Assessment of Coarse, Fine, and Ultrafine Particles in S-Bahn Trains and Underground Stations in Stuttgart
Abstract
:1. Introduction
2. Applied Methodology
2.1. Measurement Locations
2.1.1. Train Wagon and Outdoor Platform Measurements
2.1.2. Underground Platforms
2.2. Measurement Devices and Protocol
2.2.1. Particle Counters
2.2.2. Diffusion Charger
2.2.3. Aethalometers
2.2.4. Meteorological Devices
2.3. Measurement Schedule
2.4. Device Locations
3. Results and Discussion
3.1. Concentration Variation in Train Wagon
3.1.1. Particle Number Concentration (PNC)
3.1.2. Mass Concentration
3.1.3. Particle Size Distribution
3.2. Outdoor Compared with Underground Platform Concentrations
3.2.1. Particle Number Concentration
3.2.2. Mass Concentration
3.2.3. Particle Size Distribution
3.3. Airflow Influence on Underground Platform Concentrations
3.3.1. Hauptbahnhof Platform
3.3.2. Schwabstraße Platform
3.4. Quality Assurance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martins, V.; Moreno, T.; Mendes, L.; Eleftheriadis, K.; Diapouli, E.; Alves, C.A.; Duarte, M.; de Miguel, E.; Capdevila, M.; Querol, X.; et al. Factors controlling air quality in different European subway systems. Environ. Res. 2016, 146, 35–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, T.; Pérez, N.; Reche, C.; Martins, V.; de Miguel, E.; Capdevila, M.; Centelles, S.; Minguillón, M.C.; Amato, F.; Alastuey, A.; et al. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ. 2014, 92, 461–468, Advance online publication. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, T.; Karanasiou, A.; Reche, C.; Alastuey, A.; Viana, M.; Font, O.; Gil, J.; de Miguel, E.; Capdevila, M. Variability of levels and composition of PM 10 and PM 2.5 in the Barcelona metro system. Atmos. Chem. Phys. 2012, 12, 5055–5076. [Google Scholar] [CrossRef] [Green Version]
- Cha, Y.; Olofsson, U.; Gustafsson, M.; Johansson, C. On particulate emissions from moving trains in a tunnel environment. Transp. Res. Part D Transp. Environ. 2018, 59, 35–45. [Google Scholar] [CrossRef]
- Cha, Y.; Abbasi, S.; Olofsson, U. Indoor and outdoor measurement of airborne particulates on a commuter train running partly in tunnels. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 3–13. [Google Scholar] [CrossRef]
- Park, D.; Lee, T.; Hwang, D.; Jung, W.; Lee, Y.; Cho, K.; Kim, D.; Lees, K. Identification of the sources of PM10 in a subway tunnel using positive matrix factorization. J. Air Waste Manag. Assoc. 2014, 64, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.; Moreno, T.; Minguillón, M.C.; Amato, F.; de Miguel, E.; Capdevila, M.; Querol, X. Exposure to airborne particulate matter in the subway system. Sci. Total Environ. 2015, 511, 711–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Hao, J. Air quality inside subway metro indoor environment worldwide: A review. Environ. Int. 2017, 107, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, M.; Blomqvist, G.; Swietlicki, E.; Dahl, A.; Gudmundsson, A. Inhalable railroad particles at ground level and subterranean stations–Physical and chemical properties and relation to train traffic. Transp. Res. Part D Transp. Environ. 2012, 17, 277–285. [Google Scholar] [CrossRef]
- Ozgen, S.; Ripamonti, G.; Malandrini, A.; SRagettli, M.; Lonati, G. Particle number and mass exposure concentrations by commuter transport modes in Milan, Italy. AIMS Environ. Sci. 2016, 3, 168–184. [Google Scholar] [CrossRef]
- Gustafsson, M.; Abbasi, S.; Blomqvist, G.; Cha, Y.; Gudmundsson, A.; Janhäll, S.; Johansson, C.; Norman, M.; Olofsson, U. Particles in Road and Railroad Tunnel Air. Sources, Properties and Abatement Measures. Rep. 917a 2016. pp. 1–79. Available online: http://vti.diva-portal.org/smash/get/diva2:1059647/FULLTEXT01.pdf (accessed on 21 July 2022).
- Son, Y.-S.; Jeon, J.-S.; Lee, H.J.; Ryu, I.-C.; Kim, J.-C. Installation of platform screen doors and their impact on indoor air quality: Seoul subway trains. J. Air Waste Manag. Assoc. 2014, 64, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- TSI Incorporated: Nanoscan SMPS Nanoparticle Sizer Model 3910. 2012. Available online: https://tsi.com/getmedia/3188cb1d-2362-44c0-82b4-f2cc60afef17/NanoScan%20SMPS%203910_5001411?ext=.pdf (accessed on 1 September 2022).
- Palas GmbH: Fine Dust Measuring Device Operating Manual-Fidas Frog. 2017. Available online: https://www.manualslib.com/manual/2052143/Palas-Fidas-Frog.html (accessed on 1 September 2022).
- TSI Incorporated: Model 3330 Optical Particle Sizer Spectrometer Manual. 2013. Available online: https://www.kenelec.com.au/wp-content/uploads/2016/06/TSI_3330_Opticle_Particle_Sizer_Manual.pdf (accessed on 1 September 2022).
- Testo DISCmini: Diffusion Size Classifier Miniature. 2016. Available online: https://static-int.testo.com/media/ae/87/df0045b6f8dd/pb-testo-DiSCmini-Brochure-US.pdf (accessed on 1 September 2022).
- AethLabs: microAeth AE51 Operating Manual Rev 06. Updated July 2016. Available online: https://aethlabs.com/sites/all/conent/microaeth/ae51/microAeth%20AE51%20Operating%20Manual%20Rev%2006%20Updated%20Jul%202016.pdf (accessed on 1 September 2022).
- AethLabs: MA200 MA300 MA350 Operating Manual Rev 3 December 2018. Available online: https://aethlabs.com/sites/all/content/microaeth/maX/MA200%20MA300%20MA350%20Operating%20Manual%20Rev%2003%20Dec%202018.pdf (accessed on 1 September 2022).
- GILL Instruments Limited: MaxiMet-Manual-Iss-6. Compact Weather Stations. 2017. Available online: https://gillinstruments.com/wp-content/uploads/2022/08/1957-009-Maximet-gmx501-Iss-9.pdf (accessed on 1 September 2022).
- METER Group, Inc. ATMOS-22 Manual (7, 10-11). 2017. Available online: http://library.metergroup.com/Manuals/20419_ATMOS22_Manual_Web.pdf (accessed on 1 September 2022).
- Onset Computer Corporation. HOBO MX2300 Series Data Logger Manual. 2016. Available online: https://www.onsetcomp.com/files/manual_pdfs/20923-O%20MX2300%20Manual.pdf (accessed on 1 September 2022).
Parameter | Measurement Technique and Principle | Equipment Model | Measurement Range | Time Resolution |
---|---|---|---|---|
Air pollutant devices | ||||
UFP + size distribution | Scanning Mobility Particle Sizer (SMPS) + Condensation Particle Counter (CPC) → Particle condensation | NanoScan 3910 (TSI) | 10–420 nm | Size distributions: 60 s Single size mode: 1 s |
UFP | Diffusion charger (DC) × 2 | DiSCmini (testo) | 10–700 nm | 1 s |
PM2.5, PM10 + size distribution | Optical Particle Counter (OPC) → Light scattering | OPS 3330 (TSI) | 0.3–10 µm | 1 s |
PM2.5, PM10 + size distribution | Optical Particle Counter (OPC) → Light scattering | Fidas Frog (Palas) | 0.15–18 µm | 1 s |
Black Carbon | Aethalometry → IR and visible light absorption | MA200 (AethLabs) | 0–1 mg BC/m3 | 1 s |
Black Carbon | Aethalometry → IR light absorption | AE51 (AethLabs) | 0–1 mg BC/m3 | 1 s |
Meteorological devices | ||||
Wind speed + direction | Compact weather station Anemometer | Maximet GMX501 (Gill) ATMOS-22 (METER) | - - | 1 s |
Temperature + Humidity | - | HOBO (Onset) | - | 1 s |
Day | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Morning | |||||||||||
Afternoon |
Equipment | Location | ||||
---|---|---|---|---|---|
Air Pollutants | Quantity | Day 1–2 | Day 3–4 | Day 5–10 | Day 11 |
OPC Frog (Palas) | 3× | Train, HBF, Schwab. | HBF, Schwab. | Train, HBF, Schwab. | HBF |
SMPS Nanoscan (TSI) | 2× | Train, HBF | HBF, Schwab. | HBF, Schwab. | Train, HBF |
OPC OPS (TSI) | 2× | Train, HBF | HBF, Schwab. | HBF, Schwab. | Train, HBF |
DC DiSCmini (testo) | 2× | Train, HBF | HBF, Schwab. | Train, HBF | Train, HBF |
Aethalometer MA200 (Aethlabs) | 2× | Train, HBF | HBF, Schwab. | HBF, Schwab. | Train, HBF |
Aethalometer AE51 (Aethlabs) | 1× | Schwab. | - | Train | - |
Meteorological parameters | |||||
MaxiMet (Gill) | 1× | - | HBF | HBF | HBF |
ATMOS-22 (METER Environment) | 1× | Schwab. | Schwab. | Schwab. | - |
HOBO (Onset) | 3× | Train, HBF, Schwab. | HBF, Schwab. | HBF, Schwab. | HBF |
Ultrafine Average PNC in #/cm3 | Coarse and Fine Average PNC in #/cm3 | |||||
---|---|---|---|---|---|---|
HBF Platform | S-Bahn Train | HBF/Train | HBF Platform | S-Bahn Train | HBF/Train | |
Day 1 | 11,821 | 6992 | 1.7 | 1472 | 956 | 1.5 |
Day 2 | 16,657 | 9982 | 1.7 | - | - | - |
Day 11 | 18,979 | 9904 | 1.9 | 4031 | 2707 | 1.5 |
Ultrafine Average PNC in #/cm3 | Coarse and Fine Average PNC in #/cm3 | |||||
---|---|---|---|---|---|---|
HBF Platform | Outdoor Platform | HBF/Outdoor | HBF Platform | Outdoor Platform | HBF/Outdoor | |
Day 1 | 10,743 | 5350 | 2.0 | 1525 | 368 | 4.1 |
Day 2 | 15,880 | 9863 | 1.6 | - | - | - |
Day 11 | 18,828 | 10,363 | 1.8 | 4001 | 3808 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samad, A.; Arango, K.; Alvarez Florez, D.; Chourdakis, I.; Vogt, U. Assessment of Coarse, Fine, and Ultrafine Particles in S-Bahn Trains and Underground Stations in Stuttgart. Atmosphere 2022, 13, 1875. https://doi.org/10.3390/atmos13111875
Samad A, Arango K, Alvarez Florez D, Chourdakis I, Vogt U. Assessment of Coarse, Fine, and Ultrafine Particles in S-Bahn Trains and Underground Stations in Stuttgart. Atmosphere. 2022; 13(11):1875. https://doi.org/10.3390/atmos13111875
Chicago/Turabian StyleSamad, Abdul, Kathryn Arango, Diego Alvarez Florez, Ioannis Chourdakis, and Ulrich Vogt. 2022. "Assessment of Coarse, Fine, and Ultrafine Particles in S-Bahn Trains and Underground Stations in Stuttgart" Atmosphere 13, no. 11: 1875. https://doi.org/10.3390/atmos13111875
APA StyleSamad, A., Arango, K., Alvarez Florez, D., Chourdakis, I., & Vogt, U. (2022). Assessment of Coarse, Fine, and Ultrafine Particles in S-Bahn Trains and Underground Stations in Stuttgart. Atmosphere, 13(11), 1875. https://doi.org/10.3390/atmos13111875