Spatial Distribution, Material Composition and Provenance of Loess in Xinjiang, China: Progress and Challenges
Abstract
:1. Introduction
2. Materials and Methods
3. Loess Distribution in Xinjiang
4. Loess Material Composition of Xinjiang
4.1. Mineral Composition
4.2. Granular Composition
4.3. Major Element Geochemical Composition
5. The Provenance of Loess Deposits in Xinjiang
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.R.; Shi, W.H.; Aydin, A.; Beroya-Eitner, M.A.; Gao, G.H. Loess genesis and worldwide distribution. Earth-Sci. Rev. 2020, 201, 102947. [Google Scholar] [CrossRef]
- Song, Y.G.; Chen, X.L.; Qian, L.B.; Li, C.X.; Li, Y.; Li, X.X.; Chang, H.; An, Z.S. Distribution and composition of loess sediments in the Ili Basin, Central Asia. Quatern. Int. 2014, 334, 61–73. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.G.; Yan, L.B.; Chen, T.; An, Z.S. Timing and Spatial Distribution of Loess in Xinjiang, NW China. PLoS ONE 2015, 10, e0125492. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gholami, H.; Song, Y.G.; Fathabadi, A.; Malakooti, H.; Collins, A.L. Source fingerprinting loess deposits in Central Asia using elemental geochemistry with Bayesian and GLUE models. Catena 2020, 194, 104808. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.G.; Kaskaoutis, D.G.; Zhang, X.; Shukurov, N.; Chen, X.; Orozbaev, R. Atmospheric dust dynamics over Central Asia: A perspective view from loess deposits. Palaeogeogr. Palaeocl. 2022, 109, 150–165. [Google Scholar] [CrossRef]
- Chen, F.H.; Chen, J.H.; Huang, W.; Chen, S.Q.; Huang, X.Z.; Jin, L.Y.; Jia, J.; Zhang, X.J.; An, C.B.; Zhang, J.W.; et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci. Rev. 2019, 192, 337–354. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Miao, Y.F.; Lei, Y.; Cao, X.Y.; Xiang, M.X. Progress, problems and prospects of palynology in reconstructing environmental change in inland arid areas of Asia. Sci. China Ser. D Earth Sci. 2021, 13, 271–291. [Google Scholar]
- Kang, S.G.; Wang, X.L.; Roberts, H.M.; Duller, G.; Song, Y.G.; Liu, W.G.; Zhang, R.; Liu, X.X.; Lan, J.H. Increasing effective moisture during the Holocene in the semiarid regions of the Yili Basin, Central Asia: Evidence from loess sections. Quat. Sci. Rev. 2020, 246, 106553. [Google Scholar] [CrossRef]
- Li, X.J.; Zan, J.B.; Yang, R.S.; Fang, X.M.; Yang, S.L. Grain-size-dependent geochemical characteristics of Middle and Upper Pleistocene loess sequences from the Junggar Basin: Implications for the provenance of Chinese eolian deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 538, 109458. [Google Scholar] [CrossRef]
- Zeng, M.X.; Song, Y.G.; Yang, H.; Li, Y.; Cheng, L.Q.; Li, F.Q.; Zhu, L.D.; Wu, Z.R.; Wang, N.J. Quantifying proportions of different material sources to loess based on a grid search and Monte Carlo model: A case study of the Ili Valley, Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 565, 110210. [Google Scholar] [CrossRef]
- Song, Y.; Niec, J.; Song, C.; Zan, J. Editorial preface to special issue: Cenozoic climatic and environmental changes in Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2022, 597, 111012. [Google Scholar] [CrossRef]
- Song, Y.G.; Yang, S.L.; Nie, J.S.; Zan, J.B.; Song, C.H. Preface (volume I): Quaternary paleoclimate and paleoenvironmental changes in Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 568, 110319. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.G.; Fitzsimmons, K.E.; Chen, X.; Prud’Homme, C.; Zong, X.L. Origin of loess deposits in the North Tian Shan piedmont, Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 559, 109972. [Google Scholar] [CrossRef]
- Wu, D.; Cao, J.; Jia, G.; Guo, H.; Shi, F.; Zhang, X.; Rao, Z. Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 538, 109464. [Google Scholar] [CrossRef]
- Zong, X.L.; Dong, J.B.; Cheng, P.; Song, Y.G.; Liu, W.G.; Li, Y.; Lan, J.H. Terrestrial mollusk records in the loess sequences from eastern Central Asia since the last deglaciation and their paleoenvironmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 556, 109890. [Google Scholar] [CrossRef]
- Chen, X.L.; Song, Y.G.; Li, Y.; Huang, Y.Z.; Zhou, X.X.; Fan, Y.F. Provenance of sub-aerial surface sediments in the Tarim Basin, Western China. Catena 2021, 198, 105014. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.H.; Jia, J.; Wang, M.; Wang, Q.; Chen, J.H.; Wang, F.; Li, Z.J.; Chen, F.H. Pleistocene Loess-Paleosol Sequences in Arid Central Asia: State of Art. Adv. Earth Sci. 2019, 34, 34–47. (In Chinese) [Google Scholar]
- Li, Y.; Song, Y.G.; Fitzsimmons, K.E.; Chang, H.; Orozbaev, R.; Li, X.X. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: Insights from a loess-paleosol sequence in the Ili Basin. Clim. Past 2018, 14, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.B.; Chen, H.Y.; Tada, R.; Weiss, D.; Lin, M.; Toyoda, S.; Yan, Y.; Isozaki, Y. ESR signal intensity and crystallinity of quartz from Gobi and sandy deserts in East Asia and implication for tracing Asian dust provenance. Geochem. Geophy. Geosy. 2013, 14, 2615–2627. [Google Scholar] [CrossRef]
- Jia, J.; Xia, D.S.; Wang, B.; Wei, H.T.; Liu, X.B. Magnetic investigation of Late Quaternary loess deposition, Ili area, China. Quatern. Int. 2012, 250, 84–92. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, X.M.; Lu, B.; Ye, W.; Zhao, G.Y. Rock magnetism and geochemical characteristics of major elements of typical loesss in the Ily Basin and their paleoclimatic significance. Quat. Sci. 2021, 41, 1632–1644. (In Chinese) [Google Scholar]
- Song, Y.G.; Shi, Z.T.; Fang, X.M.; Nie, J.S.; Naoto, I.; Strong, X.K.; Wang, X.L. Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau. Sci. China Earth Sci. 2010, 40, 61–72. (In Chinese) [Google Scholar] [CrossRef]
- Zan, J.B.; Yang, S.L.; Fang, X.M.; Li, X.Y.; Wang, J.Y.; Zhang, T. Rock-Magnetic Characteristics And The Enhancing Mechanism Of Magnetic Susceptibility For West Kunlun Mountains Loess. Quat. Sci. 2010, 30, 46–53. (In Chinese) [Google Scholar]
- Chen, Q.; Liu, X.M.; Lu, B.; Ye, W.; Zhao, G.Y. Paleoclimatic Changes Since 300 ka Recorded by Loess Deposits Along the North Pediment of Tianshan Mountains. Acta Sedimentol. Sin. 2021, 1–15. (In Chinese) [Google Scholar] [CrossRef]
- Ge, B.; Liu, A. Optical Dating of Aeolian Loess in Northern Slope of the Tianshan Mountains, China. Arid Zone Res. 2016, 33, 869–876. (In Chinese) [Google Scholar]
- Wei, H.; Subir, K.B.; Xia, D.S.; Michael, J.J.; Jia, J.; Chen, F.H. Magnetic characteristics of loess-paleosol sequences on the north slope of the Tianshan Mountains, northwestern China and their paleoclimatic implications. Chin. J. Geophys. 2013, 56, 150–158. (In Chinese) [Google Scholar]
- Li, Y.; Song, Y.G.; Fitzsimmons, K.E.; Chen, X.L.; Wang, Q.S.; Sun, H.Y.; Zhang, Z.P. New evidence for the provenance and formation of loess deposits in the Ili River Basin, Arid Central Asia. Aeolian Res. 2018, 35, 1–8. [Google Scholar] [CrossRef]
- Cheng, L.Q.; Song, Y.Q.; Chang, H.; Li, Y.; Orozbaev, R.; Zeng, M.X.; Liu, H.F. Heavy mineral assemblages and sedimentation rates of eastern Central Asian loess: Paleoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 551, 109747. [Google Scholar] [CrossRef]
- Sun, H.; Song, Y.G.; Li, Y.; Chen, X.L.; Orozbaev, R. Magnetic susceptibility and grain size records of Bole loess section in the northern piedmont of Tianshan Mountains and their implications for paleoclimatic changes. J. Earth Environ. 2018, 9, 123–136. (In Chinese) [Google Scholar]
- Song, Y.G.; Shi, Z.T. Distribution and Compositions of Loess Sediments in Yili Basin, Certral Asia. Sci. Geogr. Sin. 2010, 30, 267–272. (In Chinese) [Google Scholar]
- Song, Y.G.; Li, Y.; Cheng, L.Q.; Zong, X.L.; Kang, S.G.; Ghafarpour, A.; Li, X.; Sun, H.Y.; Fu, X.F.; Dong, J.B.; et al. Spatio-temporal distribution of Quaternary loess across Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 567, 110279. [Google Scholar] [CrossRef]
- Tian, S.; Li, Z.; Wang, Z.; Jiang, E.; Wang, W.; Sun, M. Mineral composition and particle size distribution of river sediment and loess in the middle and lower Yellow River. Int. J. Sediment Res. 2021, 36, 392–400. [Google Scholar] [CrossRef]
- Zeng, M.; Song, Y. Mineral Composition and Their Weathering Significance of Zhaosu Loess-Paleosol Sequence in the Ili Basin, Xinjiang. In Proceedings of the PANalytical’s 13th User X-ray Analysis Instrument Technology Exchange Conference, Luoyang, China, 26 September 2014. (In Chinese). [Google Scholar]
- Tang, X.Y.; Gao, C.H. Analysis of Mineral Composition and Microstructure Characteristics of Loess on North Slope of Central Kunlun Mountains. Arid Reg. Geogr. 1991, 23–30. (In Chinese) [Google Scholar] [CrossRef]
- Yang, H.; Li, G.Q.; Gou, S.; Qian, J.; Deng, Y.Q.; Zhang, Y.A.; Jonell, T.N.; Wang, Z.; Jin, M. The close-space luminescence dated loess record from SW Junggar Basin indicates persistent aridity during the last glacial-interglacial cycle in lowlands of Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 584, 110664. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.G.; Zong, X.L.; Zhang, Z.P.; Cheng, L.Q. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin. Acta Geogr. Sin. 2019, 74, 162–177. (In Chinese) [Google Scholar]
- Liu, D.E.A. Loess and Environment; Science Press: Beijing, China, 1985; Volume 4, pp. 287–288. [Google Scholar]
- Zan, J.B.; Yang, S.L.; Fang, X.M. Grain size variation characteristics of the loess in the West Kunlun Mountains since 1Ma and its paleoclimatic significance. J. Earth Environ. 2014, 5, 120–126. (In Chinese) [Google Scholar]
- Li, C.X.; Song, Y.G.; Wang, L.M. Geochemical Characteristics and Paleoen-Vironmental Significance of the Loess in the lli Region, Xinjiang. Xinjiang Geol. 2012, 30, 103–108. (In Chinese) [Google Scholar]
- Cheng, L.; Wu, Y.; Song, Y.; Yang, L.; Miao, X.; Sun, H.; Qiang, X.; Chang, H.; Long, H.; Dong, Z. Strong asymmetry of interhemispheric ice volume during MIS11, MIS 9 and MIS 7 drives heterogeneity of interglacial precipitation intensity over Asia. Geophys. Res. Lett. 2022, 49, e2022GL100269. [Google Scholar] [CrossRef]
- Ye, W.; Sang, C.Q.; Zhao, X.Y. Spatial-Temporal Distribution of Loess and Source of Dust in Xinjiang. J. Desert Res. 2003, 23, 38–44. (In Chinese) [Google Scholar]
- Jia, L.; Chen, X.; Yang, Y.; Li, J. Rare earth elements characteristics in different grain sizes and phases of Zhaosu loess in Yili Basin and their provenance implications. J. Earth Environ. 2014, 5, 93–101. (In Chinese) [Google Scholar]
- Fitzsimmons, K.E.; Nowatzki, M.; Dave, A.K.; Harder, H. Intersections between wind regimes, topography and sediment supply: Perspectives from aeolian landforms in Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 540, 109531. [Google Scholar] [CrossRef]
- Li, C.X.; Song, Y.G.; Wang, L.M. Distribution, Age and Dust Sources of Loess in the IliBasi. Earth Environ. 2012, 40, 314–320. (In Chinese) [Google Scholar]
- Li, Y.; Song, Y.G.; Yan, L.B.; Chen, T. Formation of the Tacheng Loess, Xinjiang. J. Earth Environ. 2014, 5, 127–134. (In Chinese) [Google Scholar]
- Wu, F.L.; Fang, X.M.; Miao, Y.F. Aridification history of the West Kunlun Mountains since the mid-Pleistocene based on sporopollen and microcharcoal records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 547, 109680. [Google Scholar] [CrossRef]
- Jiang, Q.D.; Yang, X.P. Sedimentological and Geochemical Composition of Aeolian Sediments in the Taklamakan Desert: Implications for Provenance and Sediment Supply Mechanisms. J. Geophys. Res. Earth Surf. 2019, 124, 1217–1237. [Google Scholar] [CrossRef]
- Li, Z.J.; Wei, S.S.; Han, J.J. Comparative analysis of physical and chemical properties of Xinjiang loess and Shaanxi loess. West. Dev. (Land Dev. Eng. Res.) 2017, 2, 37–43. (In Chinese) [Google Scholar]
- Jia, J.; Liu, H.; Gao, F.Y.; Xia, D.S. Variations in in the westerlies in Central Asia since 16 ka recorded by a loess section from the Tien Shan Mountains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 504, 156–161. [Google Scholar] [CrossRef]
- Cheng, L.Q.; Song, Y.G.; Li, Y.; Zhang, Z.P. Preliminary Application of Grain Size End Member Model for Dust Source Tracing of Xinjiang Loess and Paleoclimate Reconstruction. Acta Sedimentol. Sin. 2018, 36, 1148–1156. (In Chinese) [Google Scholar]
- Ge, B.W.; Liu, A.N. Differences in Grain Size and Magnetic Susceptibility of Loess Deposition in Northern Slope of the Tianshan Mountains, China. Earth Environ. 2017, 45, 491–499. (In Chinese) [Google Scholar]
- Cheng, L.; Song, Y.; Yang, L.; Chang, H.; Wu, Y.; Long, H.; Miao, X.; Dong, Z. Variations of the intensity of the Siberian High during the Last Glacial revealed by the sorting coefficient of loess-paleosol deposits in Eastern Central Asia. Paleoceanogr. Paleoclimatol. 2022, 37, e2022PA004468. [Google Scholar] [CrossRef]
- Li, C.X.; Song, Y.G.; Qian, L.B.; Wang, L.M. History of Climate Change Recorded by Grain Size at the Zhaosu Loess Section in the Central Asia since the Last Glacial Period. Acta Sedimentol. Sin. 2011, 29, 1170–1179. (In Chinese) [Google Scholar]
- Chen, X.L.; Li, J.C.; Fang, H.; Zhu, T.Y.; Huang, Y.Z. Rare Earth Element Characteristics And Environmental Changes Recorded By Loess Deposition In The Ili Basin Since The Last Glaciation. Quat. Sci. 2017, 37, 14–24. (In Chinese) [Google Scholar]
- Zan, J.B.; Fang, X.M.; Yang, S.L.; Nie, J.S.; Li, X.Y. A rock magnetic study of loess from the West Kunlun Mountains. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- Li, L.; Zhu, X.; Li, G.K.; Liu, L.; Xu, Z.; Lu, H.; Fang, X.; Song, Y.; Zhao, L.; Chen, J.; et al. In-Situ Silt Generation in the Taklimakan Desert Evidenced by Uranium Isotopes. J. Geophys. Res. Atmos. 2022, 17, e2022JD036435. [Google Scholar] [CrossRef]
- Kang, S.; Wang, X.; Wang, N.; Song, Y.; Liu, W.; Wang, D.; Peng, J. Siberian High Modulated Suborbital-Scale Dust Accumulation Changes Over the Past 30 ka in the Eastern Yili Basin, Central Asia. Paleoceanogr. Paleoclimatol. 2022, 5, e2021PA004360. [Google Scholar] [CrossRef]
- Zhang, W.X.; Shi, Z.T.; Chen, G.J.; Liu, Y.; Niu, J.; Ming, Q.Z.; Su, H. Geochemical characteristics and environmental significance of Talede loess-paleosol sequences of Ili Basin in Central Asia. Environ. Earth Sci. 2013, 70, 2191–2202. [Google Scholar] [CrossRef]
- Jin, J.; Li, Z.Z.; Chen, X.L.; Ling, Z.Y.; Cao, X.D.; Wang, S.P. Major elements in aeolian sediments of the Late Holocene in Yili valley and their climatic implications. J. Palaeogeogr. 2010, 12, 675–684. (In Chinese) [Google Scholar]
- Jia, J.; Chen, J.H.; Wang, Z.Y.; Chen, S.Q.; Wang, Q.; Wang, L.B.; Yang, L.W.; Xia, D.S.; Chen, F.H. No evidence for an anti-phased Holocene moisture regime in mountains and basins in Central Asian: Records from Ili loess, Xinjiang. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 572, 110407. [Google Scholar] [CrossRef]
- Chen, X.L.; Song, Y.G.; Li, J.; Fang, H.; Li, Z.; Liu, X.M.; Li, Y.; Orozbaev, R. Size-differentiated REE characteristics and environmental significance of aeolian sediments in the Ili Basin of Xinjiang, NW China. J. Asian Earth Sci. 2017, 143, 30–38. [Google Scholar] [CrossRef]
- Tugulan, L.C.; Duliu, O.G.; Ana-Voica, B.; Delia, D.; Inga, Z.; Otilia, A.C.; Marina, V.F. On the geochemistry of the Late Quaternary loess deposits of Dobrogea (Romania). Quatern. Int. 2016, 399, 100–110. [Google Scholar] [CrossRef]
- Cheng, L.Q.; Song, Y.G.; Sun, H.Y.; Bradak, B.; Orozbaev, R.; Zong, X.L.; Liu, H.F. Pronounced changes in paleo-wind direction and dust sources during MIS3b recorded in the Tacheng loess, northwest China. Quatern. Int. 2020, 552, 122–134. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Renssen, H.; van Huissteden, K.; Nugteren, G.; Konert, M.; Huayu, L.; Dodonov, A.; Buylaert, J.P. Penetration of Atlantic westerly winds into Central and East Asia. Quat. Sci. Rev. 2006, 25, 2380–2389. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.G.; Lai, Z.P.; Han, L.; An, Z.S. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis. Sci. Rep. 2016, 6, 32365. [Google Scholar] [CrossRef] [Green Version]
- Nie, J.; Stevens, T.; Rittner, M.; Stockli, D.; Garzanti, E.; Limonta, M.; Bird, A.; Ando, S.; Vermeesch, P.; Saylor, J.; et al. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nat. Commun. 2015, 6, 8511. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.F.; Yang, L.M.; Zhang, Y.X.; Li, J.G. Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over Central Asia and the arid region of China. Glob. Planet Chang. 2019, 172, 159–178. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saimaiti, A.; Fu, C.; Song, Y.; Shukurov, N. Spatial Distribution, Material Composition and Provenance of Loess in Xinjiang, China: Progress and Challenges. Atmosphere 2022, 13, 1790. https://doi.org/10.3390/atmos13111790
Saimaiti A, Fu C, Song Y, Shukurov N. Spatial Distribution, Material Composition and Provenance of Loess in Xinjiang, China: Progress and Challenges. Atmosphere. 2022; 13(11):1790. https://doi.org/10.3390/atmos13111790
Chicago/Turabian StyleSaimaiti, Akemu, Chaofeng Fu, Yougui Song, and Nosir Shukurov. 2022. "Spatial Distribution, Material Composition and Provenance of Loess in Xinjiang, China: Progress and Challenges" Atmosphere 13, no. 11: 1790. https://doi.org/10.3390/atmos13111790
APA StyleSaimaiti, A., Fu, C., Song, Y., & Shukurov, N. (2022). Spatial Distribution, Material Composition and Provenance of Loess in Xinjiang, China: Progress and Challenges. Atmosphere, 13(11), 1790. https://doi.org/10.3390/atmos13111790