Arctic Climate Extremes
Abstract
:1. Introduction
2. Discussion
2.1. Sample List of Unusual Events
2.2. Probabilistic Reasoning and Radical Uncertainty
2.3. Conceptual Model: Natural Weather Variability Interacting with Arctic Changes
3. Recent Arctic Examples of Extremes That go beyond Previous Records
3.1. Greenland Rain
3.2. Alaskan Summer 2022 High Variability
3.3. Arctic Snow Cover
3.4. Barents Sea Extreme Temperatures and Atlantification
3.5. Community Observations of Continuing Extreme Events in the Northern Bering Sea
3.6. Arctic Acidification
4. Concluding Remarks
4.1. Impact-Based Projections
4.2. A changing Arctic
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, J.E.; Ballinger, T.J.; Euskirchen, E.S.; Hanna, E.; Mård, J.; Overland, J.E.; Tangen, H.; Vihma, T. Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev. 2020, 209, 103324. [Google Scholar] [CrossRef]
- Fischer, E.M.; Sippel, S.; Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Chang. 2021, 11, 689–695. [Google Scholar] [CrossRef]
- Overland, J.E. Rare events in the Arctic. Clim. Chang. 2021, 168, 27. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef] [Green Version]
- Moon, T.A.; Overeem, I.; Druckenmiller, M.; Holland, M.; Huntington, H.; Kling, G.; Lovecraft, A.L.; Miller, G.; Scambos, T.; Schädel, C.; et al. The expanding footprint of rapid Arctic change. Earth’s Future 2019, 7, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Landrum, L.; Holland, M.M. Extremes become routine in an emerging new Arctic. Nat. Clim. Chang. 2020, 10, 1108–1115. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Attribution of Extreme Weather Events in the Context of Climate Change; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Wang, Z.; Yin, X.; Arguez, A.; Graham, G.; Liu, C.; Smith, T.; Zhang, H. Prolonged Marine Heatwaves in the Arctic: 1982−2020. Geophys. Res. Lett. 2021, 48, e2021GL095590. [Google Scholar] [CrossRef]
- Shepherd, T.G. Bringing physical reasoning into statistical practice in climate-change science. Clim. Chang. 2021, 169, 2. [Google Scholar] [CrossRef]
- Harris, R.M.B.; Beaumont, L.J.; Vance, T.R.; Tozer, C.R.; Remenyi, T.A.; Perkins-Kirkpatrick, S.E.; Mitchell, P.; Nicotra, A.; McGregor, S.; Andrew, N.R.; et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Chang. 2018, 8, 579–587. [Google Scholar] [CrossRef]
- Zhang, R. Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA 2015, 112, 4570–4575. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, R. Rain Fell at the Normally Snowy Summit of Greenland for the First Time on Record. CNN, 19 August 2021. Available online: https://edition.cnn.com/2021/08/19/weather/greenland-summit-rain-climate-change/index.html (accessed on 20 September 2022).
- Box, J.E.; Wehrlé, A.; van As, D.; Fausto, R.S.; Kjeldsen, K.K.; Dachauer, A.; Ahlstrøm, A.P.; Picard, G. Greenland ice sheet rainfall, heat and albedo feedback impacts from the mid-August 2021 atmospheric river. Geophys. Res. Lett. 2022, 49, e2021GL097356. [Google Scholar] [CrossRef]
- Mattingly, K.S.; Ramseyer, C.A.; Rosen, J.J.; Mote, T.L.; Muthyala, R. Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps: Increasing Greenland moisture transport. Geophys. Res. Lett. 2016, 43, 9250–9258. [Google Scholar] [CrossRef]
- Francis, J.; Skific, N. Evidence linking rapid Arctic warming to mid-latitude weather patterns. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140170. [Google Scholar] [CrossRef] [PubMed]
- Thoman, R.; University of Alaska Fairbanks, Fairbanks, AK, USA. Personal communication, 2022.
- Robinson, D.A. Northern Hemisphere continental snow cover extent in “State of the Climate in 2020”. Bull. Am. Meteor. Soc. 2021, 102, S46–S47. [Google Scholar] [CrossRef]
- Isaksen, K.; Nordli, Ø.; Ivanov, B.; Køltzow, M.A..; Aaboe, S.; Gjelten, H.M.; Mezghani, A.; Eastwood, S.; Førland, E.; Benestad, R.E.; et al. Exceptional warming over the Barents area. Sci. Rep. 2022, 12, 9371. [Google Scholar] [CrossRef]
- Førland, E.J.; Benestad, R.; Hanssen-Bauer, I.; Haugen, J.E.; Skaugen, T.E. Temperature and Precipitation Development at Svalbard 1900–2100. Adv. Meteorol. 2011, 2011, 893790. [Google Scholar] [CrossRef]
- Wickström, S.; The University Centre in Svalbard, Longyearbyen, Norway. Personal communication, 2022.
- Jonassen, M.; The University Centre in Svalbard, Longyearbyen, Norway. Personal communication, 2022.
- Polyakov, I.V.; Pnyushkov, A.V.; Alkire, M.B.; Ashik, I.M.; Baumann, T.M.; Carmack, E.C.; Goszczko, I.; Guthrie, J.; Ivanov, V.V.; Kanzow, T.; et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 2017, 356, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Lind, S.; Ingvaldsen, R.B.; Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Chang. 2018, 8, 634–639. [Google Scholar] [CrossRef]
- Neukermans, G.; Oziel, L.; Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Chang. Biol. 2018, 24, 2545–2553. [Google Scholar] [CrossRef]
- Fossheim, M.; Primicerio, R.; Johannesen, E.; Ingvaldsen, R.B.; Aschan, M.M.; Dolgov, A. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Chang. 2015, 5, 673–677. [Google Scholar] [CrossRef]
- Griffith, G.P.; Hop, H.; Vihtakari, M.; Wold, A.; Kalhagen, K.; Gabrielsen, G.W. Ecological resilience of Arctic marine food webs to climate change. Nat. Clim. Chang. 2019, 9, 868–872. [Google Scholar] [CrossRef]
- Thoman, R.L.; Bhatt, U.S.; Bieniek, P.A.; Brettschneider, B.R.; Brubaker, M.; Danielson, S.L.; Labe, Z.; Lader, R.; Meier, W.N.; Sheffield, G.; et al. The Record Low Bering Sea Ice Extent in 2018: Context, Impacts, and an Assessment of the Role of Anthropogenic Climate Change. Bull. Am. Meteorol. Soc. 2020, 101, S53–S58. [Google Scholar] [CrossRef] [Green Version]
- Boveng, P.L.; Ziel, H.L.; McClintock, B.T.; Cameron, M.F. Body condition of phocid seals during a period of rapid environmental change in the Bering Sea and Aleutian Islands, Alaska. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2020, 181–182, 104904. [Google Scholar] [CrossRef]
- Huntington, H.P.; Zagorsky, A.; Kaltenborn, B.P.; Shin, H.C.; Dawson, J.; Lukin, M.; Dahl, P.E.; Guo, P.; Thomas, D.N. Societal implications of a changing Arctic Ocean. Ambio 2022, 51, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, T.; Charles, B.; Stevens, B.; Wright, B.; John, S.; Ervin, B.; Joe, J.; Ninguelook, G.; Heeringa, K.; Nu, J.; et al. Changes in Sharing and Participation are Important Predictors of the Health of Traditional Harvest Practices in Indigenous Communities in Alaska. Hum. Ecol. 2022, 1–15. [Google Scholar] [CrossRef]
- Qi, D.; Ouyang, Z.; Chen, L.; Wu, Y.; Lei, R.; Chen, B.; Feely, R.A.; Anderson, L.G.; Zhong, W.; Lin, H.; et al. Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020. Science 2022, 377, 1544–1550. [Google Scholar] [CrossRef]
- Shortridge, J.; Guikema, S.; Zaitchik, B. Robust decision making in data scarce contexts: Addressing data and model limitations for infrastructure planning under transient climate change. Clim. Chang. 2017, 140, 323–337. [Google Scholar] [CrossRef]
- Lloyd, E.A.; Shepherd, T.G. Environmental catastrophes, climate change, and attribution. Ann. N. Y. Acad. Sci. 2020, 1469, 105–124. [Google Scholar] [CrossRef] [Green Version]
- van Beest, F.M.; Barry, T.; Christensen, T.; Heiðmarsson, S.; McLennan, D.; Schmidt, N.M. Extreme event impacts on terrestrial and freshwater biota in the arctic: A synthesis of knowledge and opportunities. Front. Environ. Sci. 2022, 10, 983637. [Google Scholar] [CrossRef]
- Aoki, L.R.; Brisbin, M.M.; Hounshell, A.G.; Kincaid, D.W.; Larson, E.I.; Sansom, B.J.; Shogren, A.J.; Smith, R.S.; Sullivan-Stack, J. Preparing Aquatic Research for an Extreme Future: Call for Improved Definitions and Responsive, Multidisciplinary Approaches. BioScience 2022, 72, 508–520. [Google Scholar] [CrossRef]
- Moore, J.W.; Schindler, D.E. Getting ahead of climate change for ecological adaptation and resilience. Science 2022, 376, 1421–1426. [Google Scholar] [CrossRef]
- Overland, J.E.; Kim, B.-M.; Tachibana, Y. Communicating Arctic-midlatitude weather and ecosystem connections: Direct observations and sources of intermittency. Environ. Res. Lett. 2021, 16, 105006. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Overland, J.E. Arctic Climate Extremes. Atmosphere 2022, 13, 1670. https://doi.org/10.3390/atmos13101670
Overland JE. Arctic Climate Extremes. Atmosphere. 2022; 13(10):1670. https://doi.org/10.3390/atmos13101670
Chicago/Turabian StyleOverland, James E. 2022. "Arctic Climate Extremes" Atmosphere 13, no. 10: 1670. https://doi.org/10.3390/atmos13101670