CO2 and CH4 Emission Factors from Light-Duty Vehicles by Fuel Types in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chassis Dynamometer Test and Analytical Procedure
2.2. Vehicle Characteristics and Fuels
2.3. Driving Pattern
2.4. Emission Factor Calculation
3. Results and Discussion
3.1. CO2 Emission Factors
3.2. CH4 Emission Factors
3.3. Fuel Consumption and Fuel Economy Rates for LDG and LDD Vehicles
3.4. CO2 and CH4 Emissions from LDVs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC—Intergovernmental Panel on Climate Change. Climate Change 2013. In The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- ONEP—Office of Natural Resources and Environmental Policy and Planning. Climate Change Master Plan 2015–2050. Available online: https://climate.onep.go.th/wp-content/uploads/2019/07/CCMP_english.pdf (accessed on 19 May 2022).
- UNFCCC—United Nations Framework Convention on Climate Change. Mid-Century, Long-Term Low Greenhouse Gas Emission Development Strategy, Thailand. Available online: https://unfccc.int/sites/default/files/resource/Thailand_LTS1.pdf (accessed on 21 November 2021).
- Misila, P.; Winyuchakrit, P.; Limmeechokchai, B. Thailand’s long-term GHG emission reduction in 2050: The achievement of renewable energy and energy efficiency beyond the NDC. Heliyon 2020, 6, e05720. [Google Scholar] [CrossRef] [PubMed]
- EEA—European Environment Agency. Explaining Road Transport Emissions: A Non-Technical Guide; Publications Office of the European Union: Luxembourg, Lithuania, 2016; Available online: https://www.eea.europa.eu (accessed on 2 February 2022).
- EPA—Environmental Protection Agency. Inventory of U.S Greenhouse Gas Emissions and Sinks 1990–2017. Available online: https://www.epa.gov/sites/default/files/2019-04/documents/us-ghg-inventory-2019-main-text.pdf (accessed on 2 February 2022).
- Seo, J.; Park, J.; Park, J.; Park, S. Emission Factor Development for Light-Duty Vehicles Based on Real-World Emissions Using Emission Map-Based Simulation. Environ. Pollut. 2021, 270, 116081. [Google Scholar] [CrossRef] [PubMed]
- GVG—Green Vehicle Guide. Vehicle Emissions 2022. Available online: https://www.greenvehicleguide.gov.au/pages/Information/VehicleEmissions (accessed on 2 February 2022).
- DLT—Department of Land Transport. Thailand Number of Registered Vehicles. Available online: https://web.dlt.go.th/statistics/ (accessed on 13 January 2022).
- Kijmanawat, K.; Wongchavalidkul, N.; Sungsomboon, P.-Y. Monitoring Greenhouse Gas Emissions in Thailand’s Transport Sector Towards a Measurement, Reporting, and Verification System for The Land Transport Sector. Available online: https://www.thai-german-cooperation.info/admin/uploads/publication/44528239550f32fe0f9cc75034674e13en.pdf (accessed on 20 May 2022).
- IPCC—Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Chapter 3: Mobile Combustion. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_3_Ch3_Mobile_Combustion.pdf (accessed on 2 February 2022).
- Nilrit, S.; Sampanpanish, P.; Bualert, S. Comparison of CO2 Emissions from Vehicles in Thailand. Appl. Environ. Res. 2017, 39, 65–74. [Google Scholar] [CrossRef]
- Clairotte, M.; Suarez-Bertoa, R.; Zardini, A.A.; Giechaskiel, B.; Pavlovic, J.; Valverde, V.; Ciuffo, B.; Astorga, C. Exhaust emission factors of greenhouse gases (GHGs) from European road vehicles. Environ. Sci. Eur. 2020, 32, 1–20. [Google Scholar] [CrossRef]
- Outapa, P.; Thepanondh, S.; Kondo, A.; Pala-En, N. Development of air pollutant emission factors under real-world truck driving cycle. Int. J. Sustain. Transp. 2018, 12, 432–440. [Google Scholar] [CrossRef]
- Zamboni, G.; André, M.; Roveda, A.; Capobianco, M. Experimental evaluation of Heavy Duty Vehicle speed patterns in urban and port areas and estimation of their fuel consumption and exhaust emissions. Transp. Res. Part D Transp. Environ. 2015, 35, 1–10. [Google Scholar] [CrossRef]
- Alkafoury, A.; Bady, M.; Aly, M.H.F.; Negm, A.M. Emissions Modeling for Road Transportation in Urban Areas: State-of-Art Review. In Proceedings of the 23rd International Conference on Environmental Protection is a Must, Alex, Egypt, 11–13 May 2013; Available online: https://www.academia.edu/11797676/Emissions_Modeling_for_Road_Transportation_in_Urban_Areas_State-of-Art_Review (accessed on 4 February 2022).
- Cheewaphongphan, P.; Junpen, A.; Garivait, S.; Chatani, S. Emission Inventory of On-Road Transport in Bangkok Metropolitan Region (BMR) Development during 2007 to 2015 Using the GAINS Model. Atmosphere 2017, 8, 167. [Google Scholar] [CrossRef]
- Vieweg, M. Bottom-Up GHG Inventory and MRV of Measures: Synergies and Limitations in the Transport Sector. Available online: https://changing-transport.org/wp-content/uploads/2017_ViewegMersman_Bottom-Up_GHG_Inventory.pdf (accessed on 3 February 2022).
- Wen, M.; Zhang, C.; Yue, Z.; Liu, X.; Yang, Y.; Dong, F.; Liu, H.; Yao, M. Effects of Gasoline Octane Number on Fuel Consumption and Emissions in Two Vehicles Equipped with GDI and PFI Spark-Ignition Engine. J. Energy Eng. 2020, 146, 04020069. [Google Scholar] [CrossRef]
- Nilrit, S.; Sampanpanish, P.; Bualert, S. Carbon dioxide and methane emission rates from taxi vehicles in Thailand. Carbon Manag. 2018, 9, 37–43. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, M.; Cui, Y.; Ming, Z.; Wang, T.; Zhang, C.; Ampah, J.D.; Jin, C.; Huang, H.; Liu, H. Effects of Methanol Application on Carbon Emissions and Pollutant Emissions Using a Passenger Vehicle. Processes 2022, 10, 525. [Google Scholar] [CrossRef]
- Nilrit, S.; Sampanpanish, P.; Bualert, S. Emission factors of CH4 and CO2 emitted from vehicles. Am. J. Environ. Sci. 2013, 9, 38–44. [Google Scholar] [CrossRef]
- Matzer, C.; Weller, K.; Dippold, M.; Lipp, S.; Röck, M.; Rexeis, M.; Hausberger, S. Update of Emission Factors for HBEFA Version 4.1; Final report, I-05/19/CM EM-I-16/26/679 from 09.09.2019, TU Graz. Available online: https://www.hbefa.net/e/documents/HBEFA41_Report_TUG_09092019.pdf (accessed on 5 March 2022).
- PCD—Pollution Control Department. Automotive Emission Laboratory. Available online: https://www.pcd.go.th/airandsound/ (accessed on 20 May 2022).
- Seo, J.; Yun, B.; Kim, J.; Shin, M.; Park, S. Development of a cold-start emission model for diesel vehicles using an artificial neural network trained with real-world driving data. Sci. Total Environ. 2022, 806, 151347. [Google Scholar] [CrossRef] [PubMed]
- ISSRC—International Sustainable Systems Research Center. IVE Model Users Manual Version 2.0. Available online: http://www.issrc.org/ive/downloads/manuals/UsersManual.pdf (accessed on 5 August 2022).
- Speed limits in Thailand. (2021, November 23). National Gazette (No. 138,77,1-5). Available online: http://www.ratchakitcha.soc.go.th/DATA/PDF/2564/A/077/T_0001.PDF (accessed on 5 August 2022).
- D’Angiola, A.; Dawidowski, L.E.; Gómez, D.R.; Osses, M. On-road traffic emissions in a megacity. Atmos. Environ. 2010, 44, 483–493. [Google Scholar] [CrossRef]
- Alessandrini, A.; Cattivera, A.; Filippi, F.; Ortenzi, F. Driving Style Influence on Car CO2 Emissions. In Proceedings of the 20th International Emission Inventory Conference-Emission Inventories-Meeting the Challenges Posed by Emerging Global, National, and Regional and Local Air Quality Issues, Tampa, FL, USA, 13–16 August 2012. [Google Scholar]
- Park, G.; Mun, S.; Hong, H.; Chung, T.; Jung, S.; Kim, S.; Seo, S.; Kim, J.; Lee, J.; Kim, K.; et al. Characterization of Emission Factors Concerning Gasoline, LPG, and Diesel Vehicles via Transient Chassis-Dynamometer Tests. Appl. Sci. 2019, 9, 1573. [Google Scholar] [CrossRef]
- Valverde, V.; Mora, B.; Clairotte, M.; Pavlovic, J.; Suarez-Bertoa, R.; Giechaskiel, B.; Astorga-Llorens, C.; Fontaras, G. Emission Factors Derived from 13 Euro 6b Light-Duty Vehicles Based on Laboratory and On-Road Measurements. Atmosphere 2019, 10, 243. [Google Scholar] [CrossRef]
- Nilrit, S.; Sampanpanish, P. Emission Factor of Carbon Dioxide from In-Use Vehicles in Thailand. Mod. Appl. Sci. 2012, 6, 52–57. [Google Scholar] [CrossRef]
- Al-Arkawazi, S.A.F. Studying the Relation between the Engine Size and Manufacturing Year of Gasoline-Fueled Vehicles and Exhaust Emission Percentages and Concentrations. J. Mater. Environ. Sci. 2020, 11, 196–219. [Google Scholar]
- Ntziachristos, L.; Mellios, G.; Tsokolis, D.; Keller, M.; Hausberger, S.; Ligterink, N.; Dilara, P. In-use vs. type-approval fuel consumption of current passenger cars in Europe. Energy Policy 2014, 67, 403–411. [Google Scholar] [CrossRef]
- Zhou, B.; He, L.; Zhang, S.; Wang, R.; Zhang, L.; Li, M.; Liu, Y.; Zhang, S.; Wu, Y.; Hao, J. Variability of fuel consumption and CO2 emissions of a gasoline passenger car under multiple in-laboratory and on-road testing conditions. J. Environ. Sci. 2023, 125, 266–276. [Google Scholar] [CrossRef]
- Nasir, M.K.; Noor, R.; Kalam, A.; Masum, B.M. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems. Sci. World J. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Haworth, N.; Symmons, M. Relationship between fuel Economy and Safety Outcomes. Accident Research Centre, Monash University. Available online: https://www.monash.edu/muarc/archive/our-publications/reports/muarc188 (accessed on 8 June 2022).
- Theinnoi, K.; Sawatmongkhon, B.; Wongchang, T.; Haoharn, C.; Wongkhorsub, C.; Sukjit, E. Effects of Diesel–Biodiesel–Ethanol Fuel Blend on a Passive Mode of Selective Catalytic Reduction to Reduce NOx Emission from Real Diesel Engine Exhaust Gas. ACS Omega 2021, 6, 27443–27453. [Google Scholar] [CrossRef] [PubMed]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Li, L.; Loo, B.P.Y. Alternative and Transitional Energy Sources for Urban Transportation. Curr. Sustain. Energy Rep. 2014, 1, 19–26. [Google Scholar] [CrossRef]
- Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transp. Eng. 2020, 1, 100005. [Google Scholar] [CrossRef]
Vehicle ID. | Fuel Type | Mass (kg) | Engine Capacity (cc *) | Engine Power (kW) | Vehicle Age (Year) | Mileage (km) |
---|---|---|---|---|---|---|
LDG1 | Gasohol 91 | 1130 | 1800 | 6.3 | 3 | 168,241 |
LDG2 | 1130 | 1500 | 6.7 | 3 | 31,159 | |
LDG3 | 1360 | 1600 | 7.5 | 5 | 333,501 | |
LDG4 | 1130 | 1500 | 6.7 | 6 | 130,416 | |
LDG5 | 1590 | 1200 | 6.3 | 7 | 58,939 | |
LDG6 | 1250 | 1800 | 7.5 | 10 | 131,003 | |
LDG7 | Gasohol E20 | 1250 | 1500 | 6.7 | 4 | 119,439 |
LDG8 | 1130 | 6.3 | 8 | 222,928 | ||
LDG9 | 1250 | 7.0 | 9 | 101,800 | ||
LDG10 | Gasohol E85 | 1130 | 1500 | 6.7 | 4 | 116,782 |
LDG11 | 1360 | 1800 | 6.3 | 4 | 101,087 | |
LDG12 | 1250 | 1500 | 6.7 | 6 | 60,571 | |
LDG13 | Gasoline | 1130 | 1500 | 6.3 | 7 | 155,953 |
LDG14 | 1360 | 1800 | 7.0 | 8 | 179,716 | |
LDD1 | Diesel | 1810 | 2500 | 8.10 | 6 | 116,324 |
LDD2 | 1701 | 7.80 | 7 | 190,882 | ||
LDD3 | 1810 | 8.10 | 7 | 195,683 | ||
LDD4 | 2040 | 8.60 | 8 | 386,162 | ||
LDD5 | 1930 | 8.40 | 8 | 193,611 | ||
LDD6 | 1930 | 8.40 | 8 | 141,615 | ||
LDD7 | 1810 | 8.10 | 9 | 144,673 | ||
LDD8 | 1700 | 7.80 | 9 | 314,484 | ||
LDD9 | 1700 | 7.80 | 9 | 115,122 |
Data | LDG Vehicle | LDD Vehicle | ||||||
---|---|---|---|---|---|---|---|---|
Phase 1 | Phase 2 | Phase 3 | BKKDV | Phase 1 | Phase 2 | Phase 3 | BKKDV | |
Maximum speed (km/h) | 71.40 | 74.42 | 90.92 | 90.92 | 58.97 | 77.56 | 86.42 | 86.42 |
Average speed (km/h) | 23.35 | 33.17 | 42.93 | 33.47 | 23.14 | 33.90 | 46.77 | 35.34 |
Test distance (km) | 3.37 | 3.39 | 6.77 | 13.53 | 3.88 | 6.69 | 9.51 | 20.07 |
Test time (s) | 520.00 | 368.00 | 568.00 | 1456.00 | 601.00 | 706.00 | 731.00 | 2038.00 |
Vehicle ID. | Fuel Type | CO2 (g/km) | |||
---|---|---|---|---|---|
Phase 1 | Phase 2 | Phase 3 | BKK Driving Cycle | ||
(0–30 km/h) | (30–40 km/h) | (40–80 km/h) | |||
LDG1 | Gasohol 91 (E10) | 202.13 | 171.62 | 164.56 | 175.70 |
LDG2 | 181.08 | 156.24 | 145.32 | 157.02 | |
LDG3 | 198.59 | 176.82 | 165.80 | 176.76 | |
LDG4 | 194.91 | 172.22 | 159.70 | 171.61 | |
LDG5 | 224.50 | 196.92 | 187.38 | 199.01 | |
LDG6 | 232.25 | 199.67 | 187.90 | 201.95 | |
LDG7 | Gasohol E20 | 178.41 | 158.53 | 148.91 | 158.68 |
LDG8 | 180.80 | 163.97 | 151.62 | 161.97 | |
LDG9 | 199.85 | 174.73 | 163.89 | 175.61 | |
LDG10 | Gasohol E85 | 173.49 | 150.90 | 142.45 | 152.32 |
LDG11 | 197.39 | 167.58 | 156.12 | 169.26 | |
LDG12 | 179.60 | 150.86 | 143.36 | 154.28 | |
LDG13 | Gasoline 91 | 192.31 | 167.22 | 159.28 | 169.52 |
LDG14 | 199.76 | 165.26 | 158.43 | 170.44 | |
Average | 195.36 ± 16.98 | 169.47 ± 14.68 | 159.62 ± 14.16 | 171.01 ± 14.89 | |
LDD1 | Diesel | 197.35 | 178.16 | 164.13 | 175.22 |
LDD2 | 191.56 | 171.52 | 173.16 | 176.17 | |
LDD3 | 187.78 | 163.14 | 161.21 | 166.99 | |
LDD4 | 229.80 | 209.70 | 194.72 | 206.49 | |
LDD5 | 211.81 | 181.59 | 164.16 | 179.17 | |
LDD6 | 202.25 | 178.64 | 166.13 | 177.27 | |
LDD7 | 191.26 | 167.32 | 171.64 | 173.98 | |
LDD8 | 199.29 | 180.00 | 189.56 | 188.26 | |
LDD9 | 220.22 | 190.57 | 196.77 | 199.26 | |
Average | 203.48 ± 14.31 | 180.07 ± 13.78 | 175.72 ± 14.10 | 182.53 ± 12.91 |
Vehicle ID. | Fuel Type | CH4 (mg/km) | |||
---|---|---|---|---|---|
Phase 1 (0–30 km/h) | Phase 2 (30–40 km/h) | Phase 3 (40–80 km/h) | BKK Driving Cycle | ||
LDG1 | Gasohol 91 (E10) | 8.89 | 3.72 | 5.43 | 5.86 |
LDG2 | 1.33 | 1.21 | 0.53 | 0.90 | |
LDG3 | 11.10 | 8.73 | 9.09 | 9.50 | |
LDG4 | 1.01 | 0.02 | 0.30 | 0.41 | |
LDG5 | 4.21 | 7.04 | 10.50 | 8.07 | |
LDG6 | 3.94 | 1.76 | 2.62 | 2.74 | |
LDG7 | Gasohol E20 | 0.71 | 0.40 | 0.48 | 0.52 |
LDG8 | 1.08 | 0.06 | 0.44 | 0.50 | |
LDG9 | 1.32 | 0.83 | 0.88 | 0.98 | |
LDG10 | Gasohol E85 | 1.99 | 1.76 | 1.35 | 1.61 |
LDG11 | 10.37 | 2.87 | 4.78 | 5.69 | |
LDG12 | 1.21 | 0.68 | 0.95 | 0.95 | |
LDG13 | Gasoline 91 | 1.72 | 0.30 | 1.16 | 1.08 |
LDG14 | 4.57 | 2.93 | 3.13 | 3.44 | |
Average | 3.82 ± 3.66 | 2.31 ± 2.64 | 2.98 ± 3.32 | 3.02 ± 2.31 | |
LDD1 | Diesel | 0.12 | 0.20 | 0.21 | 0.19 |
LDD2 | 0.16 | 0.09 | 0.06 | 0.09 | |
LDD3 | 1.98 | 1.74 | 1.44 | 1.64 | |
LDD4 | 6.26 | 5.58 | 5.34 | 5.60 | |
LDD5 | 0.08 | 0.06 | 0.14 | 0.10 | |
LDD6 | 0.19 | 0.19 | 0.30 | 0.24 | |
LDD7 | 3.26 | 2.06 | 2.82 | 2.65 | |
LDD8 | 5.87 | 4.80 | 5.94 | 5.55 | |
LDD9 | 4.77 | 3.93 | 3.43 | 3.86 | |
Average | 2.52 ± 2.59 | 2.07 ± 2.19 | 2.19± 2.31 | 2.21 ± 2.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirithian, D.; Thanatrakolsri, P.; Pongpan, S. CO2 and CH4 Emission Factors from Light-Duty Vehicles by Fuel Types in Thailand. Atmosphere 2022, 13, 1588. https://doi.org/10.3390/atmos13101588
Sirithian D, Thanatrakolsri P, Pongpan S. CO2 and CH4 Emission Factors from Light-Duty Vehicles by Fuel Types in Thailand. Atmosphere. 2022; 13(10):1588. https://doi.org/10.3390/atmos13101588
Chicago/Turabian StyleSirithian, Duanpen, Pantitcha Thanatrakolsri, and Surangrat Pongpan. 2022. "CO2 and CH4 Emission Factors from Light-Duty Vehicles by Fuel Types in Thailand" Atmosphere 13, no. 10: 1588. https://doi.org/10.3390/atmos13101588