Effects of the COVID-19 Pandemic on the Air Quality of the Metropolitan Region of São Paulo: Analysis Based on Satellite Data, Monitoring Stations and Records of Annual Average Daily Traffic Volumes on the Main Access Roads to the City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location (MRSP) and Main Access Highways
2.2. Isolation Index
2.3. Air Quality Monitoring and Sentinel Satellite Data
2.4. COVID-19 Scenarios
3. Results and Discussion
3.1. Traffic Volumes at Main Access Highways
3.2. Atmospheric Pollutants (PM2.5, CO, NO2)
3.3. Satellite Images and Isolation Index
3.4. Coronavirus Pandemic Shutdown Effects on Urban Air Quality
3.5. Case Studies Analyzing the Influence of COVID-19 Pandemic on Air Quality
Groups of Studies | Reference | Analyzed Issue | Main Result |
---|---|---|---|
Direct impact of COVID-19 on air quality and transport activities | [41,51] | Impact of the reduction of the transport activity on Canadian’s and Portuguese’s Air Quality | The Air Quality Index (AQI) strongly improved in terms of CO and NO2 |
[23,44,56] | Social distancing measures and use of non-motorized transport modes | The implementation of private vehicle restrictions reduces the degree of air pollution | |
[12,33,42] | São Paulo’s isolation measures influencing the improvement of air quality in the city | 14% decrease in NO2 levels for SP in 2020 compared to 2019 | |
[57] | Efficiency of Southern California impacts of traffic decreases on air quality | Improvement of air quality as a consequence of a change in the traffic patterns | |
Factors influencing air quality improvement during COVID-19 confinement: meteorology, socio-demography, urban planning, transport and psychology | [52] | Air quality index as a proxy of modal choice of different transport alternatives | Avoidance of public transportation by wealthy people, indicating that socio-economic inequalities are related to health and perceived risks |
[58] | Use of geo-statistics to study the interactions of socio-demographic factors and air quality parameters on COVID-19 in the Netherlands | The results highlight the importance of transport systems and urban planning on disease dissemination | |
[8,11] | Study socio-economic variables, understanding the key factors affecting environmental and health inequalities in Latin American and England | Studies show that a long-term increase of 1 µg/m3 PM2.5 was associated with an 8–10% increase of COVID-19 death rates | |
[17,59] | Inequality and gender analyses and use of public transportation | Lower income, percent black, and peripheral zones continued using public transportation during lockdown, presenting higher COVID-19 rates | |
[26] | Study at the neighborhood level the built environment attributes affecting the virus dissemination | Central areas concentrate commercial activities sustained by important transport infrastructures and are more likely to disseminate the virus | |
This study | Impact of different vehicles types on air quality and time series analyses | A decrease of the traffic for LDVs was more evident than for HDVs, improving air quality index by 20% | |
Transport policy implications addressing air quality at cities during COVID-19 pandemic scenarios | [60] | Assess the reduction of private vehicle use during the confinement based on traffic parameters and measurements in Turkey | A change of the air quality index of ~25% was related to a 7% increase in the average traffic speed |
[13,14] | Evaluate transport policies with a-priori and posteriori mobility data to study the impact on air quality improvement | Decision policy-makers must promote active mobility and public transport to reduce inequal access to transport | |
[61,62] | Provide information on the response policies on non-motorized mobility due to the effect of COVID-19 | There were declines in utilitarian walking and widening inequalities in walking behavior | |
[27] | Conduct an experiment in four European countries consisting of complex mobility patterns | Differential mobility patterns had unequal consequences to economic losses across countries |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prefeitura de São Paulo. COVID-19 Relatório Situacional. Available online: https://www.prefeitura.sp.gov.br/cidade/secretarias/saude/vigilancia_em_saude/doencas_e_agravos/coronavirus/index.php?p=295572 (accessed on 14 November 2021).
- WHO. Global Ambient Air Quality Database (Update 2021); WHO: New York, NY, USA, 2021. [Google Scholar]
- WHO. WHO Coronavirus (COVID-19) Dashboard. 2021; WHO: New York, NY, USA, 2021. [Google Scholar]
- Ribeiro, H.; Lima, V.M.; Waldman, E.A. In the COVID-19 pandemic in Brazil, do brown lives matter? Lancet Glob. Health 2020, 8, e976–e977. [Google Scholar] [CrossRef]
- Silva, G.A.; Jardim, B.C.; dos Santos, C.V.B. Excess mortality in Brazil in times of COVID-19. Cienc. Saude Coletiva 2020, 25, 3345–3354. [Google Scholar] [CrossRef] [PubMed]
- Da Saúde, M. Painel Coronavírus 2021; Ministério da Saúde: Brasilia, Brazil, 2021.
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef] [PubMed]
- Travaglio, M.; Yu, Y.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England. Environ. Pollut. 2021, 268, 115859. [Google Scholar] [CrossRef]
- Governo de São Paulo. Decreto No 64.881, de 22 de Março de 2020. Decreta Quarentena no Estado de São Paulo, no Contexto da Pandemia do COVID-19 (Novo Coronavírus), e dá Providências Complementares. Diário Oficial do Estado São Paulo; 23 March 2020. Available online: https://www.al.sp.gov.br/repositorio/legislacao/decreto/2020/decreto-64881-22.03.2020.html (accessed on 13 November 2021).
- Prefeitura de São Paulo. Histórico Mês a Mês. Boletim Diário de Mobilidade e Transportes COVID-19. Available online: https://www.capital.sp.gov.br/noticia/boletim-de-mobilidade-e-transportes-covid-19-1640639478.4 (accessed on 13 November 2021).
- Kephart, J.L.; Avila-Palencia, I.; Bilal, U.; Gouveia, N.; Caiaffa, W.T.; Diez Roux, A.V. COVID-19, Ambient Air Pollution, and Environmental Health Inequities in Latin American Cities. J. Urban Health 2021, 98, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Connerton, P.; de Assunção, J.V.; de Miranda, R.M.; Slovic, A.D.; Pérez-Martínez, P.J.; Ribeiro, H. Air quality during COVID-19 in four megacities: Lessons and challenges for public health. Int. J. Environ. Res. Public Health 2020, 17, 5067. [Google Scholar] [CrossRef]
- Guzman, L.A.; Arellana, J.; Oviedo, D.; Moncada Aristizábal, C.A. COVID-19, activity and mobility patterns in Bogotá. Are we ready for a ‘15-minute city’? Travel Behav. Soc. 2021, 24, 245–256. [Google Scholar] [CrossRef]
- Hasselwander, M.; Tamagusko, T.; Bigotte, J.F.; Ferreira, A.; Mejia, A.; Ferranti, E.J.S. Building back better: The COVID-19 pandemic and transport policy implications for a developing megacity. Sustain. Cities Soc. 2021, 69, 102864. [Google Scholar] [CrossRef]
- CETESB. Relatório de Qualidade do Ar no Estado de São Paulo, 2019.; Companhia Ambiental do Estado de São Paulo (CETESB), Ed.; Governo do Estado de São Paulo, Secretaria de Infraestrutura e Meio Ambiente: São Paulo, Brazil, 2020.
- CONAMA. Resolução no 491, de 10 de Novembro de 2018, do Conselho Nacional do Meio Ambiente-CONAMA. “Dispõe Sobre Padrões de Qualidade do Ar”. Publicada no Diário Oficial da União em 21/11/2018; Diário Oficial da União em 21/11/2018; CONAMA: Brasília, Brazil, 2018.
- Fernandes, G.A.; Paulo, A.; Junior, N.; Azevedo, G.; Feriani, D.; Leonardo, I.; Franc, A.; Caruso, P.; Id, P.C. Excess mortality by specific causes of deaths in the city of São Paulo, Brazil, during the COVID-19 pandemic. PloS ONE 2021, 16, e0252238. [Google Scholar] [CrossRef] [PubMed]
- CETESB. Emissões Veiculares no Estado de São Paulo—2020; Governo do Estado de São Paulo, Secretaria do Meio Ambiente: São Paulo, Brazil, 2020; ISBN 9786555770131.
- CETESB. Plano de Controle de Poluição Veicular 2017–2019; CETESB: São Paulo, Brazil, 2017.
- Governo de São Paulo. Decreto no 59.113, de 24 de abril de 2013. Estabelece novos padrões de qualidade do ar e dá providências correlatas. Diário Oficial do Estado São Paulo, 24 April 2013. [Google Scholar]
- CETESB QUALAR—Sistema de Informações da Qualidade do Ar. Companhia Ambiental do Estado de São Paulo, CETESB. 2021. Available online: https://qualar.cetesb.sp.gov.br/qualar/home.do (accessed on 14 November 2021).
- Pérez-Martínez, P.J.; Andrade, M.F.; Miranda, R.M. Traffic-related air quality trends in São Paulo, Brazil. J. Geophys. Res. Atmos. 2015, 120, 6290–6304. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Hao, X.; Zhang, X.; Chen, F. Have traffic restrictions improved air quality? A shock from COVID-19. J. Clean. Prod. 2021, 279, 123622. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.J.; Miranda, R.M.; Andrade, M.F.; Kumar, P. Air quality and fossil fuel driven transportation in the Metropolitan Area of São Paulo. Transp. Res. Interdiscip. Perspect. 2020, 5, 100137. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.J.; Miranda, R.M.; Andrade, M.F. Freight road transport analysis in the metro São Paulo: Logistical activities and CO2 emissions. Transp. Res. Part A Policy Pract. 2020, 137, 16–33. [Google Scholar] [CrossRef]
- Li, B.; Peng, Y.; He, H.; Wang, M.; Feng, T. Built environment and early infection of COVID-19 in urban districts: A case study of Huangzhou. Sustain. Cities Soc. 2021, 66, 102685. [Google Scholar] [CrossRef] [PubMed]
- Spelta, A.; Pagnottoni, P. Mobility-based real-time economic monitoring amid the COVID-19 pandemic. Sci. Rep. 2021, 11, 13069. [Google Scholar] [CrossRef]
- ESA. Introducing Sentinel-5P; ESA: Paris, France, 2021. [Google Scholar]
- ESA. Sentinel-5P Pre-Operations Data Hub; ESA: Paris, France, 2021. [Google Scholar]
- DER. Contagem Volumétrica Classificatória. Available online: http://200.144.30.103:8081/vdm/Page/Detalhe.aspx?Param=SP348;2021;8 (accessed on 13 November 2021).
- IPT. Instituto de Pesquisas Tecnológicas Responde Perguntas Frequentes (FAQs) sobre Índices de Isolamento SOCIAL Divulgados Pelo Governo de SP; IPT: São Paulo, Brazil, 2021. [Google Scholar]
- SIMI-SP. Adesão ao Isolamento Social em SP. Sistema de Monitoramento Inteligente do Governo de São Paulo Atualiza Diariamente índice de adesão ao Isolamento Social no Estado. Available online: https://www.saopaulo.sp.gov.br/coronavirus/isolamento/ (accessed on 13 November 2021).
- Ibarra-Espinosa, S.; Dias de Freitas, E.; Ropkins, K.; Dominici, F.; Rehbein, A. Negative-Binomial and quasi-poisson regressions between COVID-19, mobility and environment in São Paulo, Brazil. Environ. Res. 2021, 112369. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, P.J.; de Fátima Andrade, M.; de Miranda, R.M. Heavy truck restrictions and air quality implications in São Paulo, Brazil. J. Environ. Manag. 2017, 202, 55–68. [Google Scholar] [CrossRef]
- Behera, M.D.; Mudi, S.; Shome, P.; Das, P.K.; Kumar, S.; Joshi, A.; Rathore, A.; Deep, A.; Kumar, A.; Sanwariya, C.; et al. COVID-19 slowdown induced improvement in air quality in India: Rapid assessment using Sentinel-5P TROPOMI data. Geocarto Int. 2021, 1–21, ahead of print. [Google Scholar] [CrossRef]
- Stratoulias, D.; Nuthammachot, N. Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Sci. Total Environ. 2020, 746, 141320. [Google Scholar] [CrossRef] [PubMed]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef]
- METRO-SP. Pesquisa Origem e Destino 1967, 1977, 1987, 1997, 2007, 2017: Região Metropolitana de São Paulo—Síntese das Informações da Pesquisa Domiciliar; Governo do Estado de São Paulo, Secretaria dos Transportes Metropolitanos: São Paulo, Brazil, 2019. Available online: http://www.metro.sp.gov.br/pesquisa-od/ (accessed on 10 November 2021).
- CET. Lentidão no Trânsito—2019, 2020 e 2021. Available online: http://dados.prefeitura.sp.gov.br/it/dataset/base-de-dados-sobre-lentidao-por-trechos-cet (accessed on 10 November 2021).
- CET. Pesquisa de Monitoramento da Mobilidade, Mobilidade no Sistema viário Principal: Volume e Velocidade 2015–2019. Available online: http://www.cetsp.com.br/sobre-a-cet/relatorios-corporativos.aspx (accessed on 10 November 2021).
- Gama, C.; Relvas, H.; Lopes, M.; Monteiro, A. The impact of COVID-19 on air quality levels in Portugal: A way to assess traffic contribution. Environ. Res. 2021, 193, 110515. [Google Scholar] [CrossRef]
- Brandao, R.; Foroutan, H. Air quality in Southeast Brazil during COVID-19 lockdown: A combined satellite and ground-based data analysis. Atmosphere 2021, 12, 583. [Google Scholar] [CrossRef]
- Betancourt-Odio, M.A.; Martínez-De-ibarreta, C.; Budría-Rodríguez, S.; Wirth, E. Local analysis of air quality changes in the community of madrid before and during the COVID-19 induced lockdown. Atmosphere 2021, 12, 659. [Google Scholar] [CrossRef]
- Rossi, R.; Ceccato, R.; Gastaldi, M. Effect of Road Traffic on Air Pollution. Experimental Evidence from COVID-19 Lockdown. Sustainability 2020, 12, 8984. [Google Scholar] [CrossRef]
- SPTRANS. Passageiros Transportados—2019, 2020, 2021. Available online: https://www.prefeitura.sp.gov.br/cidade/secretarias/transportes/institucional/sptrans/acesso_a_informacao/agenda/index.php?p=306932 (accessed on 7 June 2021).
- SPTRANS. General Transit Feed Specification—GTFS. Dados de transporte público da cidade de São Paulo. Available online: https://www.sptrans.com.br/desenvolvedores/ (accessed on 7 June 2021).
- DER. Pesquisa de Radares. 2021; DER: São Paulo, Brazil, 2021. Available online: http://www.der.sp.gov.br/WebSite/MalhaRodoviaria/LocalizacaoRadar.aspx (accessed on 7 June 2021).
- CETESB. Configuração da Rede Automática e Localização das Estações. 2021; CETESB: São Paulo, Brazil, 2021. Available online: https://cetesb.sp.gov.br/ar/configuracao-da-rede-automatica/ (accessed on 12 June 2021).
- Mogaji, E. Impact of COVID-19 on transportation in Lagos, Nigeria. Transp. Res. Interdiscip. Perspect. 2020, 6, 100154. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.C.Q.D.; Drumond, A.; Rizzo, L.V. Air pollution persistent exceedance events in the Brazilian metropolis of Sao Paulo and associated surface weather patterns. Int. J. Environ. Sci. Technol. 2021. ahead of print. [Google Scholar] [CrossRef]
- Tian, X.; An, C.; Chen, Z.; Tian, Z. Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. Sci. Total Environ. 2021, 765, 144270. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, D.M.; Lou, B.; Passavanti, M.; Hui, C.; Hoff, I.; Lessa, D.A.; Sikka, G.; Chang, K.; Gupta, A.; Fang, K.; et al. Impact of COVID-19 pandemic on mobility in ten countries and associated perceived risk for all transport modes. PLoS ONE 2021, 16, e0245886. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, A.; Khavarian-Garmsir, A.R. The COVID-19 pandemic: Impacts on cities and major lessons for urban planning, design, and management. Sci. Total Environ. 2020, 749, 142391. [Google Scholar] [CrossRef]
- Governo de São Paulo. Adesão ao Isolamento Social em SP. Available online: https://www.saopaulo.sp.gov.br/coronavirus/isolamento/ (accessed on 15 May 2021).
- SEADE. IMP—Informação dos Municípios Paulistas; SEADE: São Paulo, Brazil, 2020. Available online: https://imp.seade.gov.br/frontend/ (accessed on 7 May 2021).
- Camargo-Caicedo, Y.; Mantilla-Romo, L.C.; Bolaño-Ortiz, T.R. Emissions reduction of greenhouse gases, ozone precursors, aerosols and acidifying gases from road transportation during the COVID-19 lockdown in Colombia. Appl. Sci. 2021, 11, 1458. [Google Scholar] [CrossRef]
- Parker, H.A.; Hasheminassab, S.; Crounse, J.D.; Roehl, C.M.; Wennberg, P.O. Impacts of Traffic Reductions Associated with COVID-19 on Southern California Air Quality. Geophys. Res. Lett. 2020, 47, e2020GL090164. [Google Scholar] [CrossRef]
- Cole, M.A.; Ozgen, C.; Strobl, E. Air Pollution Exposure and COVID-19; Discussion Paper Series. IZA DP No. 13367; Institute of Labor Economics: Bonn, Germany, 2020. [Google Scholar]
- Mendoza, D.L.; Benney, T.M.; Ganguli, R.; Pothina, R.; Pirozzi, C.S.; Quackenbush, C.; Baty, S.R.; Crosman, E.T.; Zhang, Y. The Role of Structural Inequality on COVID-19 Incidence Rates at the Neighborhood Scale in Urban Areas. COVID 2021, 10, 186–202. [Google Scholar] [CrossRef]
- Alemdar, K.D.; Kaya, Ö.; Canale, A.; Çodur, M.Y.; Campisi, T. Evaluation of air quality index by spatial analysis depending on vehicle traffic during the COVID-19 outbreak in Turkey. Energies 2021, 14, 5729. [Google Scholar] [CrossRef]
- Hunter, R.F.; Garcia, L.; de Sa, T.H.; Zapata-Diomedi, B.; Millett, C.; Woodcock, J.; Pentland, A.S.; Moro, E. Effect of COVID-19 response policies on walking behavior in US cities. Nat. Commun. 2021, 12, 3652. [Google Scholar] [CrossRef] [PubMed]
- Nikitas, A.; Tsigdinos, S.; Karolemeas, C.; Kourmpa, E.; Bakogiannis, E. Cycling in the era of COVID-19: Lessons learnt and best practice policy recommendations for a more bike-centric future. Sustainability 2021, 13, 4620. [Google Scholar] [CrossRef]
- Sarmadi, M.; Rahimi, S.; Rezaei, M.; Sanaei, D.; Dianatinasab, M. Air quality index variation before and after the onset of COVID-19 pandemic: A comprehensive study on 87 capital, industrial and polluted cities of the world. Environ. Sci. Eur. 2021, 33. [Google Scholar] [CrossRef] [PubMed]
Highway Nomenclature (SP-Number) | Location (km) | Driving Direction | Latitude 1 (°) | Longitude 1 (°) |
---|---|---|---|---|
Ayrton Senna Hw. (SP-070) | 51-km | West | −23.42 | −46.20 |
66-km | West | −23.36 | −46.08 | |
Rodovia Raposo Tavares Hw. (SP-270) | 38-km | East | −23.62 | −46.97 |
84-km | West | −23.51 | −47.33 | |
Rodovia Castello Branco Hw. (SP-280) | 35-km | West | −23.52 | −46.96 |
52-km | West | −23.44 | −47.09 | |
Anhanguera Hw. (SP-330) | 54-km | North | −23.22 | −46.88 |
73-km | South | −23.08 | −46.98 | |
Bandeirantes Hw. (SP-348) | 44-km | North | −23.28 | −46.85 |
61-km | North | −23.16 | −46.95 |
Station of CETESB | Latitude 1 (°) | Longitude 1 (°) | Near Access Highway |
---|---|---|---|
Marginal Tietê-Ponte dos Remédios | −23.52 | −46.74 | Bandeirantes Hw. (SP-348) |
São Caetano do Sul | −23.62 | −46.56 | - |
Osasco | −23.53 | −46.79 | Raposo Tavares Hw. (SP-270) |
São Bernardo-Centro | −23.70 | −46.55 | - |
Guarulhos-Pimentas | −23.44 | −46.41 | Ayrton Senna Hw. (SP-070) |
Period 1 | AQ Station | ΔPM2.5 (%) | ΔCO (%) | ΔNO2 (%) |
---|---|---|---|---|
1st-year quarter (January–March) | Guarulhos-Pimentas St. | −19.3 | −25.1 | −25.0 |
Marginal Tietê-Pte. Remédios St. | −9.1 | −20.5 | −16.9 | |
Osasco St. | −20.9 | −20.2 | −17.7 | |
São Bernardo-Centro St. | −3.4 | −22.9 | −23.2 | |
São Caetano do Sul St. | −26.5 | −13.9 | −29.2 | |
2nd-year quarter (April–June) | Guarulhos-Pimentas St. | −15.3 | −15.7 | −13.2 |
Marginal Tietê-Pte. Remédios St. | −10.7 | −23.9 | −14.0 | |
Osasco St. | −20.5 | −29.7 | −16.6 | |
São Bernardo-Centro St. | −8.4 | −18.6 | −16.3 | |
São Caetano do Sul St. | −20.8 | −25.4 | −15.2 | |
3rd-year quarter (July–September) | Guarulhos-Pimentas St. | 14.1 | 0.9 | −1.1 |
Marginal Tietê-Pte. Remédios St. | −6.2 | −6.1 | 3.8 | |
Osasco St. | 0.2 | −10.7 | −5.6 | |
São Bernardo-Centro St. | 9.2 | −12.6 | −13.6 | |
São Caetano do Sul St. | 14.3 | −7.6 | −1.0 | |
4th-year quarter (October–December) | Guarulhos-Pimentas St. | −16.7 | 4.9 | 9.9 |
Marginal Tietê-Pte. Remédios St. | −5.9 | 12.2 | 13.7 | |
Osasco St. | −5.4 | −10.5 | −4.5 | |
São Bernardo-Centro St. | −9.0 | 28.9 | 13.5 | |
São Caetano do Sul St. | −3.9 | 4.9 | 8.3 |
Period 1 | Main Highway 2 | Location (km) | ΔADT- LDVs (%) | ΔADT- HDVs (%) |
---|---|---|---|---|
1st-year quarter (January–March) | Raposo Tavares Hw. | 38–84 | −7.2 | 4.3 |
Castello Branco Hw. | 35–52 | −2.2 | −0.5 | |
Anhanguera Hw. | 54–73 | −3.8 | 1.6 | |
Bandeirantes Hw. | 44–61 | −5.5 | 3.5 | |
2nd-year quarter (April–June) | Raposo Tavares Hw. | 38–84 | −26.4 | −11.5 |
Castello Branco Hw. | 35–52 | −37.8 | −13.4 | |
Anhanguera Hw. | 54–73 | −38.9 | −15.1 | |
Bandeirantes Hw. | 44–61 | −52.2 | −14.1 | |
3rd-year quarter (July–September) | Raposo Tavares Hw. | 38–84 | −6.3 | −3.1 |
Castello Branco Hw. | 35–52 | −10.0 | −0.8 | |
Anhanguera Hw. | 54–73 | −20.8 | −8.1 | |
Bandeirantes Hw. | 44–61 | −30.7 | −0.7 | |
4th-year quarter (October–December) | Raposo Tavares Hw. | 38–84 | −3.8 | −3.2 |
Castello Branco Hw. | 35–52 | −2.6 | 6.7 | |
Anhanguera Hw. | 54–73 | −11.1 | 0.1 | |
Bandeirantes Hw. | 44–61 | −14.4 | −2.0 |
ΔPM2.5 ± SD 1 | ΔCO ± SD 1 | ΔNO2 ± SD 1 | ΔADTLDVs ± SD 1 | ΔADTHDVs ± SD 1 | |
---|---|---|---|---|---|
Marginal Tietê-Ponte dos Remédios/Bandeirantes (SP-348) and Anhanguera (SP-330) | |||||
1st-year quarter (J–M) | −9.1 | −20.5 | −16.9 | −4.7 ± 1.2 | 2.5 ± 1.4 |
2nd-year quarter (A–J) | −10.7 | −23.9 | −14.0 | −45.6 ± 9.4 | −14.6 ± 0.7 |
3rd-year quarter (J–S) | −6.2 | −6.1 | 3.8 | −25.7 ± 6.9 | −4.4 ± 5.3 |
4th-year quarter (O–D) | −6.0 | 12.2 | 13.7 | −12.7 ± 2.3 | −1.0 ± 1.4 |
Osasco/Raposo Tavares (SP-270) and Castelo Branco (SP-280) | |||||
1st-year quarter (J–M) | −20.9 | −20.2 | −16.9 | −4.7 ± 3.5 | 1.9 ± 3.4 |
2nd-year quarter (A–J) | −20.5 | −29.7 | −16.6 | −32.1 ± 8.0 | −12.5 ± 1.3 |
3rd-year quarter (J–S) | 0.2 | −10.7 | −5.6 | −8.1 ± 2.6 | −1.9 ± 1.6 |
4th-year quarter (O–D) | −5.4 | −10.5 | −4.5 | −3.2 ± 0.9 | 1.8 ± 7.0 |
São Bernardo and São Caetano/Raposo Tavares (SP-270) | |||||
1st-year quarter (J–M) | −15.0 ± 21.1 | −18.4 ± 6.4 | −26.2 | −7.2 | 4.2 |
2nd-year quarter (A–J) | −14.6 ± 8.8 | −22.0 ± 4.8 | −15.8 | −26.4 | −11.5 |
3rd-year quarter (J–S) | 11.7 ± 3.7 | −10.1 ± 3.6 | −7.3 | −6.3 | −3.1 |
4th-year quarter (O–D) | −6.4 ± 3.6 | 16.9 ± 16.9 | 10.9 | −3.8 | −3.2 |
All air quality station/highways combinations | |||||
1st-year quarter (J–M) | −15.8 ± 9.4 | −21.51 ± 4.2 | −22.4 ± 5.2 | −4.7 ± 2.2 | 2.2 ± 2.1 |
2nd-year quarter (A–J) | −15.2 ± 5.6 | −22.6 ± 5.6 | −15.1 ± 1.5 | −38.8 ± 10.5 | −13.5 ± 1.5 |
3rd-year quarter (J–S) | 6.3 ± 9.1 | −7.2 ± 5.2 | −3.5 ± 6.6 | −16.9 ± 11.0 | −3.2 ± 3.5 |
4th-year quarter (O–D) | 8.2 ± 5.1 | 8.1 ± 14.3 | 8.2 ± 7.4 | −8.0 ± 5.7 | 0.4 ± 4.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Martínez, P.J.; Magalhães, T.; Maciel, I.; de Miranda, R.M.; Kumar, P. Effects of the COVID-19 Pandemic on the Air Quality of the Metropolitan Region of São Paulo: Analysis Based on Satellite Data, Monitoring Stations and Records of Annual Average Daily Traffic Volumes on the Main Access Roads to the City. Atmosphere 2022, 13, 52. https://doi.org/10.3390/atmos13010052
Pérez-Martínez PJ, Magalhães T, Maciel I, de Miranda RM, Kumar P. Effects of the COVID-19 Pandemic on the Air Quality of the Metropolitan Region of São Paulo: Analysis Based on Satellite Data, Monitoring Stations and Records of Annual Average Daily Traffic Volumes on the Main Access Roads to the City. Atmosphere. 2022; 13(1):52. https://doi.org/10.3390/atmos13010052
Chicago/Turabian StylePérez-Martínez, Pedro José, Tiago Magalhães, Isabela Maciel, Regina M. de Miranda, and Prashant Kumar. 2022. "Effects of the COVID-19 Pandemic on the Air Quality of the Metropolitan Region of São Paulo: Analysis Based on Satellite Data, Monitoring Stations and Records of Annual Average Daily Traffic Volumes on the Main Access Roads to the City" Atmosphere 13, no. 1: 52. https://doi.org/10.3390/atmos13010052
APA StylePérez-Martínez, P. J., Magalhães, T., Maciel, I., de Miranda, R. M., & Kumar, P. (2022). Effects of the COVID-19 Pandemic on the Air Quality of the Metropolitan Region of São Paulo: Analysis Based on Satellite Data, Monitoring Stations and Records of Annual Average Daily Traffic Volumes on the Main Access Roads to the City. Atmosphere, 13(1), 52. https://doi.org/10.3390/atmos13010052