Analysis of Vegetation Coverage Evolution and Degradation under Coal Mine Construction in Permafrost Region
Abstract
:1. Introduction
2. Introduction of the Study Area
3. Research Methods
4. Results and Discussion
4.1. Classification of Vegetation Coverage Levels
4.2. Transformation Relationships of Different Vegetation Coverage Levels
4.3. Factors Influencing Vegetation Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Liu, Y. Interaction between frozen soil environment and engineering environment in cold region. J. Eng. Geol. 2000, 8, 281–287. [Google Scholar] [CrossRef]
- Wang, G.; Li, F.; Wu, Q. Relationship between permafrost and vegetation and its impact on Alpine Ecosystem in permafrost region of Qinghai Tibet Plateau. Chin. Sci. 2006, 36, 743–754. [Google Scholar] [CrossRef]
- Jin, H.; Ma, Q. Impacts of Permafrost Degradation on Carbon Stocks and Emissions under a Warming Climate: A Review. Atmosphere 2021, 12, 1425. [Google Scholar] [CrossRef]
- Revich, B.A.; Eliseev, D.O.; Shaposhnikov, D.A. Risks for Public Health and Social Infrastructure in Russian Arctic under Climate Change and Permafrost Degradation. Atmosphere 2022, 13, 532. [Google Scholar] [CrossRef]
- Zsoter, E.; Arduini, G.; Prudhomme, C.; Stephens, E.; Cloke, H. Hydrological Impact of the New CMWF Multi-Layer Snow Scheme. Atmosphere 2022, 13, 727. [Google Scholar] [CrossRef]
- Walker, D.A.; Epstein, H.E.; Gould, W.A.; Kelley, A.M.; Kade, A.N.; Knudson, J.A.; Krantz, W.B.; Michaelson, G.; Peterson, R.A.; Ping, C.L.; et al. Frost-boil ecosystems: Complex interactions between landforms, soils, vegetation and climate. Permafrost Periglac. 2004, 15, 171–188. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.K.; Walker, D.A. Circumpolar Relationships Between Permafrost Characteristics, NDVI, and Arctic Vegetation Types. Ninth Int. Conf. Permafr. 2008, 2, 1469–1474. [Google Scholar]
- Sun, X.; Chen, J.; Cui, X. Soil Science; China Forestry Press: Beijing, China, 2005; pp. 245–269. [Google Scholar]
- Wu, Q.; Shen, Y.; Shi, B. Relationship between Frozen Soil Together with Its Water-Heat Process and Ecological Environment in the Tibetan Plateau. J. Glaciol. Geocryol. 2003, 25, 250–255. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Y.; Liu, G. Response of soil moisture within the permafrost active layer to different alpine ecosystems. J. Glaciol. Geocryol. 2014, 36, 1002–1010. [Google Scholar]
- Wang, X.; Yi, S.; Wu, Q. The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau. Glob. Planet. Chang. 2016, 147, 40–53. [Google Scholar] [CrossRef]
- Chen, L.; Lai, Y.; Fortier, D.; Harris, S.H. Impacts of Snow Cover on the Pattern and Velocity of Air Flow in Air Convection Embankments of Sub-Arctic Regions. Renew. Energy 2022, 199, 1033–1046. [Google Scholar] [CrossRef]
- Chen, L.; Voss, C.; Fortier, D.; McKenzie, J. Surface Energy Balance of Sub-Arctic Roads with Varying Snow Regimes and Properties in Permafrost Regions. Permafrost Periglac. 2021, 32, 681–701. [Google Scholar] [CrossRef]
- Cao, W.; Sheng, Y.; Wu, J. Simulation analysis of the impacts of underground mining on permafrost in an opencast coal mine in the northern Qinghai-Tibet Plateau. Environ. Earth 2017, 76, 711. [Google Scholar] [CrossRef]
- Cao, W.; Sheng, Y.; Wu, J. Simulation analysis of the impact of excavation backfill on permafrost recovery in an opencast coal-mining pit. Environ. Earth. 2016, 75, 837. [Google Scholar] [CrossRef]
- Askaer, L.; Schmidt, L.B.; Bo, E. Environmental Impact on an Arctic Soil–Plant System Resulting from Metals Released from Coal Mine Waste in Svalbard (78° N). Water Air Soil Poll. 2008, 195, 99–114. [Google Scholar] [CrossRef]
- Wang, W.; Yan, Q.; Zhong, X. Research on Ecological cumulative effect of arid and semi-arid coal mining area based on rs-gis: A case study of ordos. Coal Sci. Tech. 2021, 50, 235–241. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L.; Wang, Y. Spatiotemporal dynamics of vegetation NDVI in Shendong mining area from 2000 to 2017. Res. Soil Wat. Conserv. 2021, 28, 153–158. [Google Scholar] [CrossRef]
- Hou, J.; Yu, H.; Mu, S. Spatial–temporal characteristics of land degradation and its influencing factors in coal mine areas in Western China. Coal Sci. Tech. 2020, 48, 206–216. [Google Scholar] [CrossRef]
- Wang, D.; Shang, Z.; She, C. Relationship between typical physical properties and biomass of reconstructed soil in grassland open-pit mining area. Chin. Agric. Bull. 2020, 36, 60–65. [Google Scholar]
- Wang, C.; Dong, S.; Jia, Z. Responses of vegetation to depth to the groundwater table in the grassland open-pit coal mine area. Acta. Ecol. Sinica. 2020, 40, 6925–6937. [Google Scholar]
- Wang, G.; Bi, R.; Zhang, W. Temporal and spatial distribution characteristics and influencing factors of vegetation coverage in typical mining areas. Acta Ecol. Sin. 2020, 40, 6046–6056. [Google Scholar] [CrossRef]
- Fang, J.; Ma, G.; Yu, X. Spatiotemporal variation of NDVI in Qinghai Lake Basin and its relationship with climate Factor. J. Soil Water Conserv. 2020, 34, 105–112. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, D.; Luo, Y. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Province. Acta Geogr. Sin. 2019, 74, 1758–1776. [Google Scholar] [CrossRef]
- Fu, G.; Sun, W.; Li, S. Modeling aboveground biomass using MODIS images and climatic data in grasslands on the Tibetan Plateau. J. Res. Ecol. 2017, 8, 42–49. [Google Scholar] [CrossRef]
- Rao, P.; Wang, Y.; Wang, F. Analysis on the NDVI change and influencing factors of vegetation cover in the Three-River Headwater Region. Acta Grassl. Sin. 2021, 29, 572–582. [Google Scholar] [CrossRef]
- Wang, S. Fractional Vegetation Cover in the Source Area of Yellow River Extraction and Change Analysis Based on Temporal NDVI Data of Landsat and MODIS; China University of Geosciences: Beijing, China, 2020. [Google Scholar]
- Li, J.; Sheng, Y.; Wu, J. Variations in the ground temperatures of permafrost in the two watersheds of the interior and eastern Qilian Mountains. Environ. Earth Sci. 2016, 75, 480.1–480.14. [Google Scholar] [CrossRef]
- Wang, S.; Sheng, Y.; Wu, J. The characteristics and changing tendency of permafrost in the source regions of the Datong River, Qilian Mountains. J. Glaciol. Geocryol. 2015, 37, 27–37. [Google Scholar]
- Li, J.; Sheng, Y.; Wu, J. Variations in Permafrost Temperature and Stability of Alpine Meadows in the Source Area of the Datong River, Northeastern Qinghai-Tibet Plateau, China. Permafrost Periglac. 2014, 25, 307–319. [Google Scholar] [CrossRef]
- Katsev, I.; Prikhach, A.; Zege, E.; Kokhanovsky, A. Robust Atmospheric Correction Procedure for Determination of Spectral Reflectance of Terrestrial Surfaces from Satellite Spectral Measurements. Remote Sens. 2021, 13, 1831. [Google Scholar] [CrossRef]
- Mo, Y.; Zheng, Y.; Chen, H. Analysis on the vegetation cover change in HHH Zone of China in 1982~2000. Remote Sens. Tech. App. 2007, 22, 397–398. [Google Scholar] [CrossRef]
- Carlson, N.; David, A. On the Relation between NDVI fractional vegetation cover and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Zhao, M.; Cao, G.; Cao, S.; Liu, F.; Li, Y.; Zhang, Z.; Diao, E.; Chen, Z. Temperature and Precipitation and Their Relationship with Runoff Change in Datong River from 1956 to 2016. Res. Soil Water Conserv. 2021, 28, 111–117+125. [Google Scholar] [CrossRef]
Periods | 2002 | 2016 | ||
---|---|---|---|---|
Level | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) |
1 | 75.4 | 7.29% | 166.6 | 16.11% |
2 | 63.3 | 6.12% | 127.2 | 12.29% |
3 | 79.2 | 7.66% | 122.8 | 11.87% |
4 | 278.7 | 26.94% | 397.0 | 38.38% |
5 | 537.8 | 51.99% | 220.9 | 21.35% |
Total area (km2) | 1034.3 | 100% | 1034.3 | 100% |
Periods | 2002 | 2016 | ||
---|---|---|---|---|
Level | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) |
1 | 2.5 | 0.61% | 0.3 | 0.06% |
2 | 4.9 | 1.20% | 3.2 | 0.80% |
3 | 18.7 | 4.61% | 25.9 | 6.38% |
4 | 347.9 | 85.74% | 363.5 | 89.57% |
5 | 31.8 | 7.84% | 13.0 | 3.20% |
Total area (km2) | 405.8 | 100% | 405.8 | 100% |
Periods | Level | 2016 (km2) | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | Total Area | Transfer-Out Area | ||
2002 (km2) | 1 | 61.31 | 13.98 | 0.12 | 0 | 0 | 75.41 | 14.1 |
2 | 17.37 | 31.74 | 13.98 | 0.18 | 0 | 63.27 | 31.53 | |
3 | 14.45 | 16.09 | 33.82 | 14.55 | 0.29 | 79.21 | 45.39 | |
4 | 21.18 | 17.13 | 41.92 | 178.04 | 20.42 | 278.69 | 100.65 | |
5 | 52.31 | 48.22 | 32.9 | 204.18 | 200.15 | 537.76 | 337.61 | |
Total area | 166.62 | 127.16 | 122.73 | 396.96 | 220.87 | 1034.35 | ||
Transfer-in area | 105.32 | 95.42 | 88.92 | 218.92 | 20.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xu, T.; Sheng, Y.; Wang, Y.; Jia, S.; Huang, L. Analysis of Vegetation Coverage Evolution and Degradation under Coal Mine Construction in Permafrost Region. Atmosphere 2022, 13, 2035. https://doi.org/10.3390/atmos13122035
Wang S, Xu T, Sheng Y, Wang Y, Jia S, Huang L. Analysis of Vegetation Coverage Evolution and Degradation under Coal Mine Construction in Permafrost Region. Atmosphere. 2022; 13(12):2035. https://doi.org/10.3390/atmos13122035
Chicago/Turabian StyleWang, Shengting, Tianni Xu, Yu Sheng, Yiming Wang, Shuming Jia, and Long Huang. 2022. "Analysis of Vegetation Coverage Evolution and Degradation under Coal Mine Construction in Permafrost Region" Atmosphere 13, no. 12: 2035. https://doi.org/10.3390/atmos13122035
APA StyleWang, S., Xu, T., Sheng, Y., Wang, Y., Jia, S., & Huang, L. (2022). Analysis of Vegetation Coverage Evolution and Degradation under Coal Mine Construction in Permafrost Region. Atmosphere, 13(12), 2035. https://doi.org/10.3390/atmos13122035