0.64 | 0.53 | 0.66 | 0.72 | 0.43 | 0.50 | 0.75 | 0.93 | 0.73 | 0.83 | 0.66 | 0.70 |
2066 | Sierra de Juárez | 0.48 | 0.59 | * | 0.60 | 0.63 | 0.18 | 0.79 | 0.95 | 0.69 | 0.85 | 0.68 | 0.65 |
2079 | El Alamar | 0.61 | 0.51 | 0.50 | 0.72 | 0.40 | 0.53 | 0.76 | 0.93 | 0.72 | 0.82 | 0.67 | 0.70 |
2118 | Valle San Rafael | 0.63 | 0.50 | 0.65 | 0.71 | 0.40 | 0.50 | 0.75 | 0.93 | 0.72 | 0.83 | 0.66 | 0.70 |
2164 | Ejido El Porvenir | 0.36 | 0.49 | * | 0.60 | 0.63 | 0.32 | 0.82 | 0.96 | 0.68 | 0.86 | 0.68 | 0.62 |
2001 | Agua Caliente | 0.65 | 0.45 | * | 0.81 | 0.45 | 0.41 | 0.73 | 0.92 | 0.75 | 0.87 | 0.68 | 0.72 |
2004 | Ignacio Zaragoza Belén | 0.66 | 0.44 | 0.87 | 0.78 | 0.48 | 0.49 | 0.78 | 0.93 | 0.75 | 0.82 | 0.65 | 0.72 |
2005 | Boquilla Santa Rosa de la Misión | 0.65 | 0.49 | 0.77 | 0.74 | 0.50 | 0.46 | 0.82 | 0.90 | 0.77 | 0.75 | 0.65 | 0.72 |
2021 | El Pinal | 0.54 | 0.42 | 0.62 | 0.78 | 0.44 | 0.41 | 0.76 | 0.93 | 0.72 | 0.83 | 0.66 | 0.71 |
2025 | Ensenada (Obs) | 0.63 | 0.52 | 0.95 | 0.77 | 0.54 | 0.40 | 0.81 | 0.91 | 0.76 | 0.78 | 0.65 | 0.72 |
2036 | Olivares Mexicanos | 0.68 | 0.47 | * | 0.79 | 0.49 | 0.46 | 0.81 | 0.91 | 0.76 | 0.78 | 0.65 | 0.72 |
2049 | San Juan de Dios Norte | 0.57 | 0.44 | * | 0.72 | 0.45 | 0.33 | 0.77 | 0.94 | 0.70 | 0.83 | 0.66 | 0.71 |
2094 | El Farito | 0.62 | 0.49 | 0.90 | 0.75 | 0.49 | 0.45 | 0.81 | 0.91 | 0.76 | 0.77 | 0.65 | 0.72 |
2122 | Real del Castillo Viejo | 0.63 | 0.53 | 0.31 | 0.77 | 0.55 | 0.44 | 0.81 | 0.91 | 0.76 | 0.76 | 0.66 | 0.72 |
2077 | La Misión | 0.68 | 0.53 | 0.23 | 0.75 | 0.47 | 0.47 | 0.82 | 0.90 | 0.76 | 0.75 | 0.65 | 0.72 |
2114 | Ejido Carmen Serdán | 0.64 | 0.43 | 0.73 | 0.74 | 0.46 | 0.41 | 0.79 | 0.91 | 0.75 | 0.80 | 0.64 | 0.72 |
Stations | Days with Santa Ana Winds | Days without Santa Ana Winds | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Code | Name | PIP | PIT | PIR 2 | PIH | PIW | PIWD | PIP | PIT | PIR | PIH | PIW | PIWD |
2035 | Ojos Negros | 0.27 | 0.06 | 0.31 | 0.43 | 0.15 | 0.00 | 0.50 | 0.85 | 0.45 | 0.65 | 0.33 | 0.40 |
2066 | Sierra de Juárez | 0.04 | 0.18 | * | 0.19 | 0.26 | 0.65 | 0.59 | 0.90 | 0.38 | 0.69 | 0.35 | 0.30 |
2079 | El Alamar | 0.22 | 0.02 | 0.00 | 0.43 | 0.20 | 0.05 | 0.53 | 0.85 | 0.45 | 0.65 | 0.34 | 0.41 |
2118 | Valle San Rafael | 0.25 | 0.00 | 0.30 | 0.42 | 0.20 | 0.00 | 0.50 | 0.86 | 0.44 | 0.65 | 0.32 | 0.40 |
2164 | Ejido El Porvenir | 0.29 | 0.03 | * | 0.19 | 0.26 | 0.35 | 0.64 | 0.93 | 0.36 | 0.71 | 0.35 | 0.23 |
2001 | Agua Caliente | 0.30 | 0.11 | * | 0.61 | 0.10 | 0.18 | 0.47 | 0.84 | 0.50 | 0.73 | 0.35 | 0.44 |
2004 | Ignacio Zaragoza Belén | 0.32 | 0.13 | 0.74 | 0.56 | 0.04 | 0.03 | 0.56 | 0.85 | 0.49 | 0.64 | 0.30 | 0.45 |
2005 | Boquilla Santa Rosa de la Misión | 0.31 | 0.02 | 0.54 | 0.47 | 0.01 | 0.09 | 0.64 | 0.80 | 0.53 | 0.50 | 0.29 | 0.44 |
2021 | El Pinal | 0.07 | 0.17 | 0.24 | 0.55 | 0.13 | 0.19 | 0.51 | 0.86 | 0.44 | 0.65 | 0.31 | 0.43 |
2025 | Ensenada (Obs) | 0.25 | 0.04 | 0.90 | 0.53 | 0.08 | 0.19 | 0.62 | 0.82 | 0.51 | 0.55 | 0.31 | 0.44 |
2036 | Olivares Mexicanos | 0.36 | 0.07 | * | 0.58 | 0.02 | 0.09 | 0.62 | 0.81 | 0.52 | 0.55 | 0.30 | 0.44 |
2049 | San Juan de Dios Norte | 0.14 | 0.11 | * | 0.44 | 0.09 | 0.33 | 0.54 | 0.87 | 0.40 | 0.67 | 0.32 | 0.42 |
2094 | El Farito | 0.25 | 0.01 | 0.80 | 0.50 | 0.01 | 0.11 | 0.62 | 0.82 | 0.51 | 0.55 | 0.30 | 0.43 |
2122 | Real del Castillo Viejo | 0.25 | 0.06 | 0.38 | 0.54 | 0.09 | 0.12 | 0.62 | 0.81 | 0.52 | 0.53 | 0.32 | 0.43 |
2077 | La Misión | 0.36 | 0.05 | 0.53 | 0.49 | 0.06 | 0.06 | 0.64 | 0.80 | 0.53 | 0.49 | 0.29 | 0.44 |
2114 | Ejido Carmen Serdán | 0.29 | 0.15 | 0.46 | 0.47 | 0.09 | 0.19 | 0.59 | 0.83 | 0.50 | 0.60 | 0.29 | 0.45 |
Stations | Days with Santa Ana Winds | Impact by Temperature and Pressure | |||||
---|---|---|---|---|---|---|---|
Code | Name | PICR = (PIT, PIP, PIR) | PICH = (PIT, PIP, PIH) | PICW = (PIT, PIP, IPW) | PICR | PICH | PICW |
2035 | Ojos Negros | (0.058, 0.270, 0.314) | (0.270, 0.058, 0.432) | (0.058, 0.270, 0.150) | ❷ | X | ❷ |
2066 | Sierra de Juárez | (0.184, 0.042, *) | (0.042, 0.184, 0.194) | (0.184, 0.042, 0.262) | * | ❷ | ❷ |
2079 | El Alamar | (0.018, 0.222, 0.000) | (0.222, 0.018, 0.434) | (0.018, 0.222, 0.200) | ❷ | X | ❷ |
2118 | Valle San Rafael | (0.004, 0.254, 0.296) | (0.254, 0.004, 0.418) | (0.004, 0.254, 0.204) | ❷ | X | ❷ |
2164 | Ejido El Porvenir | (0.028, 0.290, *) | (0.290, 0.028, 0.192) | (0.028, 0.290, 0.262) | * | ❷ | ❷ |
2001 | Agua Caliente | (0.108, 0.302, *) | (0.302, 0.108, 0.610) | (0.108, 0.302, 0.098) | * | X | ❷ |
2004 | Ignacio Zaragoza Belén | (0.130, 0.318, 0.740) | (0.318, 0.130, 0.558) | (0.130, 0.318, 0.044) | X | X | ❷ |
2005 | Boquilla Santa Rosa de la Misión | (0.024, 0.308, 0.538) | (0.308, 0.024, 0.472) | (0.024, 0.308, 0.006) | X | X | ❷ |
2021 | El Pinal | (0.170, 0.072, 0.238) | (0.072, 0.170, 0.552) | (0.170, 0.072, 0.130) | ❷ | X | ❷ |
2025 | Ensenada (Obs) | (0.038, 0.252, 0.896) | (0.252, 0.038, 0.532) | (0.038, 0.252, 0.078) | X | X | ❷ |
2036 | Olivares Mexicanos | (0.070, 0.356, *) | (0.356, 0.070, 0.582) | (0.070, 0.356, 0.018) | * | X | ❷ |
2049 | San Juan de Dios Norte | (0.112, 0.144, *) | (0.144, 0.112, 0.436) | (0.112, 0.144, 0.092) | * | X | ❷ |
2094 | El Farito | (0.014, 0.248, 0.796) | (0.248, 0.014, 0.498) | (0.014, 0.248, 0.014) | X | X | ❷ |
2122 | Real del Castillo Viejo | (0.060, 0.254, 0.382) | (0.254, 0.060, 0.544) | (0.060, 0.254, 0.090) | ❷ | X | ❷ |
2077 | La Misión | (0.052, 0.364, 0.532) | (0.364, 0.052, 0.494) | (0.052, 0.364, 0.060) | X | X | ❷ |
2114 | Ejido Carmen Serdán | (0.150, 0.286, 0.456) | (0.286, 0.150, 0.474) | (0.150, 0.286, 0.086) | X | X | ❷ |
Stations | Days without Santa Ana Winds | Impact by Temperature and Pressure | |||||
---|---|---|---|---|---|---|---|
Code | Name | PICR = (PIT, PIP, PIR) | PICH = (PIT, PIP, PIH) | PICW = (PIT, PIP, IPW) | PICR | PICH | PICW |
2035 | Ojos Negros | (0.852, 0.504, 0.454) | (0.852, 0.504, 0.650) | (0.852, 0.504, 0.328) | ❷ | ❷ | X |
2066 | Sierra de Juárez | (0.904, 0.588, 0.380) | (0.904, 0.588, 0.692) | (0.904, 0.588, 0.350) | X | ❷ | X |
2079 | El Alamar | (0.852, 0.528, 0.448) | (0.852, 0.528, 0.646) | (0.852, 0.528, 0.336) | ❷ | ❷ | X |
2118 | Valle San Rafael | (0.856, 0.502, 0.444) | (0.856, 0.502, 0.654) | (0.856, 0.502, 0.318) | ❷ | ❷ | X |
2164 | Ejido El Porvenir | (0.926, 0.636, 0.360) | (0.926, 0.636, 0.710) | (0.926, 0.636, 0.350) | X | ❷ | X |
2001 | Agua Caliente | (0.836, 0.466, 0.496) | (0.836, 0.466, 0.732) | (0.836, 0.466, 0.352) | ❷ | ❷ | X |
2004 | Ignacio Zaragoza Belén | (0.854, 0.562, 0.492) | (0.854, 0.562, 0.644) | (0.854, 0.562, 0.304) | ❷ | ❷ | X |
2005 | Boquilla Santa Rosa de la Misión | (0.802, 0.644, 0.532) | (0.802, 0.644, 0.500) | (0.802, 0.644, 0.294) | ❷ | ❷ | X |
2021 | El Pinal | (0.858, 0.512, 0.436) | (0.858, 0.512, 0.650) | (0.858, 0.512, 0.312) | ❷ | ❷ | X |
2025 | Ensenada (Obs) | (0.820, 0.620, 0.510) | (0.820, 0.620, 0.550) | (0.820, 0.620, 0.306) | ❷ | ❷ | X |
2036 | Olivares Mexicanos | (0.814, 0.618, 0.520) | (0.814, 0.618, 0.552) | (0.814, 0.618, 0.300) | ❷ | ❷ | X |
2049 | San Juan de Dios Norte | (0.874, 0.536, 0.398) | (0.874, 0.536, 0.666) | (0.874, 0.536, 0.318) | X | ❷ | X |
2094 | El Farito | (0.816, 0.62, 0.512) | (0.816, 0.620, 0.548) | (0.816, 0.620, 0.304) | ❷ | ❷ | X |
2122 | Real del Castillo Viejo | (0.810, 0.624, 0.520) | (0.810, 0.624, 0.528) | (0.810, 0.624, 0.316) | ❷ | ❷ | X |
2077 | La Misión | (0.798, 0.644, 0.526) | (0.798, 0.644, 0.490) | (0.798, 0.644, 0.292) | ❷ | ❷ | X |
2114 | Ejido Carmen Serdán | (0.826, 0.588, 0.500) | (0.826, 0.588, 0.596) | (0.826, 0.588, 0.288) | ❷ | ❷ | X |
Range | Type of Correlation | ||
---|---|---|---|
±0.00 | → | ±0.09 | Null |
±0.10 | → | ±0.19 | Very weak |
±0.20 | → | ±0.49 | Weak |
±0.50 | → | ±0.69 | Moderate |
±0.70 | → | ±0.84 | Significant |
±0.85 | → | ±0.95 | Strong |
±0.96 | → | ±1.00 | Perfect |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serpa-Usta, Y.; López-Lambraño, A.A.; Flores, D.-L.; Gámez-Balmaceda, E.; Martínez-Acosta, L.; Medrano-Barboza, J.P.; López, J.F.R.; López-Ramos, A.; López-Lambraño, M. Santa Ana Winds: Fractal-Based Analysis in a Semi-Arid Zone of Northern Mexico. Atmosphere 2022, 13, 48. https://doi.org/10.3390/atmos13010048
Serpa-Usta Y, López-Lambraño AA, Flores D-L, Gámez-Balmaceda E, Martínez-Acosta L, Medrano-Barboza JP, López JFR, López-Ramos A, López-Lambraño M. Santa Ana Winds: Fractal-Based Analysis in a Semi-Arid Zone of Northern Mexico. Atmosphere. 2022; 13(1):48. https://doi.org/10.3390/atmos13010048
Chicago/Turabian StyleSerpa-Usta, Yeraldin, Alvaro Alberto López-Lambraño, Dora-Luz Flores, Ena Gámez-Balmaceda, Luisa Martínez-Acosta, Juan Pablo Medrano-Barboza, John Freddy Remolina López, Alvaro López-Ramos, and Mariangela López-Lambraño. 2022. "Santa Ana Winds: Fractal-Based Analysis in a Semi-Arid Zone of Northern Mexico" Atmosphere 13, no. 1: 48. https://doi.org/10.3390/atmos13010048
APA StyleSerpa-Usta, Y., López-Lambraño, A. A., Flores, D. -L., Gámez-Balmaceda, E., Martínez-Acosta, L., Medrano-Barboza, J. P., López, J. F. R., López-Ramos, A., & López-Lambraño, M. (2022). Santa Ana Winds: Fractal-Based Analysis in a Semi-Arid Zone of Northern Mexico. Atmosphere, 13(1), 48. https://doi.org/10.3390/atmos13010048