Graduation Towers Impact on the Concentration and Chemical Composition of Ambient Aerosol: A Case Study from Wieliczka Salt Mine in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. TSP and PM10 Sampling
2.3. Chemical Analyses: QA/QC
3. Results and Discussion
3.1. TSP and PM10 Concentrations
3.2. OC and EC Concentrations
3.3. Ionic Components
4. Conclusions
- Inside the graduation tower, TSP concentrations are very high (the average TSP aerosol concentration in the measurement period was 994 µg/m3). Concurrent measurements of the concentration at the remote point were, on average, 18 times lower (the average concentration in the measurement period was 54 µg/m3).
- PM10 concentrations measured in the analogous configuration of the measurement points were also higher within the graduation tower (38 µg/m3 on average during the measurement period) compared to the remote site point (25 µg/m3), but the ratio of these values, in contrast to TSP, did not exceed values of 1.5.
- There was a clear difference between the chemical composition of the aerosol inside the brine graduation tower and outside the graduation tower area. In the graduation tower, 40% of the PM10 mass included chlorides, sodium and sulphates, while sodium and chloride alone constituted no less than 20% of the PM10 mass. Apart from the graduation tower, the proportion of these components in the PM10 mass was much lower, and the composition of the PM10 aerosol was dominated by carbon compounds.
- The components of TSP in the graduation tower constituted a relatively small part of its mass (during the research period, it was on average about 10%), as most of the masses of these components were made up of chlorides and sodium. Nevertheless, it should be noted that their concentrations in the air are still 1–2 orders of magnitude higher compared to the content of ions in the aerosol outside the graduation tower.
- The aerosanitary conditions in the zone of influence of the salt graduation tower of the Wieliczka Salt Mine are favorable due to the ionic composition and aerosol concentration. It is one of the important factors that determines the healing properties of the health resort. The brine graduation tower creates a specific climate, similar to a coastal microclimate, not only inside the facility itself, but also, in a noticeable and positive way, determines the quality and chemical composition of the air in its vicinity, even several hundred meters away.
- The obtained results should be treated as preliminary results, and they should be verified by further measurements and tests. It is recommended to carry out another measurement campaign that covers at least one month of aerosol sampling and that is carried out separately in two measurement seasons—summer and winter. This will be dictated by both the variability in meteorological conditions, which may affect the observed measurement results, and the different content and chemical composition of atmospheric pollutants, which is related to emissions from the communal and living sector (households and local heating devices, boiler houses and heating plants). The proposed extended measurements should be carried out in such a way that it will be possible to relate the measurement results from the brine graduation tower to at least two or three other points (the so-called remote site), located in different distances and directions from the graduation tower.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langer, P. Salt treatment as an impulse for industrial towns’ function change. Tech. Trans. Archit. 2014, 4-A, 73–86. [Google Scholar]
- Pawlikowska-Piechotka, A.; Piechotka, M. Revitalisation of public space to enhance spa attractiveness for tourists and residents. Archit. Civ. Eng. Environ. 2014, 3, 19–30. [Google Scholar]
- Cordes, J.C.; Arnold, W.; Zeibig, B. Hydrotherapie, Elektrotherapie, Massage, 1st ed.; Steinkopff Verlag GmbH & Co. KG: Darmstadt, Germany, 1989; 978p. [Google Scholar]
- Burkowska-But, A.; Kalwasińska, A.; Brzezinska, M. The role of open-air inhalatoria in the air quality improvement in spa towns. Int. J. Occup. Environ. Health 2014, 27, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Scharf, R. Die Saline Nauheim, Magistrat der Stadt Bad Nauheim. 2007, p. 19. Available online: https://es.xn--modifiwiki-g7a.vn/es/Torre_de_graduaci%C3%B3n (accessed on 19 September 2022).
- Graduation Tower. Available online: https://en.wikipedia.org/wiki/Graduation_tower (accessed on 10 February 2022).
- Drobnik, M.; Latour, T.; Sziwa, D. Strefa okołotężniowa jako inhalatorium na otwartej przestrzeni. Acta Balneol. 2018, 2, 129–133. [Google Scholar]
- Czarnobilski, K.; Szlęk, R.; Lis, G.; Obtułowicz, K.; Czarnobilska, E.; Lalik, B. The efficacy of subterraneotherapy in the treatment of bronchial asthma evaluated by nitric oxide ENO. Alergol. Immunol. 2013, 10, 30–32. [Google Scholar]
- Frączek, K.; Górny, R.L.; Ropek, D. Bioaerosols of subterraneotherapy chambers at salt mine. Aerobiologia 2013, 29, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska, A.K.; Mirska, A.; Dmitruk, E. Subterraneoterapia jako swoista metoda klimatoterapii. Acta Balneol. 2013, 131, 55–58. [Google Scholar]
- Latour, T. Obiekty Subterraneoterapii w Polsce; Instytut Medycyny Uzdrowiskowej, Biblioteka Lekarza Uzdrowiskowego: Poznań, Poland, 1992. [Google Scholar]
- Myszkowska, D.; Kostrzon, M.; Obtułowicz, K.; Dyga, W.; Czarnobilska, E. Porównanie składu bioaerozolu w powietrzu komór solnych Uzdrowiska Kopalni Soli “Wieliczka” oraz w atmosferze w Krakowie. Acta Balneol. 2013, 133, 230. [Google Scholar]
- Nurov, I. Immunologic features of speleotherapy in patients with chronic obstructive pulmonary disease. J. Health Sci. Med. 2010, 2, 44–47. [Google Scholar] [CrossRef]
- Bralewska, K.; Rogula-Kozłowska, W.; Mucha, D.; Badyda, A.J.; Kostrzon, M.; Bralewski, A.; Biegugnis, S. Properties of Particulate Matter in the Air of the Wieliczka Salt Mine and Related Health Benefits for Tourists. Int. J. Environ. Res. Public Health 2022, 9, 826. [Google Scholar] [CrossRef]
- Obtułowicz, K.; Myszkowska, D.; Dyga, W.; Mazur, M.; Czarnobilska, E. Hypoalergenowa subterraneoterapia w komorach solnych Kopalni w Wieliczce w leczeniu alergii dróg oddechowych i skóry. Znaczenie bioaerozolu. Alergol. Immunol. 2013, 10, 20–23. [Google Scholar]
- Obtułowicz, K. Aerozole Kopalniane. [w:] Modelowe Studium Wykorzystania i Ochrony Surowców Balneologicznych Krakowa i Okolicy; IGSMiE PAN: Kraków, Poland, 2002; pp. 34–47. [Google Scholar]
- Obtułowicz, K. Mechanism of therapeutic effects of subterraneotherapy in the chambers of the Salt Mine Wieliczka. Alergol. Immunol. 2013, 10, 26–29. [Google Scholar]
- Kostrzon, M.; Czarnobilski, K.; Badyda, A. Climate characteristics of salt chambers used for therapeutic purposes in the ‘Wieliczka’ Salt Mine. Acta Balneol. 2015, 57, 52–58. [Google Scholar]
- Gaweł, J.; Kuczaj, P. W cieniu tężni, artykuły informacyjne. Wszechświat 2012, 113, 4–6. [Google Scholar]
- Faracik, R. Tężnie w Polsce. Geneza, stan i przyszłość zjawiska Graduation towers in Poland. Genesis, current state and future of the phenomenon. Pr. Geogr. 2020, 161, 41–59. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Ciechocinek_graduation_towers (accessed on 10 February 2022).
- Chudzińska, A.; Dybczyńska-Bułyszko, A. Brine graduation towers -a modern take on tradition. In Defining the Architectural Space—Tradition and Modernity in Architecture, 1st ed.; Wrocławskie Wydawnictwo Oświatowe: Wrocław, Poland, 2019; Volume 2, p. 31. [Google Scholar]
- Available online: https://podroze.onet.pl/polska/podkarpackie/kaskady-solankowe-w-solonce-k-rzeszowa-zawartosc-jodu-wyzsza-niz-w-tezniach (accessed on 10 February 2022).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050 (accessed on 10 February 2022).
- US EPA. National Ambient Air Quality Standards for Particulate Matter; Final Rule; 40 CFR Part 50; Federal Register; 25; US EPA: Washington, DC, USA, 1997; Volume 62.
- US EPA. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd ed.; Compendium Method TO-13A; Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/Mass Spectrometry (GC/MS); Center for Environmental Research Information Office of Research and Development, U.S. Environmental Protection Agency: Cincinnati, OH, USA, 1999.
- US EPA. Policy Assessment for the Review of the Particulate Matter National Ambient Air Quality Standards; US EPA: Washington, DC, USA, 2009.
- PN-EN 12341:2006a; Air Quality—Determination of the PM10 Fraction of Suspended Particulate Matter—Reference Method and Field Test Procedure to Demonstrate Reference Equivalence of Measurement Methods. European Standards: Pilsen, Czech Republic, 2006.
- PN-EN 14907:2006b; Ambient Air Quality—Standard Gravimetric Measurement Method for the Determination of the PM2.5 Mass Fraction of Suspended Particulate Matter. European Standards: Pilsen, Czech Republic, 2006.
- Khlystov, A.; Lin, M.; Bolch, M.A.; Ma, Y. Investigation of the positive artifact formation during sampling semi-volatile aerosol using wet denuders. Atmos. Environ. 2009, 43, 364–370. [Google Scholar] [CrossRef]
- Dhawan, S.; Biswas, P. Sampling artifacts in denuders during phase partitioning measurements of semi-volatile organic compounds. Aerosol Sci. Technol. 2019, 53, 73–85. [Google Scholar] [CrossRef]
- Cavalli, F.; Viana, M.; Yttri, K.E.; Genberg, J.; Putaud, J.P. Toward a standardized thermal-optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol. Atmos. Meas. Tech. 2010, 3, 79–89. [Google Scholar] [CrossRef]
- Błaszczak, B.; Mathews, B. Characteristics of Carbonaceous Matter in Aerosol from Selected Urban and Rural Areas of Southern Poland. Atmosphere 2020, 11, 687. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W. Size-segregated urban particulate matter: Mass closure, chemical composition, and primary and secondary matter content. Air Qual. Atmos. Health 2016, 9, 533–550. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://powietrze.gios.gov.pl/pjp/current?woj=malopolskie&rwms=true (accessed on 12 February 2022).
- Tobler, A.K.; Skiba, A.; Canonaco, F.; Močnik, G.; Rai, P.; Chen, G.; Bartyzel, J.; Zimnoch, M.; Styszko, K.; Nęcki, J.; et al. Characterization of non-refractory (NR) PM1 and source apportionment of organic aerosol in Kraków, Poland. Atmos. Chem. Phys. 2021, 21, 14893–14906. [Google Scholar] [CrossRef]
- Samek, L.; Stegowski, Z.; Furman, L.; Styszko, K.; Szramowiat, K.; Fiedor, J. Quantitative Assessment of PM2.5 Sources and Their Seasonal Variation in Krakow. Water Air Soil Pollut. 2017, 228, 290. [Google Scholar] [CrossRef]
- Furman, P.; Styszko, K.; Skiba, A.; Zięba, Z.; Zimnoch, M.; Kistler, M.; Kasper-Giebl, A.; Gilardoni, S. Seasonal Variability of PM10 Chemical Composition Including 1,3,5-triphenylbenzene, Marker of Plastic Combustion and Toxicity in Wadowice, South Poland. Air Pollut. Health Eff. 2021, 21, 200223. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Ośródka, L.; Krajny, E.; Błaszczak, B.; Mathews, B. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef]
- Available online: www.gios.gov.pl (accessed on 12 February 2022).
- Niekurzak, M. The Potential of Using Renewable Energy Sources in Poland Taking into Account the Economic and Ecological Conditions. Energies 2021, 14, 7525. [Google Scholar] [CrossRef]
- Brauers, H.; Oei, P.-Y. The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels. Energy Policy 2020, 144, 111621. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Poland 2022. Energy Policy Review; On-Line Report; IEA: Paris, France, 2022; p. 177.
- Kostrzon, M.; Latour, T.; Badyda, A.J.; Rogula-Kozłowska, W.; Leśny, M. Badania składu chemicznego aerozolu w Uzdrowisku Kopalnia Soli “Wieliczka” metodą “płuczkową”. Pol. Stow. Górnictwa Solnego 2017, 13, 107–114. [Google Scholar]
- Rogula-Kozłowska, W.; Kostrzon, M.; Rogula-Kopiec, P.; Badyda, A.J. Particulate Matter in the Air of the Underground Chamber Complex of the Wieliczka Salt Mine Health Resort. Adv. Exp. Med. Biol. 2017, 955, 9–18. [Google Scholar]
- Rogula-Kozłowska, W. Traffic-generated changes in the chemical characteristics of size-segregated urban aerosols. Bull. Environ. Contam. Toxicol. 2014, 93, 493–502. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W. Chemical composition and mass closure of ambient particulate matter at a crossroads and a highway in Katowice, Poland. Environ. Prot. Eng. 2015, 41, 15–29. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Mathews, B.; Szopa, S. A Study on the Seasonal Mass Closure of Ambient Fine and Coarse Dusts in Zabrze, Poland. Bull. Environ. Contam. Toxicol. 2012, 88, 722–729. [Google Scholar] [CrossRef]
- Available online: http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-7 (accessed on 12 February 2022).
Data | Graduation Tower | Remote Site | |
---|---|---|---|
TSP results | |||
Mean TSP, µg/m3 | 994.0 | 54.0 | |
Mean OC, µg/m3 | 12.8 | 9.8 | |
Mean EC, µg/m3 | 0.7 | 2.3 | |
PM10 results | |||
Mean PM10, µg/m3 | 38.0 | 25.0 | |
Mean OC, µg/m3 | 6.4 | 6.9 | |
Mean EC, µg/m3 | 1.5 | 1.5 | |
Ratio * | Graduation Tower | Remote Site | |
PM10/TSP × 100, % | 4.0 | 47.0 | |
OC in PM10/OC in TSP × 100, % | 0.5 | 0.7 | |
EC in PM10/EC in TSP × 100, % | 2.2 | 0.6 | |
Ratio ** | |||
Graduation tower/remote site TSP | 18.4 | ||
Graduation tower/remote site PM10 | 1.5 | ||
Graduation tower/remote site OC in TSP | 1.3 | ||
Graduation tower/remote site OC in PM10 | 0.9 | ||
Graduation tower/remote site EC in TSP | 0.3 | ||
Graduation tower/remote site EC in PM10 | 1.0 |
Date | Cl− | Na+ | SO42− | NO3− | NH4+ | Ca2+ | Mg2+ | K+ | F− | Br− | I− | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Graduation Tower PM10 | 27 August 2015 | 2.13 | 6.08 | 3.04 | 0.27 | 1.16 | 0.64 | 0.05 | 0.46 | 0.0265 | 0.0001 | 0.0031 |
28 August 2015 | 1.77 | 5.91 | 2.96 | 0.27 | 1.19 | 0.32 | 0.05 | 0.46 | 0.0037 | 0.0001 | 0.0050 | |
31 August 2015 | 1.55 | 6.22 | 3.11 | 0.14 | 0.82 | 0.44 | 0.04 | 0.33 | 0.0041 | 0.0001 | 0.0000 | |
1 September 2015 | 1.33 | 6.64 | 3.32 | 0.11 | 1.01 | 0.52 | 0.02 | 0.28 | 0.0041 | 0.0001 | 0.0004 | |
2 September 2015 | 1.20 | 5.98 | 2.99 | 0.13 | 0.98 | 0.20 | 0.02 | 0.25 | 0.0001 | 0.0001 | 0.0002 | |
Mean | 1.60 | 6.15 | 3.08 | 0.18 | 1.03 | 0.42 | 0.04 | 0.36 | 0.0077 | 0.0001 | 0.0017 | |
Remote Site PM10 | 27 August 2015 | 0.69 | 1.64 | 0.66 | 0.27 | 0.84 | 0.17 | 0.02 | 0.39 | 0.0003 | 0.0001 | 0.0001 |
28 August 2015 | 0.42 | 1.56 | 1.56 | 0.27 | 0.83 | 0.22 | 0.02 | 0.83 | 0.0004 | 0.0001 | 0.0001 | |
31 August 2015 | 0.29 | 0.99 | 0.99 | 0.14 | 0.85 | 0.38 | 0.02 | 0.67 | 0.0004 | 0.0001 | 0.0001 | |
1 September 2015 | 0.39 | 0.97 | 0.97 | 0.11 | 0.82 | 0.20 | 0.02 | 0.90 | 0.0017 | 0.0001 | 0.0001 | |
2 September 2015 | 0.93 | 2.35 | 0.57 | 0.13 | 0.80 | 0.28 | 0.00 | 0.24 | 0.0013 | 0.0001 | 0.0001 | |
Mean | 0.54 | 1.50 | 0.95 | 0.18 | 0.83 | 0.25 | 0.02 | 0.61 | 0.0008 | 0.0001 | 0.0001 | |
Graduation Tower TSP | 19 August 2015 | 74.88 | 34.56 | 8.64 | 0.92 | 3.88 | 1.12 | 2.25 | 1.54 | 0.0170 | 0.0032 | 0.0084 |
20 August 2015 | 40.37 | 18.63 | 4.66 | 1.07 | 3.98 | 1.04 | 2.08 | 1.54 | 0.0209 | 0.0043 | 0.0075 | |
21 August 2015 | 40.42 | 18.66 | 4.66 | 1.21 | 2.73 | 0.84 | 1.68 | 1.12 | 0.0118 | 0.0029 | 0.0063 | |
24 August 2015 | 39.37 | 18.17 | 4.54 | 1.21 | 3.35 | 0.41 | 0.82 | 0.95 | 0.0289 | 0.0001 | 0.0095 | |
26 August 2015 | 39.04 | 18.02 | 4.50 | 0.55 | 3.27 | 0.49 | 0.98 | 0.82 | 0.0289 | 0.0001 | 0.0098 | |
Mean | 46.82 | 21.61 | 5.40 | 0.99 | 3.44 | 0.78 | 1.56 | 1.19 | 0.0215 | 0.0021 | 0.0083 | |
Remote Site TSP | 19 August 2015 | 3.53 | 3.58 | 1.02 | 0.33 | 0.94 | 0.19 | 0.05 | 0.49 | 0.0003 | 0.0001 | 0.0001 |
20 August 2015 | 2.16 | 2.50 | 1.56 | 0.33 | 0.92 | 0.25 | 0.05 | 1.04 | 0.0004 | 0.0001 | 0.0001 | |
21 August 2015 | 2.14 | 0.93 | 0.93 | 0.17 | 0.94 | 0.42 | 0.04 | 0.84 | 0.0004 | 0.0001 | 0.0001 | |
24 August 2015 | 2.12 | 0.86 | 0.86 | 0.13 | 0.82 | 0.22 | 0.02 | 1.12 | 0.0017 | 0.0001 | 0.0001 | |
26 August 2015 | 2.17 | 2.57 | 0.63 | 0.15 | 0.80 | 0.31 | 0.02 | 0.31 | 0.0013 | 0.0001 | 0.0001 | |
Mean | 2.42 | 2.09 | 1.00 | 0.22 | 0.88 | 0.28 | 0.04 | 0.76 | 0.0008 | 0.0001 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogula-Kozłowska, W.; Badyda, A.; Rachwał, M.; Rogula-Kopiec, P.; Majder-Łopatka, M.; Kostrzon, M.; Mathews, B. Graduation Towers Impact on the Concentration and Chemical Composition of Ambient Aerosol: A Case Study from Wieliczka Salt Mine in Poland. Atmosphere 2022, 13, 1576. https://doi.org/10.3390/atmos13101576
Rogula-Kozłowska W, Badyda A, Rachwał M, Rogula-Kopiec P, Majder-Łopatka M, Kostrzon M, Mathews B. Graduation Towers Impact on the Concentration and Chemical Composition of Ambient Aerosol: A Case Study from Wieliczka Salt Mine in Poland. Atmosphere. 2022; 13(10):1576. https://doi.org/10.3390/atmos13101576
Chicago/Turabian StyleRogula-Kozłowska, Wioletta, Artur Badyda, Marzena Rachwał, Patrycja Rogula-Kopiec, Małgorzata Majder-Łopatka, Magdalena Kostrzon, and Barbara Mathews. 2022. "Graduation Towers Impact on the Concentration and Chemical Composition of Ambient Aerosol: A Case Study from Wieliczka Salt Mine in Poland" Atmosphere 13, no. 10: 1576. https://doi.org/10.3390/atmos13101576
APA StyleRogula-Kozłowska, W., Badyda, A., Rachwał, M., Rogula-Kopiec, P., Majder-Łopatka, M., Kostrzon, M., & Mathews, B. (2022). Graduation Towers Impact on the Concentration and Chemical Composition of Ambient Aerosol: A Case Study from Wieliczka Salt Mine in Poland. Atmosphere, 13(10), 1576. https://doi.org/10.3390/atmos13101576