A Review on Lignin-Based Carbon Fibres for Carbon Footprint Reduction
Abstract
:1. Introduction
2. Sources and Structure of Bio-Based Lignin
2.1. Possible Sources of Biobased Lignin
2.2. Structure of Biobased Lignin
3. CFs Processing Route
3.1. Material Preparation
3.2. Conversion of Biomass to CFS Precursor
3.3. Conversion of Organic Precursor (Lignin) to Precursor Fibres
3.4. Impact of Spun PFs Diameter on CFs
3.5. Conversion Precursor Fibres (PFs) to Carbon Fibres (CFs)
3.6. Stabilization Process
4. The Environmental Impact of Production Route of Fossil Based and Bio-Based CFs
5. Conclusions
- The electrolysis method of lignin extraction from biomass is an advance technique that produced a lignin with high level of purity as well as clean hydrogen gas output.
- The melt-spinning enhanced by ultrafiltration has been deemed the most efficient method for conversion of lignin to precursor fibres due to its environmental friendliness as it does not involve the use of solvent that result in carbon footprint emission.
- Microwave stabilization techniques are advantageous over other conventional heating process due to the use of smaller equipment, short processing time and lower energy consumption. Adoption of a more compact equipment, slashes energy consumption by approximately 50% and offers a substantial reduction in processing time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, M.C.; Sullivan, J.L. An Assessment of Material Production Data for Magnesium and Carbon Fiber; Energy System Division, Argonne National Laboratory: Lemont, IL, USA, 2014. [Google Scholar]
- Meng, F.; McKechnie, J.; Turner, T.; Wong, K.H.; Stephen, J. Pickering. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications. Environ. Sci. Technol. 2017, 51, 12727–12736. [Google Scholar] [CrossRef] [PubMed]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef] [PubMed]
- Overly, J.G.; Dhingra, R.; Davis, G.A.; Das, S. Environmental Evaluation of Lightweight Exterior Body Panels in New Generation Vehicles; SAE International: Warrendale, PA, USA, 2002; Available online: https://www.jstor.org/stable/44718703 (accessed on 7 August 2022).
- Witik, R.A.; Payet, J.; Michaud, V.; Ludwig, C.; Månson, J. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1694–1709. [Google Scholar] [CrossRef]
- Sharma, P.; Dhanopia, A.K.; Joshi, D. An experimental study on carbon fiber thickness and layer thickness of depositing material in fused deposition modeling. Mater. Today Proc. 2020, 44, 4479–4484. [Google Scholar] [CrossRef]
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Giuntoli, J.; Commission, E.; Bulgheroni, C.; Commission, E.; Marelli, L.; Commission, E.; Sala, S.; Commission, E. Brief on the Use of Life Cycle Assessment (LCA) to Evaluate Environmental Impacts of the Bioeconomy; Technical Report; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Liu, Z.; Wang, J.; Zhang, L.; Bao, H. Lifecycle assessment of automotive hoods made of aluminum alloy and glass mat reinforced thermoplastic. J. Hefei Univ. Technol. 2012, 35, 433–438. [Google Scholar]
- ISO. Environmental Management Life Cycle Assessment Principles and Framework; Technical Committee ISO/TC: Geneva, Switzerland, 2006; Volume 207, pp. 14–15. [Google Scholar]
- Bachmann, J.; Hidalgo, C.; Bricout, S. Environmental analysis of innovative sustainable composites with potential use in aviation sector—A life cycle assessment review. Sci. China Technol. Sci. 2017, 60, 1301–1317. [Google Scholar] [CrossRef]
- Haufe, J.C.M. Hemp Fibres for Green Products—An Assessment of Life Cycle Studieson Hemp Fibre Applications; European Industrial Hemp Association (EIHA): Brussels, Belgium, 2011. [Google Scholar]
- Hermansson, F.; Janssen, M.; Svanström, M. Allocation in life cycle assessment of lignin. Int. J. Life Cycle Assess. 2020, 25, 1620–1632. [Google Scholar] [CrossRef]
- Cho, M.; Ko, K.; Renneckar, S. Impact of Thermal Oxidative Stabilization on the Performance of Lignin-Based Carbon Nanofiber Mats. ACS Omega 2019, 4, 5345–5355. [Google Scholar] [CrossRef]
- Chard, J.; Basson, L.; Creech, G.; Jesson, D.; Smith, P. Shades of Green: Life Cycle Assessment of a Urethane Methacrylate/Unsaturated Polyester Resin System for Composite Materials. Sustain. Biobased Compos. Mater. 2019, 11, 1001. [Google Scholar] [CrossRef]
- Amod, A.O.; Zhang, M.; Jin, J. Recent advances in carbon fibers derived from biobased precursors. J. Appl. Sci. 2016, 133. [Google Scholar] [CrossRef] [Green Version]
- Kunusa, W.R.; Abdullah, R.; Bilondatu, K. Analysis of Cellulose Isolated from Sugar Bagasse: Optimization and Treatment Process Scheme. J. Phys. Conf. Ser. 2020, 1422, 012040. [Google Scholar] [CrossRef]
- Ni′matuzahroh; Sari, S.K.; Trikurniadewi, N.; Pusfita, A.D.; Ningrum, I.P.; Ibrahim, S.N.; Nurhariyati, T. Utilization of Rice Straw Hydrolysis Product of Penicillium sp. H9 as A Substrate of Biosurfactant Production by LII61 Hy-drocarbonoclastic Bacteria. In Proceedings of the 12th Congress of Indonesian Soc. for Biochemistry and Molecular Biology in Conjunction with the 2nd International Conference “Collaboration Seminar of Chemistry and Industry (CoSCI)” and AnMicro Workshop, Surabaya, Indonesia, 11–12 October 2018. [Google Scholar]
- Khan, T.; Lee, J.H.; Kim, H.J. Lignin-Based Adhesives and Coatings. In Lignocellulose for Future Bioeconomy; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Ivan, V.; Ric, H.; Martin, J.; Hilst, F. Supply potential of lignocellulosic energy crops grown on marginal land and greenhouse gas footprint of advanced biofuels—A Spatially explicit assessment under the sustainability criteria of the Renewable Energy Directive Recast. GCB Bioenergy 2021, 13, 14251447. [Google Scholar]
- Green Light-Cost Effective Lignin-Based Carbon Fibres for Innovative Light-Weight Applications. 2016. Available online: https://www.bbi.europa.eu/projects/greenlight (accessed on 2 September 2022).
- Shah, D. Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. J. Mater. Sci. 2013, 48, 6083–6107. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y. Sound absorption performance of natural fibers and their composites. Sci. China Technol. Sci. 2012, 55, 2278–2283. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Wong, S.S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Downstream processing of lignin derived feedstock into end products. Chem. Soc. Rev. 2020, 49, 5510–5560. [Google Scholar] [CrossRef] [PubMed]
- Tapper, R.J.; Longana, M.L.; Hamerton, I.; Potter, K.D. A closed-loop recycling process for discontinuous carbon fibre polyamide 6 composites. Compos. Part B Eng. 2019, 179, 107418. [Google Scholar] [CrossRef]
- Ganewatta, M.S.; Lokupitiya, H.N.; Tang, C. Lignin biopolymers in the age of controlled polymerization. Polymers 2019, 11, 1176. [Google Scholar] [CrossRef]
- Libre, L. Lignin Based Carbon Fibres for Composites. 2016. Available online: https://cordis.europa.eu/project/id/720707 (accessed on 18 July 2022).
- Kananathan, J.; Samykano, M.; Kadirgama, K.; Ramasamy, D.; Rahman, M.M. Comprehensive investigation and prediction model for mechanical properties of coconut wood-polylactic acid composites filaments for FDM 3D printing. Eur. J. Wood Wood Prod. 2022, 80, 75–100. [Google Scholar] [CrossRef]
- Xumeng, G.; Yebo, L. Conversion of Lignocellulosic Biomass into Platform Chemicals for Biobased Polyurethane Application. Adv. Bioenergy 2018, 3, 161–213. [Google Scholar]
- Selver, E.N.; Ucar, T.; Gulme, Z. Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset composites. J. Ind. Textil. 2018, 48, 494–520. [Google Scholar] [CrossRef]
- Ana, C.; Cassoni, P.; Costa Marta, W.; Vasconcelos, M.P. Systematic review on lignin valorization in the agro-food system: From sources to applications. J. Environ. Manag. 2022, 317, 115258. [Google Scholar]
- Alves, A.; Rodrigues, J.; Wimmer, R.; Schwanninger, M. Analytical pyrolysis as a direct method to determine the lignin content in wood. Part 2: Evaluation of the common model and the influence of compression wood. J. Anal. Appl. Pyrolysis 2008, 81, 167–172. [Google Scholar] [CrossRef]
- Vieito, C.; Fernandes, E.; Velho, V.M.; Pires, P. The Effect of Different Solvents on Extraction Yield, Total Phenolic Content and Antioxidant Activity of Extracts from Pine Bark. Chem. Eng. Trans. 2018, 64, 127–132. [Google Scholar]
- Lourenço, A.; Rencoret, J.; Chematova, C.; Gominho, J.; Gutiérrez, A.; Río, J.C.; Pereira, H. Lignin composition and structure differs between xylem, phloem and phellem in Quercus suber L. Front. Plant Sci. 2016, 7, 1612. [Google Scholar] [CrossRef] [PubMed]
- Byrne, N.; de Silva, R.; Ma, Y.; Sixta, H.; Hummel, M. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production. Cellulose 2018, 25, 723–733. [Google Scholar] [CrossRef]
- Vincent, S.; Prado, R.; Kuzmina, O.; Potter, K.; Bhardwaj, J.; Wanasekara, N.D.; Harniman, R.L.; Koutsomitopoulou, A.; Eichhorn, S.J.; Welton, T.; et al. Regenerated Cellulose and Willow Lignin Blends as Potential Renewable Precursors for Carbon Fibers. ACS Sustain. Chem. Eng. 2018, 6, 5903–5910. [Google Scholar] [CrossRef]
- Shao, S.; Jin, Z.; Wen, G.; Iiyama, K. Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin. Wood Sci. Technol. 2009, 43, 643–652. [Google Scholar] [CrossRef]
- Lourenço, A.; Pereira, H. Lignin—Trends and Applications; Compositional Variability of Lignin in Biomass; IntechOpen: London, UK, 2017; pp. 65–98. [Google Scholar]
- Henriksson, G.L. Pulp and Paper Chemistry Technology. In Wood Chemistry Wood Biotechnology; Ek, M., Gellerstedt, G., Henriksson, G., Eds.; Walter de Gruyter GmbH Co: Berlin, Germany, 2009; Volume 1, pp. 121–145. [Google Scholar]
- Cho, M. Electrospinning of Lignin Based Composite Nanofibres with Nanocrystalline Celluloses; University of British Columbia: Vancouver, BC, Canada, 2018. [Google Scholar]
- Hermansson, F.; Heimersson, S.; Janssen, M.; Svanstrom, M. Can carbon fiber composites have a lower environmental impact than fiberglass? Resour. Conserv. Recycl. 2022, 181, 106234. [Google Scholar] [CrossRef]
- Angelini, S.; Ingles, D.; Gelosia, M.; Cerruti, P.; Pompili, E.; Scarinzi, G.; Cavalaglio, G.; Cotana, F.; Malinconico, M. One-pot lignin extraction and modification in γ-valerolactone from steam explosion pre-treated lignocellulosic biomass. J. Clean. Prod. 2017, 151, 152–162. [Google Scholar] [CrossRef]
- Karunarathna, M.S.; Smith, R.C. Valorization of Lignin as a Sustainable Component of Structural Materials and Composites: Advances from 2011 to 2019. Sustainability 2020, 12, 734. [Google Scholar] [CrossRef]
- Chin, D.W.K.; Lim, S.; Pang, Y.L.; Lim, C.H.; Shuit, S.H.; Lee, K.M.; Chong, C.T. Effects of Organic Solvents on the Organosolv Pretreatment of Degraded Empty Fruit Bunch for Fractionation and Lignin Removal. Sustainability 2021, 13, 6757. [Google Scholar] [CrossRef]
- Oliveira, R.C.P.; Mateus, M.M.; Santos, D.M.F. On the Oxidation of Kraft Black Liquor for Lignin Recovery: A Voltammetric Study. J. Electrochem. Soc. 2019, 166, E547–E553. [Google Scholar] [CrossRef]
- Gellerstedt, G.; Sjöholm, E.; Ida, B. The Wood-Based Biorefinery: A Source of Carbon Fiber. Open Agric. J. 2010, 3, 119–124. [Google Scholar] [CrossRef]
- Rodrigues, A.E.; Barreiro, M.F.; Pinto, P.C.R.; da Costa, C.A.E.; da Mota, M.I.F.; Fernandes, I.P. An Integrated Approach for Added-Value Products from Lignocellulosic Biorefineries; Spring International Publishing: New York, NY, USA, 2018; p. 1. [Google Scholar]
- Popa, V.I. Pulp Production and Processing: From Paper Making to High-Tech Products; Smithers Rapra Technology: Shawbury, UK, 2013; p. 59. [Google Scholar]
- Gioia, C.; Colonna, M.; Tagami, A.; Medina, L.; Sevastyanova, O.; Berglund, L.A.; Lawoko, M. Lignin-Based Epoxy Resins: Unravelling the Relationship between Structure and Material Properties. Biomacromolecules 2020, 21, 1920–1928. [Google Scholar] [CrossRef]
- Li, G.; Shang, Y.; Wang, Y.; Wang, L.; Chao, Y.; Qi, Y. Reaction mechanism of etherification of rice straw with epichlorohydrin in alkaline medium. Sci. Rep. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Norgren, M.; Edlund, H. Lignin: Recent advances and emerging applications. Curr. Opin. Colloid Interface Sci. 2014, 19, 409–416. [Google Scholar] [CrossRef]
- Tomani, P. The lignoboost process. Cellulose Chem. Technol. 2010, 44, 53–58. [Google Scholar]
- Muthukumaran, P.; Babu, P.S.; Shyamalagowri, S.; Aravind, J.; Kamaraj, M.; Govarthanan, M. Polymeric biomolecules-based nanomaterials: Production strategies and pollutant mitigation as an emerging tool for environmental application. Chemosphere 2022, 4, 136008. [Google Scholar] [CrossRef]
- Carter, L.; Fitzgerald, M.; Thies, C. Continuous recovery of high-purity Kraft lignin from black liquor via simultaneous, liquid-phase acidification and purification. Ind. Crops Prod. 2022, 184, 115084. [Google Scholar]
- Rodríguez, A.; Espinosa, E.; Domínguez-Robles, J.; Sánchez, R.; Bascón, I.; Rosal, A. Different Solvents for Organosolv Pulping; IntechOpen: London, UK, 2018. [Google Scholar]
- Klett, A.; Chappell, P.; Thies, M.C. Recovering ultraclean lignins of controlled molecular liquor weight from Kraft black- lignins. Chem. Commun. 2015, 51, 2855–12858. [Google Scholar] [CrossRef] [PubMed]
- Chin, D.W.K.; Lim, S.; Pang, Y.L.; Lim, C.H. Effects of organosolv pretreatment using ethylene glycol on degraded empty fruit bunch for delignification and fractionation. IOP Conf. Ser. Earth Environ. Sci. 2020, 463, 012003. [Google Scholar] [CrossRef]
- Kouisni, A.; Gagne, K.; Maki, P.; Holt-Hindle, O.; Paleologou, M. Ligno Force system for the recovery of lignin from black liquor: Feedstock options, odor profile, and product characterization. ACS Sustain. Chem. Eng. 2016, 4, 5152. [Google Scholar] [CrossRef]
- Masoud, M.S.; Farag, H.A.; Zaatout, A.A.; Kamel, H.M.; El Greatly, M.H.; Ahmed, H.M. Recovery of some valuable components from industrial waste. Sep. Sci. Technol. 2017, 52, 512. [Google Scholar]
- Liu, W.; Cui, Y.; Du, X.; Zhang, Z.; Chao, Z.; Deng, Y. High efficiency hydrogen evolution from native biomass electrolysis. Energy Environ. Sci. 2016, 9, 467–472. [Google Scholar] [CrossRef]
- Oliveira, R.C.P.; Mateus, M.; Santos, D.M.F. Chronoamperometric and chronopotentiometric investigation of Kraft black liquor. Int. J. Hydrogen Energy 2018, 43, 16817–16823. [Google Scholar] [CrossRef]
- Dieste, A.; Clavijo, L.; Torres, A.I.; Barbe, S.; Oyarbide, I.; Bruno, L.; Cassella, F. Lignin from Eucalyptus spp. kraft black liquor as biofuel. Energy Fuels 2016, 30, 10494–10498. [Google Scholar] [CrossRef]
- Norberg, I. Carbon Fibres from Kraft Lignin. Doctoral Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2012. [Google Scholar]
- Salmén, L.; Bergnor, E.; Olsson, A.M.; Åkerström, M.; Uhlin, A. Extruding SW kraft lignins. Bio Resour. 2015, 10, 7544–7554. [Google Scholar]
- Bengtsson, A.; Bengtsson, J.; Olsson, C.; Sedin, M.; Jedvert, K.; Theliander, H.; Sjöholm, E. Improved yield of carbon fibers from cellulose and kraft lignin. Holzforschung 2018, 72, 1007–1016. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Feng, Q.; Du, L.Z. Effects of Polymerization Parameters on Aqueous Deposited Copolymerization of Acrylonitrile and Itaconic Acid. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013; Volume 774, pp. 508–511. [Google Scholar]
- Lu, Z. Review on the Precursor Preparation and Carbon Fiber Manufacturing. J. Phys. Conf. Ser. 2021, 1798, 012003. [Google Scholar] [CrossRef]
- Nordström, Y.; Sjöholm, E.; Brodin, I.; Drougge, R.; Gellerstedt, G. Lignin for Carbon Fibres. In Proceedings of the 3rd Nordic Wood Biorefinery Conference, NWBC, Stockholm, Sweden, 22–24 March 2011; pp. 156–160. [Google Scholar]
- Dumanlı, A.G.; Windle, A.H. Carbon fibres from cellulosic precursors: A review. J. Mater. Sci. 2012, 47, 4236–4250. [Google Scholar] [CrossRef]
- Madueke, C.I.; Umunakwe, R.; Mbah, O.M. A Review on the Factors Affecting the Properties of Natural Fiber Polymer. Nijotech 2022, 41, 55–64. [Google Scholar]
- Brodin, I.; Sjöholm, E.; Gellerstedt, G. Kraft Lignin as Feedstock for Chemical Products: The Effects of Membrane Filtration; DIVA; Walter de Gruyter: Berlin, Germany, 2009; Volume 63, pp. 290–297. [Google Scholar]
- Das, S. Life cycle assessment of carbon fiber-reinforced polymer composites. Int. J. Life Cycle Assess. 2011, 16, 268–282. [Google Scholar] [CrossRef]
- Islam, F.; Joannès, S.; Bucknell, S.; Leray, Y.; Bunsell, A.; Laiarinandrasana, L. A Review on the Factors Affecting the Properties of Natural Fibre Polymer Composites. Niger. J. Technol. 2020, 39, 144–162. [Google Scholar]
- Janssen, M.; Gustafsson, E.; Echardt, L.; Wallinder, J.; Wolf, J. Life Cycle Assessment of Lignin-Based Carbon Fibres. In Proceedings of the 14th Conference on Sustainable Development of Energy, Water and Environment Systems, SDEWES, Dubrovnik, Croatia, 1–6 October 2019. [Google Scholar]
- Yuan, G.; Li, X.; Xiong, X. A comprehensive study on the oxidative stabilization of mesophase pitch-based tape-shaped thick fibers with oxygen. Carbon 2017, 115, 59–76. [Google Scholar] [CrossRef]
- Karaaslan, M.A.; Cho, M.; Liu, L.Y.; Wang, H.; Renneckar, S. Refining the properties of softwood kraft lignin with acetone: Effect of solvent fractionation on the thermomechanical behavior of electrospun fibers. ACS Sustain. Chem. Eng. 2020, 9, 458–470. [Google Scholar] [CrossRef]
- Sheeja, S.; Abhilas, J.K.; Kumar, A. Oxidative stabilization studies on pretreated polyacrylonitrile precursor fiber suitable for carbon fiber production. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2166, p. 020018. [Google Scholar] [CrossRef]
- Scown, C.D.; Gokhale, A.A.; Willems, P.A.; Horvath, A.; McKone, T.E. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States cellulosic biofuels. Environ. Sci. Technol. 2014, 48, 8446–8455. [Google Scholar] [CrossRef]
- Nunna, S.; Setty1, M.; Naebe, M. Formation of skin-core in carbon fibre processing: A defector an effect. Express Polym. Lett. 2019, 13, 146–158. [Google Scholar] [CrossRef]
- Bernier, E.; Lavigne, C.; Robidoux, P.Y. Life cycle assessment of kraft lignin for polymer applications. Int. J. Life Cycle Assess. 2013, 18, 520–528. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, W.; Chen, L.; Xia, X.; Meng, Y.; Liu, C.; Lin, Q.; Jiang, Y.; Gao, S. Evaluation of graphitization and tensile property in microwave plasma treated carbon fiber. Diam. Relat. Mater. 2022, 126, 109904. [Google Scholar] [CrossRef]
- Peijs, T.; Kirchbaum, R.; Jan, P.; Lemstra, A. critical review of carbon fiber and related products from an industrial perspective. Adv. Ind. Eng. Polym. Res. 2022, 5, 90–106. [Google Scholar] [CrossRef]
- Soulis, S.; Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Impact of Alternative Stabilization Strategies for the Production of PAN-Based Carbon Fibers with High Performance. Fibers 2020, 8, 33. [Google Scholar] [CrossRef]
- Shuangling, J.; Guo, C.; Lu, Y.; Zhang, R.; Wang, Z.; Jin, M. Comparison of microwave and conventional heating methods in carbonization of polyacrylon trile-based stabilized fibers at different temperature measured by an in-situ process temperature control ring. Polym. Degrad. Stab. 2017, 140, 32–41. [Google Scholar]
- Zhou, J.; Li, Y.; Zhu, Z.; Xu, E.; Li, S.; Sui, S. Microwave heating and curing of metal-like CFRP laminates through ultrathin and flexible resonance structures. Compos. Sci. Technol. 2022, 218, 109200. [Google Scholar] [CrossRef]
- Li, Y.; Li, N.; Zhou, J. Microwave curing of multidirectional carbon fiber reinforced polymer composites. Compos. Struct. 2019, 212, 83–93. [Google Scholar] [CrossRef]
- Galos, J. Microwave processing of carbon fibre polymer composites: A review. Polym. Polym. Compos. 2021, 29, 151–162. [Google Scholar] [CrossRef]
- European Environment Agency. Climate Change and a European Low-Carbon Energy System; European Environment Agency: Copenhagen, Denmark, 2005.
- William, F.L.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, G.J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A.A. House. J. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- OECD/ITF. The Report Cutting Transport CO2 Emission; OECD: Paris, France, 2007. [Google Scholar]
- Ashby, M. Materials and the Environment; Butterworth-Heinemann: Waltham, MA, USA, 2013. [Google Scholar]
- Fitzgerald, A.; Proud, W.; Kandemir, A.; Murphy, R.J.; Jesson, D.A.; Trask, R.S.; Hamerton, I.; Longana, M.L. A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery. Sustainability 2021, 13, 1160. [Google Scholar] [CrossRef]
- Correa, J.P.; Montalvo-Navarrete, J.M.; Hidalgo-Salazar, M.A. Carbon footprint considerations for biocomposite materials for sustainable products: A review. J. Clean. Prod. 2019, 208, 785–794. [Google Scholar] [CrossRef]
- Ralph, J. Hydroxycinnamates in lignification. Phytochem. Rev. 2010, 9, 65–83. [Google Scholar] [CrossRef]
- Maghe, M.; Creighton, C.; Henderson, L.C.; Huson, M.G.; Nunna, S.; Atkiss, S.; Byrne, N.; Fox, B.L. Using ionic liquids to reduce energy consumption for carbon fibre production. J. Mater. Chem. A 2016, 4, 16619–16626. [Google Scholar] [CrossRef]
- Sakamoto, K.; Kawajiri, K.; Hatori, H.; Tahara, K. Impact of the Manufacturing Processes of Aromatic-Polymer-Based Carbon Fiber on Life Cycle Greenhouse Gas Emissions. Sustainability 2022, 14, 3541. [Google Scholar] [CrossRef]
- Khandelwal, M. Carbon Footprint of Lignin Modified Asphalt Mix. Master Thesis, Utrecht University, Utrecht, The Netherlands, 2019. [Google Scholar]
- Moretti, C.; Corona, B.; Hoefnagels, R.; Vural-Gürsel, I.; Gosselink, R.; Junginger, M. Review of life cycle assessments of lignin and derived products: Lessons learned. Sci. Total Environ. 2021, 770, 144656. [Google Scholar] [CrossRef]
- Tokede, O.O.; Whittaker, A.; Mankaa, R.; Traverso, M. Life cycle assessment of asphalt variants in infrastructures: The case of lignin in Australian road pavements. In Structures; Elsevier: Amsterdam, The Netherlands, 2020; Volume 25, pp. 190–199. [Google Scholar] [CrossRef]
- Tribot, A.; Amer, G.; Abdou Alio, M.; de Baynast, H.; Delattre, C. Wood-lignin: Supply, extraction processes and use as bio-based material. Eur. Polym. J. 2019, 112, 228–240. [Google Scholar] [CrossRef]
- Arias, J.; Carvajal, A.; Gómez, C.A. Comparison of lignin extraction processes: 3 Economic and environmental assessment. Bioresour. Technol. 2016, 214, 468–476. [Google Scholar]
- Yadav, P.; Athanassiadis, D.; Antonopoulou, I.; Rova, U.; Christakopoulos, P.; Tysklind, M.; Matsakas, L. Environmental impact and cost assessment of a novel lignin production method. J. Clean. Prod. 2021, 279, 123515. [Google Scholar] [CrossRef]
- Culbertson, C.; Trevor, T.; Richard, V.; Gonzales, J.H. Life Cycle Assessment of lignin extraction in a softwood kraft pulp mill. Nord. Pulp. Pap. Res. J. 2018, 1, 1–30. [Google Scholar] [CrossRef]
- Murphy, T. The New Face of CAFÉ. Ward’s Autoworld 2008, 34, 36–40. [Google Scholar]
- Kawajiri, K.; Sakamoto, K. Environmental impact of carbon fibers fabricated by an innovative manufacturing process on life cycle greenhouse gas emissions. Sustain. Mater. Technol. 2022, 31, e00365. [Google Scholar] [CrossRef]
S/N | Biomass | % Lignin | Monomer (H, G, S & CA) | References |
---|---|---|---|---|
1 | Jute Stem | 12–26 | G and S | [33] |
2 | Hazelnut (HL) and walnut (WL) shells (Agro-food lignin) | 85–95 | H, G, S & CA | [34] |
3 | Piceabies wood | 25–29 | H, G & S | [34] |
4 | Pinus pinaster wood | 23–30 | H, G & S | [35] |
5 | Pinus pinaster bark | 33 | H, G & S | [35] |
6 | Phloem | 38 | H, G & S | [36] |
7 | Sapwood | 32 | H, G &S | [36] |
8 | Sugarcane bagasse | 21 | H, G & S | [37] |
9 | Wheat straw | 22 | G & S | [38] |
10 | Bambo | 25–27 | H, G & S | [39] |
S/N | Bio-Mass | Process | CO2,eq/kg | Reference |
---|---|---|---|---|
1 | Softwood | Kraft process | 2.9 | [81] |
2 | Softwood | Kraft lignin | 0.2–0.7 | [17] |
3 | Softwood | Kraft process | 0.09 | [101] |
4 | Agro-based | organosolv | 1.85 | [102] |
5 | Spruce Bark | organosolv | 1.4–2.1 | [103] |
6 | Agro-based | organosolv | 1.0–2.7 | [99] |
7 | Softwood | organosolv | 0.25 | [101] |
8 | Agro-based | Lignoboost | 0.55 | [76] |
9 | Agro-based | Lignoboost | 0.17 | [100] |
10 | Softwood | Lignoboost | 0.2–0.6 | [104] |
11 | Softwood | Soda process | 0.02 | [101] |
12 | Soft Wood | sulfite process | 0.03 | [101] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obasa, V.D.; Olanrewaju, O.A.; Gbenebor, O.P.; Ochulor, E.F.; Odili, C.C.; Abiodun, Y.O.; Adeosun, S.O. A Review on Lignin-Based Carbon Fibres for Carbon Footprint Reduction. Atmosphere 2022, 13, 1605. https://doi.org/10.3390/atmos13101605
Obasa VD, Olanrewaju OA, Gbenebor OP, Ochulor EF, Odili CC, Abiodun YO, Adeosun SO. A Review on Lignin-Based Carbon Fibres for Carbon Footprint Reduction. Atmosphere. 2022; 13(10):1605. https://doi.org/10.3390/atmos13101605
Chicago/Turabian StyleObasa, Victoria Dumebi, Oludolapo Akanni Olanrewaju, Oluwashina Phillips Gbenebor, Ezenwanyi Fidelia Ochulor, Cletus Chiosa Odili, Yetunde Oyebolaji Abiodun, and Samson Oluropo Adeosun. 2022. "A Review on Lignin-Based Carbon Fibres for Carbon Footprint Reduction" Atmosphere 13, no. 10: 1605. https://doi.org/10.3390/atmos13101605
APA StyleObasa, V. D., Olanrewaju, O. A., Gbenebor, O. P., Ochulor, E. F., Odili, C. C., Abiodun, Y. O., & Adeosun, S. O. (2022). A Review on Lignin-Based Carbon Fibres for Carbon Footprint Reduction. Atmosphere, 13(10), 1605. https://doi.org/10.3390/atmos13101605