Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle
Abstract
:1. Introduction
2. Methods to Quantify Heat Stress Response
2.1. Invasive Approaches to Quantify Heat Stress
2.2. Non-Invasive Approaches
3. Importance of Non-Invasive Methods to Quantify Heat Stress Response in Farm Animals
4. Animal-Related Non-Invasive Methods to Quantify Heat Stress Responses in Farm Animals
5. Advances Associated with Non-Invasive Methods of Assessing Heat Stress Response in Farm Animals
6. Infrared Thermal Image Applications in Assessing Thermo-Tolerance in Farm Animals
7. Sensor-Based Applications in Assessing Heat Stress Response in Grazing Animals
7.1. Rumen/Reticular Boluses
7.2. Subcutaneous Implantable Devices
7.3. Rectal and Vaginal Probes
7.4. GPS Technology
7.5. Accelerometer
7.6. Bioacoustics
8. Applications of Machine Learning in Heat Stress Assessment in Farm Animals
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thornton, P.K. Livestock Production: Recent Trends, Future Prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Jongman, E.C. Modelling and Validation of Computer Vision Techniques to Assess Heart Rate, Eye Temperature, Ear-Base Temperature and Respiration Rate in Cattle. Animals 2019, 9, 1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Arsenault, R.; Napper, S.; Griebel, P. Models and Methods to Investigate Acute Stress Responses in Cattle. Animals 2015, 5, 1268–1295. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Wang, W.; Guo, L.; Bindelle, J. Recent Advances on Early Detection of Heat Strain in Dairy Cows Using Animal-Based Indicators: A Review. Animals 2021, 11, 980. [Google Scholar] [CrossRef]
- Idris, M.; Uddin, J.; Sullivan, M.; McNeill, D.M.; Phillips, C.J.C. Non-Invasive Physiological Indicators of Heat Stress in Cattle. Animals 2021, 11, 71. [Google Scholar] [CrossRef]
- Attia, N. Physiological, Hematological and Biochemical Alterations in Heat Stressed Goats. Benha Vet. Med. J. 2016, 31, 56–62. [Google Scholar] [CrossRef]
- Morar, D.; Ciulan, V.; Simiz, F.; Moț, T.; Hutu, I.; Văduva, C. Effect of Heat Stress on Haematological Parameters in Dairy Cows. In Proceedings of the Lucrari Stiintifice: Medicina Veterinara Timisoara (Scientifical Papers: Veterinary Medicine Timisoara), Timisoara, Romania, 29 May 2018; Imprimeria Mirton Timisoara: Timisoara, Romania, 2018; Volume LI, pp. 65–70. [Google Scholar]
- Omran, F.I.; Ashour, G.; Youssef, M.M.; Shafie, M.M. Responses of Hematology, Blood Metabolites, Mineral Ions and Hormonal Profile to Heat Stress for Egyptian Buffalo-Calves. Egypt. J. Agric. Res. 2011, 89, 1129–1140. [Google Scholar] [CrossRef]
- Chaudhary, S.S.; Singh, V.K.; Upadhyay, R.C.; Puri, G.; Odedara, A.B.; Patel, P.A. Evaluation of Physiological and Biochemical Responses in Different Seasons in Surti Buffaloes. Vet. World 2015, 8, 727–731. [Google Scholar] [CrossRef]
- Aleena, J.; Sejian, V.; Krishnan, G.; Bagath, M.; Pragna, P.; Bhatta, R. Heat Stress Impact on Blood Biochemical Response and Plasma Aldosterone Level in Three Different Indigenous Goat Breeds. J. Anim. Behav. Biometeorol. 2020, 8, 266–275. [Google Scholar] [CrossRef]
- Feizi, A.; Dadian, F.; Asadzadehmajdi, S. The Effect of Heat Stress on Some Blood Parameters, Biochemical Values and Humoral Immunity in Broiler Chickens. Vet. Clin. Pathol. Q. Sci. J. 2012, 6, 1621–1627. [Google Scholar]
- Sejian, V.; Bhatta, R.; Gaughan, J.B.; Dunshea, F.R.; Lacetera, N. Review: Adaptation of Animals to Heat Stress. Animal 2018, 12, s431–s444. [Google Scholar] [CrossRef]
- Maurya, V.P.; Sejian, V.; Kumar, D.; Naqvi, S.M.K. Impact of Heat Stress, Nutritional Stress and Their Combinations on the Adaptive Capability of Malpura Sheep under Hot Semi-Arid Tropical Environment. J. Anim. Behav. Biometeorol. 2019, 7, 31–38. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and Hormonal Acclimation to Heat Stress in Domesticated Ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Pragna, P.; Sejian, V.; Soren, N.M.; Bagath, M.; Krishnan, G.; Beena, V.; Devi, P.I.; Bhatta, R. Summer Season Induced Rhythmic Alterations in Metabolic Activities to Adapt to Heat Stress in Three Indigenous (Osmanabadi, Malabari and Salem Black) Goat Breeds. Biol. Rhythm Res. 2018, 49, 551–565. [Google Scholar] [CrossRef]
- Sejian, V.; Bagath, M.; Krishnan, G.; Rashamol, V.P.; Pragna, P.; Devaraj, C.; Bhatta, R. Genes for Resilience to Heat Stress in Small Ruminants: A Review. Small Rumin. Res. 2019, 173, 42–53. [Google Scholar] [CrossRef]
- Manjari, R.; Yadav, M.; Ramesh, K.; Uniyal, S.; Rastogi, S.K.; Sejian, V.; Hyder, I. HSP70 as a Marker of Heat and Humidity Stress in Tarai Buffalo. Trop. Anim. Health Prod. 2015, 47, 111–116. [Google Scholar] [CrossRef]
- Angel, S.P.; Bagath, M.; Sejian, V.; Krishnan, G.; Bhatta, R. Expression Patterns of Candidate Genes Reflecting the Growth Performance of Goats Subjected to Heat Stress. Mol. Biol. Rep. 2018, 45, 2847–2856. [Google Scholar] [CrossRef]
- Archana, P.R.; Sejian, V.; Ruban, W.; Bagath, M.; Krishnan, G.; Aleena, J.; Manjunathareddy, G.B.; Beena, V.; Bhatta, R. Comparative Assessment of Heat Stress Induced Changes in Carcass Traits, Plasma Leptin Profile and Skeletal Muscle Myostatin and HSP70 Gene Expression Patterns between Indigenous Osmanabadi and Salem Black Goat Breeds. Meat Sci. 2018, 141, 66–80. [Google Scholar] [CrossRef]
- Rashamol, V.P.; Sejian, V.; Bagath, M.; Krishnan, G.; Beena, V.; Bhatta, R. Effect of Heat Stress on the Quantitative Expression Patterns of Different Cytokine Genes in Malabari Goats. Int. J. Biometeorol. 2019, 63, 1005–1013. [Google Scholar] [CrossRef]
- Hirakawa, R.; Nurjanah, S.; Furukawa, K.; Murai, A.; Kikusato, M.; Nochi, T.; Toyomizu, M. Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens. Front. Vet. Sci. 2020, 7, 46. [Google Scholar] [CrossRef]
- Garner, J.B.; Chamberlain, A.J.; Vander Jagt, C.; Nguyen, T.T.T.; Mason, B.A.; Marett, L.C.; Leury, B.J.; Wales, W.J.; Hayes, B.J. Gene Expression of the Heat Stress Response in Bovine Peripheral White Blood Cells and Milk Somatic Cells in Vivo. Sci. Rep. 2020, 10, 19181. [Google Scholar] [CrossRef]
- Halli, K.; Vanvanhossou, S.F.; Bohlouli, M.; König, S.; Yin, T. Identification of Candidate Genes on the Basis of SNP by Time-Lagged Heat Stress Interactions for Milk Production Traits in German Holstein Cattle. PLoS ONE 2021, 16, e0258216. [Google Scholar] [CrossRef]
- Wijffels, G.; Sullivan, M.; Gaughan, J. Methods to Quantify Heat Stress in Ruminants: Current Status and Future Prospects. Methods 2021, 186, 3–13. [Google Scholar] [CrossRef]
- Rhoad, A.O. The Iberia Heat Tolerance Test for Cattle. Trop. Agric. 1944, 21, 162–164. [Google Scholar]
- Rashamol, V.P.; Sejian, V.; Pragna, P.; Lees, A.M.; Bagath, M.; Krishnan, G.; Gaughan, J.B. Prediction Models, Assessment Methodologies and Biotechnological Tools to Quantify Heat Stress Response in Ruminant Livestock. Int. J. Biometeorol. 2019, 63, 1265–1281. [Google Scholar] [CrossRef] [Green Version]
- Herbut, P.; Hoffmann, G.; Angrecka, S.; Godyń, D.; Vieira, F.M.C.; Adamczyk, K.; Kupczyński, R. The Effects of Heat Stress on the Behaviour of Dairy Cows—A Review. Ann. Anim. Sci. 2021, 21, 385–402. [Google Scholar] [CrossRef]
- Aleena, J.; Sejian, V.; Bagath, M.; Krishnan, G.; Beena, V.; Bhatta, R. Resilience of Three Indigenous Goat Breeds to Heat Stress Based on Phenotypic Traits and PBMC HSP70 Expression. Int. J. Biometeorol. 2018, 62, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.D.; Hall, L.W.; Collier, R.J.; Smith, J.F. Effect of Core Body Temperature, Time of Day, and Climate Conditions on Behavioral Patterns of Lactating Dairy Cows Experiencing Mild to Moderate Heat Stress. J. Dairy Sci. 2015, 98, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Lomax, S.; Doughty, A.; Islam, M.; Jay, O.; Thomson, P.; Clark, C. Automated Monitoring of Cattle Heat Stress and Its Mitigation. Anim. Sci. 2021, 2, 737213. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S. The Effect of Heat Stress on Time Spent Lying by Cows in a Housing System. Ann. Anim. Sci. 2018, 18, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Habibu, B.; Yaqub, L.S.; Dzenda, T.; Kawu, M.U. Sensitivity, Impact and Consequences of Changes in Respiratory Rate During Thermoregulation in Livestock—A Review. Ann. Anim. Sci. 2019, 19, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Pastell, M.; Kaihilahti, J.; Aisla, A.-M.; Hautala, M.; Poikalainen, V.; Ahokas, J. A System for Contact-Free Measurement of Respiration Rate of Dairy Cows. J. Prec. Livest. Farm 2007, 7, 105–109. [Google Scholar]
- Milan, H.F.M.; Maia, A.S.C.; Gebremedhin, K.G. Technical Note: Device for Measuring Respiration Rate of Cattle under Field Conditions1. J. Anim. Sci. 2016, 94, 5434–5438. [Google Scholar] [CrossRef] [PubMed]
- Rees, A.; Fischer-Tenhagen, C.; Heuwieser, W. Effect of Heat Stress on Concentrations of Faecal Cortisol Metabolites in Dairy Cows. Reprod. Domest. Anim. 2016, 51, 392–399. [Google Scholar] [CrossRef]
- Dulude-de Broin, F.; Côté, S.D.; Whiteside, D.P.; Mastromonaco, G.F. Faecal Metabolites and Hair Cortisol as Biological Markers of HPA-Axis Activity in the Rocky Mountain Goat. Gen. Comp. Endocrinol. 2019, 280, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Koltes, J.E.; Koltes, D.A.; Mote, B.E.; Tucker, J.; Hubbell, D.S., III. Automated Collection of Heat Stress Data in Livestock: New Technologies and Opportunities. Transl. Anim. Sci. 2018, 2, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Lewis Baida, B.E.; Swinbourne, A.M.; Barwick, J.; Leu, S.T.; van Wettere, W.H.E.J. Technologies for the Automated Collection of Heat Stress Data in Sheep. Anim. Biotelemetry 2021, 9, 4. [Google Scholar] [CrossRef]
- Kearton, T.R.; Doughty, A.K.; Morton, C.L.; Hinch, G.N.; Godwin, I.R.; Cowley, F.C. Core and Peripheral Site Measurement of Body Temperature in Short Wool Sheep. J. Therm. Biol. 2020, 90, 102606. [Google Scholar] [CrossRef] [PubMed]
- Tannock, G.W.; Savage, D.C. Influences of Dietary and Environmental Stress on Microbial Populations in the Murine Gastrointestinal Tract. Infect. Immun. 1974, 9, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Bailey, M.T.; Dowd, S.E.; Galley, J.D.; Hufnagle, A.R.; Allen, R.G.; Lyte, M. Exposure to a Social Stressor Alters the Structure of the Intestinal Microbiota: Implications for Stressor-Induced Immunomodulation. Brain. Behav. Immun. 2011, 25, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Yan, T.; Wang, X.; Kuang, S.; Xiao, Y.; Lu, W.; Bi, D. Probiotic Mixture Ameliorates Heat Stress of Laying Hens by Enhancing Intestinal Barrier Function and Improving Gut Microbiota. Ital. J. Anim. Sci. 2017, 16, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.Y.; Zhang, H.; Brannan, L.E.; Carman, R.J.; Boone, J.H. Rapid Change of Fecal Microbiome and Disappearance of Clostridium Difficile in a Colonized Infant after Transition from Breast Milk to Cow Milk. Microbiome 2016, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, J.; Peng, D.; Li, G.; Chen, J.; Gu, X. Exposure to Heat-Stress Environment Affects the Physiology, Circulation Levels of Cytokines, and Microbiome in Dairy Cows. Sci. Rep. 2018, 8, 14606. [Google Scholar] [CrossRef]
- Baek, Y.C.; Choi, H.; Jeong, J.-Y.; Lee, S.D.; Kim, M.J.; Lee, S.; Ji, S.-Y.; Kim, M. The Impact of Short-Term Acute Heat Stress on the Rumen Microbiome of Hanwoo Steers. J. Anim. Sci. Technol. 2020, 62, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Czech, B.; Szyda, J.; Wang, K.; Luo, H.; Wang, Y. Fecal Microbiota and Their Association with Heat Stress in Bos Taurus. BMC Microbiol. 2022, 22, 171. [Google Scholar] [CrossRef]
- He, J.; Guo, H.; Zheng, W.; Xue, Y.; Zhao, R.; Yao, W. Heat Stress Affects Fecal Microbial and Metabolic Alterations of Primiparous Sows during Late Gestation. J. Anim. Sci. Biotechnol. 2019, 10, 84. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Shokralla, S.; Zhou, X.; Singer, G.A.C.; Baird, D.J. Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos. PLoS ONE 2011, 6, e17497. [Google Scholar] [CrossRef] [Green Version]
- Shokralla, S.; Spall, J.L.; Gibson, J.F.; Hajibabaei, M. Next-Generation Sequencing Technologies for Environmental DNA Research: Next-Generation Sequencing for Environmental DNA. Mol. Ecol. 2012, 21, 1794–1805. [Google Scholar] [CrossRef]
- Fierer, N.; Breitbart, M.; Nulton, J.; Salamon, P.; Lozupone, C.; Jones, R.; Robeson, M.; Edwards, R.A.; Felts, B.; Rayhawk, S.; et al. Metagenomic and Small-Subunit RRNA Analyses Reveal the Genetic Diversity of Bacteria, Archaea, Fungi, and Viruses in Soil. Appl. Environ. Microbiol. 2007, 73, 7059–7066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohmann, K.; Evans, A.; Gilbert, M.T.P.; Carvalho, G.R.; Creer, S.; Knapp, M.; Yu, D.W.; de Bruyn, M. Environmental DNA for Wildlife Biology and Biodiversity Monitoring. Trends Ecol. Evol. 2014, 29, 358–367. [Google Scholar] [CrossRef]
- Jo, T.; Murakami, H.; Yamamoto, S.; Masuda, R.; Minamoto, T. Effect of Water Temperature and Fish Biomass on Environmental DNA Shedding, Degradation, and Size Distribution. Ecol. Evol. 2019, 9, 1135–1146. [Google Scholar] [CrossRef] [Green Version]
- Onley, I.R.; Moseby, K.E.; Austin, J.J. Genomic Approaches for Conservation Management in Australia under Climate Change. Life 2021, 11, 653. [Google Scholar] [CrossRef]
- Hoffmann, G.; Silpa, M.V.; Mylostyvyi, R.; Sejian, V. Non-Invasive Methods to Quantify the Heat Stress Response in Dairy Cattle. In Climate Change and Livestock Production: Recent Advances and Future Perspectives; Sejian, V., Chauhan, S.S., Devaraj, C., Malik, P.K., Bhatta, R., Eds.; Springer: Singapore, 2021; pp. 85–98. ISBN 9789811698361. [Google Scholar]
- Palme, J.; Robia, C.H.; Messmann, S.; Hofer, J.; Mostl, E.; Palme, R.; Robia, C.H.; Messmann, S.; Hofer, J.; Mostl, E. Measurement of Faecal Cortisol Metabolites in Ruminants: A Non-Invasive Parameter of Adrenocortical Function. Wien. Tierärztliche Mon. 1999, 86, 237–241. [Google Scholar]
- Idris, M. Behavioural and Physiological Responses of Beef Cattle to Hot Environmental Conditions. Ph.D. Thesis, The University of Queensland, Brisbane, QLD, Australia, 2020. [Google Scholar]
- Ganswindt, A.; Tordiffe, A.S.W.; Stam, E.; Howitt, M.J.; Jori, F. Determining Adrenocortical Activity as a Measure of Stress in African Buffalo (Syncerus Caffer) Based on Faecal Analysis. Afr. Zool. 2012, 47, 261–269. [Google Scholar] [CrossRef]
- Gholib, G.; Pampang, F.H.R.A.; Lubis, T.M.; Adam, M.; Jalaluddin, M.; Razali, R.; Azhar, A.; Karmil, T.F. Non-Invasive Measurement of Cortisol Metabolite in Feces of Toraya Buffalo by Using Enzyme Immunoassay Technique. In Proceedings of the E3S Web of Conferences; Gholib, G., Sutriana, A., Engelhardt, A., Duboscq, J., Sahara Zamzami, R., Eds.; EDP Sciences: Les Ulis, France, 2020; Volume 151, p. 01061. [Google Scholar]
- Weaver, S.J.; Hynd, P.I.; Ralph, C.R.; Hocking Edwards, J.E.; Burnard, C.L.; Narayan, E.; Tilbrook, A.J. Chronic Elevation of Plasma Cortisol Causes Differential Expression of Predominating Glucocorticoid in Plasma, Saliva, Fecal, and Wool Matrices in Sheep. Domest. Anim. Endocrinol. 2021, 74, 106503. [Google Scholar] [CrossRef]
- Isaac, A.; Ibrahim, Y.; Andrew, A.; Edward, D.; Solomon, A. The Cortisol Steroid Levels as a Determinant of Health Status in Animals. J. Proteomics Bioinform. 2017, 10, 277–283. [Google Scholar] [CrossRef]
- Pol, F.; Courboulay, V.; Cotte, J.-P.; Martrenchar, A.; Hay, M.; Mormède, P. Urinary Cortisol as an Additional Tool to Assess Thewelfare of Pregnant Sows Kept in Two Types of Housing. Vet. Res. 2002, 33, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Mohan, N.H.; Nath, A.; Thomas, R.; Kumar, S.; Banik, S.; Das, A.K.; Das, R.K.; Sarma, D.K. Relationship between Plasma, Saliva, Urinary and Faecal Cortisol Levels in Pigs. Indian J. Anim. Sci. 2020, 90, 768–772. [Google Scholar] [CrossRef]
- Lasley, B.L. Methods for Evaluating Reproductive Function in Exotic Species. Adv. Vet. Sci. Comp. Med. USA 1985, 30, 209–228. [Google Scholar]
- Morrow, C.J.; Kolver, E.S.; Verkerk, G.A.; Matthews, L.R. Urinary Cortisol: An Indicator of Stress in Dairy Cattle. In Proceedings of the New Zealand Society of Animal Production; New Zealand Society of Animal Production: Hamilton, New Zealand, 2000; Volume 60, pp. 218–221. [Google Scholar]
- Popot, M.A.; Houghton, E.; Ginn, A.; Jones, M.; Teale, P.; Samuels, T.; Lassourd, V.; Dunnett, N.; Cowan, D.A.; Bonnaire, Y.; et al. Cortisol Concentrations in Post Competition Horse Urine: A French and British Survey. Equine Vet. J. 1997, 29, 226–229. [Google Scholar] [CrossRef]
- Pragst, F.; Balikova, M.A. State of the Art in Hair Analysis for Detection of Drug and Alcohol Abuse. Clin. Chim. Acta 2006, 370, 17–49. [Google Scholar] [CrossRef]
- Wiechers, D.-H.; Brunner, S.; Herbrandt, S.; Kemper, N.; Fels, M. Analysis of Hair Cortisol as an Indicator of Chronic Stress in Pigs in Two Different Farrowing Systems. Front. Vet. Sci. 2021, 8, 605078. [Google Scholar] [CrossRef]
- Cook, N.J. Review: Minimally Invasive Sampling Media and the Measurement of Corticosteroids as Biomarkers of Stress in Animals. Can. J. Anim. Sci. 2012, 92, 227–259. [Google Scholar] [CrossRef]
- Riek, A.; Schrader, L.; Zerbe, F.; Petow, S. Comparison of Cortisol Concentrations in Plasma and Saliva in Dairy Cattle Following ACTH Stimulation. J. Dairy Res. 2019, 86, 406–409. [Google Scholar] [CrossRef]
- Dzviti, M.; Mapfumo, L.; Muchenje, V. Relationship between Saliva and Blood Cortisol in Handled Cows. Asian-Australas. J. Anim. Sci. 2019, 32, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Fox, L.; Butler, W.R.; Everett, R.W.; Natzke, R.P. Effect of Adrenocorticotropin on Milk and Plasma Cortisol and Prolactin Concentrations. J. Dairy Sci. 1981, 64, 1794–1803. [Google Scholar] [CrossRef]
- Sgorlon, S.; Fanzago, M.; Guiatti, D.; Gabai, G.; Stradaioli, G.; Stefanon, B. Factors Affecting Milk Cortisol in Mid Lactating Dairy Cows. BMC Vet. Res. 2015, 11, 259. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Aoki, N.; Tsuchiya, A.; Kaneko, S.; Akiyama, K.; Uetake, K.; Suzuki, K. Detection of Stress Hormone in the Milk for Animal Welfare Using QCM Method. J. Sens. 2017, 2017, 6486891. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.; Webster, J.; Schaefer, A.; Cook, N.; Scott, S. Infrared Thermography as a Non-Invasive Tool to Study Animal Welfare. Anim. Welf. 2005, 14, 319–325. [Google Scholar]
- Verkerk, G.A.; Phipps, A.M.; Matthews, L.R. Milk Cortisol Concentrations as an Indicator of Stress in Lactating Dairy Cows. Proc. N. Z. Soc. Anim. Prod. 1996, 56, 4. [Google Scholar]
- Neethirajan, S. The Role of Sensors, Big Data and Machine Learning in Modern Animal Farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- Neethirajan, S. Recent Advances in Wearable Sensors for Animal Health Management. Sens. Bio-Sens. Res. 2017, 12, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Strutzke, S.; Fiske, D.; Hoffmann, G.; Ammon, C.; Heuwieser, W.; Amon, T. Technical Note: Development of a Noninvasive Respiration Rate Sensor for Cattle. J. Dairy Sci. 2019, 102, 690–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Unnithan, R.R.; Morrison, R.S.; Jongman, E.C. Using Imagery and Computer Vision as Remote Monitoring Methods for Early Detection of Respiratory Disease in Pigs. Comput. Electron. Agric. 2021, 187, 106283. [Google Scholar] [CrossRef]
- Bar, D.; Kaim, M.; Flamenbaum, I.; Hanochi, B.; Toaff-Rosenstein, R.L. Technical Note: Accelerometer-Based Recording of Heavy Breathing in Lactating and Dry Cows as an Automated Measure of Heat Load. J. Dairy Sci. 2019, 102, 3480–3486. [Google Scholar] [CrossRef] [Green Version]
- Mazgaoker, S.; Ketko, I.; Yanovich, R.; Heled, Y.; Epstein, Y. Measuring Core Body Temperature with a Non-Invasive Sensor. J. Therm. Biol. 2017, 66, 17–20. [Google Scholar] [CrossRef]
- Guschlbauer, M.; Maul, A.C.; Yan, X.; Herff, H.; Annecke, T.; Sterner-Kock, A.; Böttiger, B.W.; Schroeder, D.C. Zero-Heat-Flux Thermometry for Non-Invasive Measurement of Core Body Temperature in Pigs. PLoS ONE 2016, 11, e0150759. [Google Scholar] [CrossRef]
- Cuthbertson, H.; Tarr, G.; González, L.A. Methodology for Data Processing and Analysis Techniques of Infrared Video Thermography Used to Measure Cattle Temperature in Real Time. Comput. Electron. Agric. 2019, 167, 105019. [Google Scholar] [CrossRef]
- Abecia, J.A.; Pascual-Alonso, M.; Aguayo-Ulloa, L.A.; Maria, G.A. Comparison of Several Devices to Measure Body Temperature in Sheep. Precis. Livest. Farming 2015, 221–229. [Google Scholar]
- Peng, D.; Chen, S.; Li, G.; Chen, J.; Wang, J.; Gu, X. Infrared Thermography Measured Body Surface Temperature and Its Relationship with Rectal Temperature in Dairy Cows under Different Temperature-Humidity Indexes. Int. J. Biometeorol. 2019, 63, 327–336. [Google Scholar] [CrossRef]
- Pohl, A.; Heuwieser, W.; Burfeind, O. Technical Note: Assessment of Milk Temperature Measured by Automatic Milking Systems as an Indicator of Body Temperature and Fever in Dairy Cows. J. Dairy Sci. 2014, 97, 4333–4339. [Google Scholar] [CrossRef] [PubMed]
- Klefot, J.M.; Murphy, J.L.; Donohue, K.D.; O’Hara, B.F.; Lhamon, M.E.; Bewley, J.M. Development of a Noninvasive System for Monitoring Dairy Cattle Sleep. J. Dairy Sci. 2016, 99, 8477–8485. [Google Scholar] [CrossRef]
- Unakafov, A.M.; Möller, S.; Kagan, I.; Gail, A.; Treue, S.; Wolf, F. Using Imaging Photoplethysmography for Heart Rate Estimation in Non-Human Primates. PLoS ONE 2018, 13, e0202581. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-Y. Eulerian Video Processing and Medical Applications. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012. [Google Scholar]
- Balakrishnan, G.; Durand, F.; Guttag, J. Detecting Pulse from Head Motions in Video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2013; IEEE: Piscataway, NJ, USA; pp. 3430–3437.
- Kovács, L.; Kézér, F.L.; Jurkovich, V.; Kulcsár-Huszenicza, M.; Tőzsér, J. Heart Rate Variability as an Indicator of Chronic Stress Caused by Lameness in Dairy Cows. PLoS ONE 2015, 10, e0134792. [Google Scholar] [CrossRef]
- Khatate, P.; Savkar, A.; Patil, C.Y. Wearable Smart Health Monitoring System for Animals. In Proceedings of the 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 162–164. [Google Scholar]
- Kitajima, K.; Oishi, K.; Miwa, M.; Anzai, H.; Setoguchi, A.; Yasunaka, Y.; Himeno, Y.; Kumagai, H.; Hirooka, H. Effects of Heat Stress on Heart Rate Variability in Free-Moving Sheep and Goats Assessed with Correction for Physical Activity. Front. Vet. Sci. 2021, 8, 658763. [Google Scholar] [CrossRef] [PubMed]
- Giovanetti, V.; Decandia, M.; Molle, G.; Acciaro, M.; Mameli, M.; Cabiddu, A.; Cossu, R.; Serra, M.G.; Manca, C.; Rassu, S.P.G.; et al. Automatic Classification System for Grazing, Ruminating and Resting Behaviour of Dairy Sheep Using a Tri-Axial Accelerometer. Livest. Sci. 2017, 196, 42–48. [Google Scholar] [CrossRef]
- Barker, Z.E.; Vázquez Diosdado, J.A.; Codling, E.A.; Bell, N.J.; Hodges, H.R.; Croft, D.P.; Amory, J.R. Use of Novel Sensors Combining Local Positioning and Acceleration to Measure Feeding Behavior Differences Associated with Lameness in Dairy Cattle. J. Dairy Sci. 2018, 101, 6310–6321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zehner, N.; Umstätter, C.; Niederhauser, J.J.; Schick, M. System Specification and Validation of a Noseband Pressure Sensor for Measurement of Ruminating and Eating Behavior in Stable-Fed Cows. Comput. Electron. Agric. 2017, 136, 31–41. [Google Scholar] [CrossRef]
- Williams, L.R.; Moore, S.T.; Bishop-Hurley, G.J.; Swain, D.L. A Sensor-Based Solution to Monitor Grazing Cattle Drinking Behaviour and Water Intake. Comput. Electron. Agric. 2020, 168, 105141. [Google Scholar] [CrossRef]
- Barnes, A.L.; Wickham, S.L.; Admiraal, R.; Miller, D.W.; Collins, T.; Stockman, C.; Fleming, P.A. Characterization of Inappetent Sheep in a Feedlot Using Radio-Tracking Technology1. J. Anim. Sci. 2018, 96, 902–911. [Google Scholar] [CrossRef] [Green Version]
- Gholib, G.; Wahyuni, S.; Wahyudi, A.; Silalahi, K.S.; Akmal, M.; Sabri, M.; Nugraha, T.P. Validation of Commercial ELISA Kit for Non-Invasive Measurement of Cortisol Concentrations and the Evaluation of the Sampling Time of Blood and Fecal Sample in Aceh Cattle. E3S Web Conf. 2020, 151, 01007. [Google Scholar] [CrossRef]
- Allwin, B.; Jayathangaraj, M.G.; Palanivelrajan, M.; Raman, M. Evaluation of Endogenous Faecal Cortisol as a Non Invasive Assessment of Stress in Free Ranging Wild Pigs (Sus Scrofa). Indian J. Vet. Anim. Sci. Res. 2015, 44, 89–92. [Google Scholar]
- Hirschenhauser, K.; Spreitzer, K.; Lepschy, M.; Kotrschal, K.; Möstl, E. Excreted Corticosterone Metabolites Differ between Two Galliform Species, Japanese Quail and Chicken, between Sexes and between Urine and Faecal Parts of Droppings. J. Ornithol. 2012, 153, 1179–1188. [Google Scholar] [CrossRef]
- Rey, J.; Atxaerandio, R.; Ruiz, R.; Ugarte, E.; González-Recio, O.; Garcia-Rodriguez, A.; Goiri, I. Comparison between Non-Invasive Methane Measurement Techniques in Cattle. Animals 2019, 9, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Moura, D.J.; de Maia, A.P.A.; Vercellino, R.d.A.; Medeiros, B.B.L.; Sarubbi, J.; Griska, P.R. Uso da termografia infravermelha na análise da termorregulação de cavalo em treinamento. Eng. Agríc. 2011, 31, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, A.L.; Cook, N.J.; Church, J.S.; Basarab, J.; Perry, B.; Miller, C.; Tong, A.K.W. The Use of Infrared Thermography as an Early Indicator of Bovine Respiratory Disease Complex in Calves. Res. Vet. Sci. 2007, 83, 376–384. [Google Scholar] [CrossRef] [PubMed]
- De Diego, A.C.P.; Sánchez-Cordón, P.J.; Pedrera, M.; Martínez-López, B.; Gómez-Villamandos, J.C.; Sánchez-Vizcaíno, J.M. The Use of Infrared Thermography as a Non-Invasive Method for Fever Detection in Sheep Infected with Bluetongue Virus. Vet. J. 2013, 198, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, G.; Trojacanec, P.; Ganda, E.K.; Bicalho, M.L.S.; Bicalho, R.C. Association of Digital Cushion Thickness with Sole Temperature Measured with the Use of Infrared Thermography. J. Dairy Sci. 2014, 97, 4208–4215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzner, M.; Sauter-Louis, C.; Seemueller, A.; Petzl, W.; Klee, W. Infrared Thermography of the Udder Surface of Dairy Cattle: Characteristics, Methods, and Correlation with Rectal Temperature. Vet. J. 2014, 199, 57–62. [Google Scholar] [CrossRef]
- Byrne, D.T.; Berry, D.P.; Esmonde, H.; McGovern, F.; Creighton, P.; McHugh, N. Infrared Thermography as a Tool to Detect Hoof Lesions in Sheep. Transl. Anim. Sci. 2019, 3, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Uddin, J.; McNeill, D.M.; Lisle, A.T.; Phillips, C.J.C. A Sampling Strategy for the Determination of Infrared Temperature of Relevant External Body Surfaces of Dairy Cows. Int. J. Biometeorol. 2020, 64, 1583–1592. [Google Scholar] [CrossRef]
- Cardoso, C.C.; Peripolli, V.; Amador, S.A.; Brandão, E.G.; Esteves, G.I.F.; Sousa, C.M.Z.; França, M.F.M.S.; Gonçalves, F.G.; Barbosa, F.A.; Montalvão, T.C.; et al. Physiological and Thermographic Response to Heat Stress in Zebu Cattle. Livest. Sci. 2015, 182, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Dai, F.; Cogi, N.H.; Heinzl, E.U.L.; Dalla Costa, E.; Canali, E.; Minero, M. Validation of a Fear Test in Sport Horses Using Infrared Thermography. J. Vet. Behav. 2015, 10, 128–136. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Worth, G.M.; Dowling, S.K.; Lowe, G.L.; Cave, V.M.; Stewart, M. Evaluation of Infrared Thermography as a Non-Invasive Method of Measuring the Autonomic Nervous Response in Sheep. PLoS ONE 2020, 15, e0233558. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.; Webster, J.R.; Verkerk, G.A.; Schaefer, A.L.; Colyn, J.J.; Stafford, K.J. Non-Invasive Measurement of Stress in Dairy Cows Using Infrared Thermography. Physiol. Behav. 2007, 92, 520–525. [Google Scholar] [CrossRef] [PubMed]
- McManus, C.; Bianchini, E.; Paim, T.D.P.; De Lima, F.G.; Neto, J.B.; Castanheira, M.; Esteves, G.I.F.; Cardoso, C.C.; Dalcin, V.C. Infrared Thermography to Evaluate Heat Tolerance in Different Genetic Groups of Lambs. Sensors 2015, 15, 17258–17273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paim, T.d.P.; Martins, R.F.S.; Cardoso, C.; Dallago, B.; Louvandini, H.; McManus, C. Thermal Comfort Index and Infrared Temperatures for Lambs Subjected to Different Environmental Conditions. Sci. Agric. 2014, 71, 356–361. [Google Scholar] [CrossRef]
- Pamungkas, F.A.; Purwanto, B.P.; Manalu, W.; Yani, A.; Sianturi, R.G. Use of Infrared Thermography for Identifying Physiological and Hematological Conditions of Young Sapera Dairy Goats. J. Ilmu Ternak Dan Vet. 2020, 25, 120–130. [Google Scholar] [CrossRef]
- Brcko, C.C.; da Silva, J.A.R.; Martorano, L.G.; Vilela, R.A.; de Nahúm, B.S.; Silva, A.G.M.; Barbosa, A.V.C.; Bezerra, A.S.; de Lourenço, J.B., Jr. Infrared Thermography to Assess Thermoregulatory Reactions of Female Buffaloes in a Humid Tropical Environment. Front. Vet. Sci. 2020, 7, 180. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Eigenberg, R.A.; Purswell, J.L. Determining Heat Tolerance in Finishing Pigs Using Thermal Imaging; ASABE: St. Joseph, MI, USA, 2012; p. 3. [Google Scholar]
- Ricci, G.D.; da Silva-Miranda, K.O.; Titto, C.G. Infrared Thermography as a Non-Invasive Method for the Evaluation of Heat Stress in Pigs Kept in Pens Free of Cages in the Maternity. Comput. Electron. Agric. 2019, 157, 403–409. [Google Scholar] [CrossRef]
- Giloh, M.; Shinder, D.; Yahav, S. Skin Surface Temperature of Broiler Chickens Is Correlated to Body Core Temperature and Is Indicative of Their Thermoregulatory Status1 1Contribution from the Agricultural Research Organization, the Volcani Center, Bet Dagan, Israel No. 575/10. Poult. Sci. 2012, 91, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Burdick, N.C.; Carroll, J.A.; Dailey, J.W.; Randel, R.D.; Falkenberg, S.M.; Schmidt, T.B. Development of a Self-Contained, Indwelling Vaginal Temperature Probe for Use in Cattle Research. J. Therm. Biol. 2012, 37, 339–343. [Google Scholar] [CrossRef]
- Lees, A.M.; Lees, J.C.; Lisle, A.T.; Sullivan, M.L.; Gaughan, J.B. Effect of Heat Stress on Rumen Temperature of Three Breeds of Cattle. Int. J. Biometeorol. 2018, 62, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Torrao, N.A.; Hetem, R.S.; Meyer, L.C.R.; Fick, L.G. Assessment of the Use of Temperature-Sensitive Microchips to Determine Core Body Temperature in Goats. Vet. Rec. 2011, 168, 328. [Google Scholar] [CrossRef]
- Taylor, D.B.; Schneider, D.A.; Brown, W.Y.; Price, I.R.; Trotter, M.G.; Lamb, D.W.; Hinch, G.N.; Taylor, D.B.; Schneider, D.A.; Brown, W.Y.; et al. GPS Observation of Shelter Utilisation by Merino Ewes. Anim. Prod. Sci. 2011, 51, 724–737. [Google Scholar] [CrossRef]
- AlZahal, O.; AlZahal, H.; Steele, M.A.; Van Schaik, M.; Kyriazakis, I.; Duffield, T.F.; McBride, B.W. The Use of a Radiotelemetric Ruminal Bolus to Detect Body Temperature Changes in Lactating Dairy Cattle. J. Dairy Sci. 2011, 94, 3568–3574. [Google Scholar] [CrossRef]
- Beatty, D.T.; Barnes, A.; Fleming, P.A.; Taylor, E.; Maloney, S.K. The Effect of Fleece on Core and Rumen Temperature in Sheep. J. Therm. Biol. 2008, 33, 437–443. [Google Scholar] [CrossRef]
- Taylor, N.A.S.; Tipton, M.J.; Kenny, G.P. Considerations for the Measurement of Core, Skin and Mean Body Temperatures. J. Therm. Biol. 2014, 46, 72–101. [Google Scholar] [CrossRef] [Green Version]
- Vickers, L.A.; Burfeind, O.; von Keyserlingk, M.A.G.; Veira, D.M.; Weary, D.M.; Heuwieser, W. Technical Note: Comparison of Rectal and Vaginal Temperatures in Lactating Dairy Cows. J. Dairy Sci. 2010, 93, 5246–5251. [Google Scholar] [CrossRef]
- Pent, G.J.; Fike, J.H.; Kim, I. Ewe Lamb Vaginal Temperatures in Hardwood Silvopastures. Agrofor. Syst. 2021, 95, 21–32. [Google Scholar] [CrossRef]
- Bailey, D.W.; Trotter, M.G.; Knight, C.W.; Thomas, M.G. Use of GPS Tracking Collars and Accelerometers for Rangeland Livestock Production Research1. Transl. Anim. Sci. 2018, 2, 81–88. [Google Scholar] [CrossRef]
- Yang, C.-C.; Hsu, Y.-L. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef] [PubMed]
- Umstätter, C.; Waterhouse, A.; Holland, J.P. An Automated Sensor-Based Method of Simple Behavioural Classification of Sheep in Extensive Systems. Comput. Electron. Agric. 2008, 64, 19–26. [Google Scholar] [CrossRef]
- Corkery, G.; Ward, S.; Kenny, C.; Hemmingway, P. Incorporating Smart Sensing Technologies into the Poultry Industry. J. Worlds Poult. Res. 2013, 3, 106–128. [Google Scholar]
- IBM. What Is Machine Learning? Available online: https://www.ibm.com/in-en/cloud/learn/machine-learning (accessed on 16 September 2022).
- Domingos, P. A Few Useful Things to Know about Machine Learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef] [Green Version]
- García, R.; Aguilar, J.; Toro, M.; Pinto, A.; Rodríguez, P. A Systematic Literature Review on the Use of Machine Learning in Precision Livestock Farming. Comput. Electron. Agric. 2020, 179, 105826. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Lehr, H.; Black, J.L.; Crabtree, H.; Schofield, P.; Tscharke, M.; Berckmans, D. Precision Livestock Farming: An International Review of Scientific and Commercial Aspects. Int. J. Agric. Biol. Eng. 2012, 5, 1–9. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Supervised Machine Learning: A Review of Classification Techniques. In Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, 10 June 2007; IOS Press: Amsterdam, The Netherlands; pp. 3–24.
- Ghafouri-Kesbi, F.; Rahimi-Mianji, G.; Honarvar, M.; Nejati-Javaremi, A.; Ghafouri-Kesbi, F.; Rahimi-Mianji, G.; Honarvar, M.; Nejati-Javaremi, A. Predictive Ability of Random Forests, Boosting, Support Vector Machines and Genomic Best Linear Unbiased Prediction in Different Scenarios of Genomic Evaluation. Anim. Prod. Sci. 2016, 57, 229–236. [Google Scholar] [CrossRef]
- White, B.J.; Amrine, D.E.; Larson, R.L. Big data analytics and precision animal agriculture symposium: Data to Decisions. J. Anim. Sci. 2018, 96, 1531–1539. [Google Scholar] [CrossRef]
- Libbrecht, M.W.; Noble, W.S. Machine Learning Applications in Genetics and Genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. Transforming the Adaptation Physiology of Farm Animals through Sensors. Animals 2020, 10, 1512. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.L.; Mac Parthaláin, N.; Brewer, P.; James, W.P.J.; Rose, M.T. A Novel Behavioral Model of the Pasture-Based Dairy Cow from GPS Data Using Data Mining and Machine Learning Techniques. J. Dairy Sci. 2016, 99, 2063–2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; de Pessemier, T.; Trogh, J.; Tanghe, E.; Martens, L.; Vandaele, L.; Van Nuffel, A.; Joseph, W.; et al. On the Use of On-Cow Accelerometers for the Classification of Behaviours in Dairy Barns. Res. Vet. Sci. 2019, 125, 425–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; He, D.; Chai, L. A Machine Vision-Based Method for Monitoring Scene-Interactive Behaviors of Dairy Calf. Animals 2020, 10, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorczyca, M.T. Machine Learning Applications for Monitoring Heat Stress in Livestock. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2019. [Google Scholar]
- Gorczyca, M.T.; Gebremedhin, K.G. Ranking of Environmental Heat Stressors for Dairy Cows Using Machine Learning Algorithms. Comput. Electron. Agric. 2020, 168, 105124. [Google Scholar] [CrossRef]
- Kim, S.; Hidaka, Y. Breathing Pattern Analysis in Cattle Using Infrared Thermography and Computer Vision. Animals 2021, 11, 207. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, R.V.; da Rodrigues, A.V.S.; de Abreu, M.G.; Tabile, R.A.; Martello, L.S. Predictive Model Based on Artificial Neural Network for Assessing Beef Cattle Thermal Stress Using Weather and Physiological Variables. Comput. Electron. Agric. 2018, 144, 37–43. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of Climate Changes on Animal Production and Sustainability of Livestock Systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Benni, S.; Pastell, M.; Bonora, F.; Tassinari, P.; Torreggiani, D. A Generalised Additive Model to Characterise Dairy Cows’ Responses to Heat Stress. Animal 2020, 14, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Bovo, M.; Agrusti, M.; Benni, S.; Torreggiani, D.; Tassinari, P. Random Forest Modelling of Milk Yield of Dairy Cows under Heat Stress Conditions. Animals 2021, 11, 1305. [Google Scholar] [CrossRef]
Indicator | Methodology | Technology | Species | Continuous | Accuracy | References |
---|---|---|---|---|---|---|
Respiration rate | Measuring nasal exhalation pressure | Differential pressure sensor | Cattle | ✓ | Unknown | [78] |
Differences in temperature near nostrils | Temperature sensors/thermistor | Cattle | ✓ | ±0.15 °C | [34] | |
Counting radial movement of the flank area | Laser distance sensor | Cattle | ✓ | Unknown | [33] | |
Measuring temperature changes in nostrils during respiration | Infrared thermography + RGB sensors | Cattle, pigs | ✓ | ±2% | [2,79] | |
Counting back and forward motion of the body during panting | Accelerometer | Cattle | ✓ | Unknown | [80] | |
Core body temperature | Comparing the heat flux between core body temperature and the skin surface | “Dräger” Double Sensor (DS) | Humans | ✓ | Unknown | [81] |
Comparing the differences in core body temperature using a thermosensoric patch | Zero-heat-flux thermometers | Pigs | ✓ | Unknown | [82] | |
Body surface temperature | Measuring eye and muzzle temperature | Digital infrared thermal imaging | Cattle, sheep | ✓ | ±2 °C | [83,84] |
Measuring ear, cheek, forehead, flank, rump, and udder surface temperature | Portable Infrared camera | Cattle | ✕ | ±2 °C | [85] | |
Milk temperature | Measuring milk temperature of lactating cows | Temperature Sensors | Cattle | ✓ | Unknown | [86] |
Sleeping interval | Measuring body movement during REM and NREM sleep | Accelerometer-based sleep device | Cattle | ✓ | 93.7 ± 0.7% for wake behavior and 92.2 ± 0.8% for sleep-like behavior | [87] |
Heart rate/pulse rate | Optical measurement of blood volume changes in the microvascular bed of tissue | Photoplethysmographic Imaging (PPGI) | Non-human primates | ✓ | ±1% | [88] |
Measuring the whole-body recoil forces leads to changes in displacements and vibrations of the body surface | Eulerian Video Magnification/Ballistocardiography (BCG) | Humans | ✓ | Unknown | [89,90] | |
Measures very small electrical impulses emitted by the heart | Polar Spot tester (PST) | Cattle | ✓ | Unknown | [91] | |
Measurement of oscillations during inflation and deflation in limbs | Oscillometric-based blood pressure module | Dogs | ✓ | Unknown | [92] | |
Counting the variation over time of the period between consecutive heartbeats | Accelerometer | Sheep, goats | ✓ | Unknown | [93] | |
Grazing and ruminating behavior | Detects animals’ jaw movement by measuring the accelerations | Tri-axial accelerometer sensor | Sheep | ✓ | 96% for grazing, 95% for ruminating, and 94% for resting | [94] |
Assessing the feeding behavior of animals | The wireless sensor system (network sensors) + mobile sensors | Cattle | ✕ | 2.66 m (range = 0.57–5.95 m) | [95] | |
Water drinking behavior | Measuring the pressure changes in noseband sensor and Tri-axial accelerometer sensor | Noseband sensor | Cattle | ✓ | 0.98 | [96] |
The sensor will record the electronic tag when the animal arrives near water space, and the water meter measures the amount of water consumed | Radio Frequency Identification (RFID) + water flow meter | Cattle, sheep | ✓ | 95% | [97,98] | |
Cortisol | Animal feces is collected, and it will be further processed for extraction of cortisol | Enzyme-linked immunosorbent assay (ELISA) | Cattle, pigs, chicken, sheep | ✕ | 99,76 ± 3.77% | [59,99,100,101] |
Methane | The device is pointed towards nostril of cows; the device measures the density of the air column between device and animal’s nostril | Infrared absorption spectroscopy using a semiconductor laser for CH4 detection | Cattle | ✓ | Sensitivity = 95.4% and specificity = 96.5% | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sejian, V.; Shashank, C.G.; Silpa, M.V.; Madhusoodan, A.P.; Devaraj, C.; Koenig, S. Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle. Atmosphere 2022, 13, 1642. https://doi.org/10.3390/atmos13101642
Sejian V, Shashank CG, Silpa MV, Madhusoodan AP, Devaraj C, Koenig S. Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle. Atmosphere. 2022; 13(10):1642. https://doi.org/10.3390/atmos13101642
Chicago/Turabian StyleSejian, Veerasamy, Chikamagalore Gopalakrishna Shashank, Mullakkalparambil Velayudhan Silpa, Aradotlu Parameshwarappa Madhusoodan, Chinnasamy Devaraj, and Sven Koenig. 2022. "Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle" Atmosphere 13, no. 10: 1642. https://doi.org/10.3390/atmos13101642
APA StyleSejian, V., Shashank, C. G., Silpa, M. V., Madhusoodan, A. P., Devaraj, C., & Koenig, S. (2022). Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle. Atmosphere, 13(10), 1642. https://doi.org/10.3390/atmos13101642