New Models for Vertical Distribution and Variation of Tropospheric Water Vapor—A Case Study for China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
2.2. A New Parameter for the Vertical Distribution of Water Vapor
2.3. Temporal Model
3. Spatio–Temporal Characteristics of IRPWV and Modeling
3.1. Temporal and Spatial Characteristics of IRPWV
3.1.1. Statistical Characteristics of IRPWV
3.1.2. Methodology for Determining Rel-TPWV
3.1.3. Temporal Characteristics of IRPWV
3.2. Construction of Spatio-Temporal IRPWV Model
4. Evaluation of IRPWV Model
4.1. Accuracy of WVD Resulting from Models and TPWV
4.2. Accuracy of WVD Resulting from Models and WVD at a Specific Altitude
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
TPWV Range | Coefficient | Height Layer | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
1 | 0.518 | 0.336 | 0.192 | 0.115 | 0.064 | 0.036 | 0.021 | 0.014 | 0.008 | 0.005 | |
0.048 | 0.011 | −0.005 | 0.001 | −0.008 | −0.008 | −0.002 | 0.000 | 0.000 | 0.000 | ||
0.003 | −0.017 | 0.001 | 0.008 | −0.001 | 0.002 | 0.000 | 0.002 | 0.002 | 0.001 | ||
0.022 | −0.004 | 0.015 | −0.004 | −0.008 | −0.003 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.015 | 0.000 | 0.003 | −0.002 | −0.006 | −0.002 | 0.000 | −0.001 | −0.001 | 0.000 | ||
−0.013 | −0.016 | 0.015 | 0.001 | −0.002 | 0.000 | 0.003 | 0.002 | 0.001 | 0.000 | ||
0.019 | 0.014 | −0.003 | −0.012 | −0.006 | −0.001 | 0.001 | 0.000 | 0.000 | 0.000 | ||
2 | 0.434 | 0.324 | 0.222 | 0.129 | 0.068 | 0.037 | 0.020 | 0.012 | 0.007 | 0.004 | |
0.017 | 0.024 | 0.022 | −0.002 | −0.022 | −0.016 | −0.008 | −0.003 | −0.002 | −0.001 | ||
−0.011 | −0.002 | 0.011 | 0.005 | −0.004 | −0.003 | −0.003 | −0.001 | 0.000 | 0.000 | ||
0.016 | 0.006 | 0.008 | −0.009 | −0.015 | −0.001 | 0.001 | 0.001 | 0.000 | 0.000 | ||
0.014 | 0.008 | 0.005 | −0.002 | −0.008 | −0.004 | −0.002 | −0.001 | 0.000 | 0.000 | ||
−0.001 | −0.003 | 0.006 | −0.005 | −0.003 | 0.003 | 0.001 | 0.002 | 0.001 | 0.000 | ||
0.014 | 0.006 | −0.002 | −0.005 | −0.002 | 0.000 | 0.000 | −0.001 | 0.000 | 0.000 | ||
3 | 0.410 | 0.324 | 0.222 | 0.131 | 0.072 | 0.039 | 0.022 | 0.012 | 0.007 | 0.004 | |
0.010 | 0.034 | 0.025 | −0.005 | −0.021 | −0.018 | −0.009 | −0.005 | −0.003 | −0.002 | ||
−0.009 | 0.007 | 0.011 | 0.003 | −0.005 | −0.007 | −0.004 | −0.002 | 0.000 | 0.000 | ||
0.009 | 0.005 | 0.007 | −0.009 | −0.010 | −0.001 | 0.000 | 0.001 | 0.001 | 0.001 | ||
0.001 | 0.004 | 0.012 | −0.002 | −0.007 | −0.004 | −0.002 | −0.001 | 0.000 | 0.000 | ||
0.002 | 0.001 | 0.004 | −0.004 | −0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | ||
0.003 | −0.001 | 0.002 | −0.005 | −0.001 | 0.002 | 0.001 | −0.001 | −0.001 | 0.000 | ||
4 | 0.384 | 0.309 | 0.221 | 0.138 | 0.076 | 0.043 | 0.025 | 0.015 | 0.008 | 0.004 | |
0.005 | 0.030 | 0.031 | 0.004 | −0.019 | −0.021 | −0.013 | −0.008 | −0.004 | −0.003 | ||
−0.003 | 0.014 | 0.008 | 0.001 | −0.007 | −0.007 | −0.004 | −0.002 | −0.001 | 0.000 | ||
0.005 | 0.003 | 0.004 | −0.004 | −0.008 | −0.002 | 0.001 | 0.001 | 0.001 | 0.001 | ||
0.005 | 0.012 | 0.006 | −0.005 | −0.011 | −0.004 | −0.002 | −0.001 | 0.000 | 0.000 | ||
0.003 | 0.000 | 0.001 | −0.001 | −0.003 | 0.001 | 0.001 | 0.000 | 0.001 | 0.000 | ||
0.006 | 0.006 | 0.000 | −0.005 | −0.005 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | ||
5 | 0.364 | 0.298 | 0.218 | 0.140 | 0.085 | 0.050 | 0.029 | 0.017 | 0.009 | 0.005 | |
0.003 | 0.028 | 0.028 | 0.006 | −0.012 | −0.018 | −0.013 | −0.009 | −0.005 | −0.003 | ||
0.001 | 0.017 | 0.011 | 0.001 | −0.009 | −0.009 | −0.006 | −0.003 | −0.001 | −0.001 | ||
0.001 | 0.000 | 0.004 | −0.002 | −0.004 | −0.002 | 0.001 | 0.001 | 0.001 | 0.001 | ||
0.006 | 0.011 | 0.005 | −0.001 | −0.010 | −0.005 | −0.001 | 0.000 | 0.000 | 0.000 | ||
0.000 | −0.004 | −0.002 | 0.001 | 0.000 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 | ||
0.004 | 0.004 | 0.000 | −0.003 | −0.005 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | ||
6 | 0.338 | 0.283 | 0.211 | 0.143 | 0.093 | 0.057 | 0.035 | 0.020 | 0.011 | 0.006 | |
−0.005 | 0.022 | 0.022 | 0.010 | −0.002 | −0.013 | −0.013 | −0.010 | −0.007 | −0.004 | ||
0.004 | 0.016 | 0.009 | 0.000 | −0.005 | −0.009 | −0.007 | −0.004 | −0.002 | −0.001 | ||
−0.007 | −0.003 | 0.002 | 0.003 | 0.002 | −0.001 | −0.001 | 0.000 | 0.000 | 0.000 | ||
0.004 | 0.010 | 0.006 | −0.001 | −0.006 | −0.007 | −0.003 | −0.001 | 0.000 | 0.000 | ||
−0.008 | −0.010 | −0.004 | 0.002 | 0.006 | 0.004 | 0.002 | 0.001 | 0.001 | 0.000 | ||
0.004 | 0.002 | 0.000 | −0.001 | −0.003 | −0.001 | 0.000 | 0.000 | 0.000 | 0.000 |
References
- Chahine, M.T. The Hydrological Cycle and Its Influence on Climate. Nature 1992, 359, 373–380. [Google Scholar] [CrossRef]
- Viswanadham, Y. The Relationship between Total Precipitable Water and Surface Dew Point. J. Appl. Meteorol. 1981, 20, 3–8. [Google Scholar] [CrossRef]
- Rocken, C.; van Hove, T.; Ware, R. Near Real-Time GPS Sensing of Atmospheric Water Vapor. Geophys. Res. Lett. 1997, 24, 3221–3224. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. J. Geophys. Res. 1992, 97, 15787. [Google Scholar] [CrossRef]
- Liu, Z.; Wong, M.S.; Nichol, J.; Chan, P.W. A Multi-Sensor Study of Water Vapour from Radiosonde, MODIS and AERONET: A Case Study of Hong Kong. Int. J. Climatol. 2013, 33, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Dai, A.; Wang, J. Trends in Tropospheric Humidity from 1970 to 2008 over China from a Homogenized Radiosonde Dataset. J. Clim. 2012, 25, 4549–4567. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D. The Role of Water Vapour in the Atmosphere. A Short Overview from a Climate Modeller’s Point of View. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 523–527. [Google Scholar] [CrossRef]
- Huang, L.; Mo, Z.; Xie, S.; Liu, L.; Chen, J.; Kang, C.; Wang, S. Spatiotemporal Characteristics of GNSS-Derived Precipitable Water Vapor during Heavy Rainfall Events in Guilin, China. Satell. Navig. 2021, 2, 13. [Google Scholar] [CrossRef]
- Huang, L.; Mo, Z.; Liu, L.; Zeng, Z.; Chen, J.; Xiong, S.; He, H. Evaluation of Hourly PWV Products Derived From ERA5 and MERRA-2 Over the Tibetan Plateau Using Ground-Based GNSS Observations by Two Enhanced Models. Earth Space Sci. 2021, 8, e2020EA001516. [Google Scholar] [CrossRef]
- Keil, C.; Röpnack, A.; Craig, G.C.; Schumann, U. Sensitivity of Quantitative Precipitation Forecast to Height Dependent Changes in Humidity. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Schiro, K.A.; Neelin, J.D.; Adams, D.K.; Lintner, B.R. Deep Convection and Column Water Vapor over Tropical Land versus Tropical Ocean: A Comparison between the Amazon and the Tropical Western Pacific. J. Atmos. Sci 2016, 73, 4043–4063. [Google Scholar] [CrossRef]
- Weckwerth, T.M.; Parsons, D.B. A Review of Convection Initiation and Motivation for IHOP_2002. Mon. Weather Rev. 2006, 134, 5–22. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Roca, R.; Weckwerth, T.M.; Andronova, N.G. Tropospheric Water Vapor, Convection, and Climate. Rev. Geophys. 2010, 48, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Rose, B.E.J.; Rencurrel, M.C. The Vertical Structure of Tropospheric Water Vapor: Comparing Radiative and Ocean-Driven Climate Changes. J. Clim. 2016, 29, 4251–4268. [Google Scholar] [CrossRef]
- Renju, R.; Raju, C.S.; Mathew, N.; Antony, T.; Moorthy, K.K. Microwave Radiometer Observations of Interannual Water Vapor Variability and Vertical Structure over a Tropical Station. J. Geophys. Res. 2015, 120, 4585–4599. [Google Scholar] [CrossRef]
- Lintner, B.R.; Holloway, C.E.; Neelin, J.D. Column Water Vapor Statistics and Their Relationship to Deep Convection, Vertical and Horizontal Circulation, and Moisture Structure at Nauru. J. Clim. 2011, 24, 5454–5466. [Google Scholar] [CrossRef]
- Holloway, C.E.; Neelin, D.J. Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection. J. Atmos. Sci. 2009, 66, 1665–1683. [Google Scholar] [CrossRef] [Green Version]
- Schneider, T.; O’Gorman, P.A.; Levine, X.J. Water Vapor and the Dynamics of Climate Changes. Rev. Geophys. 2010, 48, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T.; Mackaro, J. Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses. J. Clim. 2011, 24, 4907–4924. [Google Scholar] [CrossRef]
- Huang, L.; Wang, X.; Xiong, S.; Li, J.; Liu, L.; Mo, Z.; Fu, B.; He, H. High-Precision GNSS PWV Retrieval Using Dense GNSS Sites and in-Situ Meteorological Observations for the Evaluation of MERRA-2 and ERA5 Reanalysis Products over China. Atmos. Res. 2022, 276, 106247. [Google Scholar] [CrossRef]
- Huang, L.; Mo, Z.; Liu, L.; Xie, S. An Empirical Model for the Vertical Correction of Precipitable Water Vapor Considering the Time-Varying Lapse Rate for Mainland China. Cehui Xuebao/Acta Geod. Cartogr. Sin. 2021, 50, 1320. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, Y.; Li, W.; Zhang, B. A Real-Time Precipitable Water Vapor Monitoring System Using the National GNSS Network of China: Method and Preliminary Results. IEEE J. Sel. Top. Appl Earth Obs. Remote Sens. 2019, 12, 1587–1598. [Google Scholar] [CrossRef]
- Reitan, C.H. Surface Dew Point and Water Vapor Aloft. J. Appl. Meteorol. 1963, 2, 776–779. [Google Scholar] [CrossRef]
- Smith, W.L. Note on the Relationship Between Total Precipitable Water and Surface Dew Point. J. Appl. Meteorol. 1966, 5, 726–727. [Google Scholar] [CrossRef]
- Raymond, W.H. Estimating Moisture Profiles Using a Modified Power Law. J. Appl. Meteorol. 2000, 39, 1059–1070. [Google Scholar] [CrossRef]
- Smith, W.L.; Feltz, W.F.; Knuteson, R.O.; Revercomb, H.E.; Woolf, H.M.; Howell, H.B. The Retrieval of Planetary Boundary Layer Structure Using Ground-Based Infrared Spectral Radiance Measurements. J. Atmos. Ocean. Technol. 1999, 16, 323–333. [Google Scholar] [CrossRef]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Chaboureau, J.P. Relationship between Sea Surface Temperature, Vertical Dynamics, and the Vertical Distribution of Atmospheric Water Vapor Inferred from TOVS Observations. J. Geophys. Res. Atmos. 1998, 103, 8743–8752. [Google Scholar] [CrossRef] [Green Version]
- Reber, E.E.; Swope, J.R. On the Correlation of the Total Precipitable Water in a Vertical Column and Absolute Humidity at the Surface. J. Appl. Meteorol. 1972, 11, 1322–1325. [Google Scholar] [CrossRef]
- Tomasi, C. Determination of the Total Precipitable Water by Varying the Intercept in Reitan’s Relationship. J. Appl. Meteorol. 1981, 20, 1058–1069. [Google Scholar] [CrossRef]
- Byers, H.R. Significance of Different Vertical Distributions of Water Vapor in Arid and Humid Regions. J. Meteorol. Soc. Japan. Ser. II 1957, 35A, 330–335. [Google Scholar] [CrossRef]
- Tomasi, C. Precipitable Water Vapor in Atmospheres Characterized by Temperature Inversions. J. Appl. Meteorol. 1977, 16, 237–243. [Google Scholar] [CrossRef]
- Weaver, C.P.; Ramanathan, V. Deductions from a Simple Climate Model: Factors Governing Surface Temperature and Atmospheric Thermal Structure. J. Geophys Res. 1995, 100, 11585. [Google Scholar] [CrossRef]
- John, T.; Garg, S.C.; Maini, H.K.; Chaunal, D.S.; Yadav, V.S. Design of a Simple Low Cost Tethersonde Data Acquisition System for Meteorological Measurements. Rev. Sci. Instrum. 2005, 76, 84501. [Google Scholar] [CrossRef]
- Kennett, E.J.; Toumi, R. Temperature Dependence of Atmospheric Moisture Lifetime. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Otarola, A.C.; Querel, R.; Kerber, F. Precipitable Water Vapor: Considerations on the Water Vapor Scale Height, Dry Bias of the Radiosonde Humidity Sensors, and Spatial and Temporal Variability of the Humidity Field. 2011. Available online: https://arxiv.org/abs/1103.3025 (accessed on 12 December 2021).
- Zhang, B.; Yao, Y.; Xu, C. Global Empirical Model for Estimating Water Vapor Scale Height. Cehui Xuebao/Acta Geod. Cartogr. Sin. 2015, 44, 1085–1091. [Google Scholar] [CrossRef]
- Romps, D.M. An Analytical Model for Tropical Relative Humidity. J. Clim. 2014, 27, 7432–7449. [Google Scholar] [CrossRef]
- Fischer, L.; Craig, G.C.; Kiemle, C. Horizontal Structure Function and Vertical Correlation Analysis of Mesoscale Water Vapor Variability Observed by Airborne Lidar. J. Geophys. Res. Atmos. 2013, 118, 7579–7590. [Google Scholar] [CrossRef] [Green Version]
- Iassamen, A.; Sauvageot, H.; Jeannin, N.; Ameur, S. Distribution of Tropospheric Water Vapor in Clear and Cloudy Conditions from Microwave Radiometric Profiling. J. Appl. Meteorol. Clim. 2009, 48, 600–615. [Google Scholar] [CrossRef]
- Lintner, B.R.; Adams, D.K.; Schiro, K.A.; Stansfield, A.M.; Amorim Rocha, A.A.; Neelin, J.D. Relationships among Climatological Vertical Moisture Structure, Column Water Vapor, and Precipitation over the Central Amazon in Observations and CMIP5 Models. Geophys. Res. Lett. 2017, 44, 1981–1989. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Chan, S.T.; Cao, Y.; Gao, Y.; Zhang, K.; Nichol, J. Analysis and Modelling of Water Vapour and Temperature Changes in Hong Kong Using a 40-Year Radiosonde Record: 1973-2012. Int. J. Climatol. 2015, 35, 462–474. [Google Scholar] [CrossRef]
Layer | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 0.518 | 0.048 | 0.003 | 0.022 | 0.015 | −0.013 | 0.019 | |
1 | … | |||||||
5 | 0.064 | −0.008 | −0.001 | −0.008 | −0.006 | −0.002 | −0.006 | |
… | ||||||||
1 | 0.338 | −0.005 | 0.004 | −0.007 | 0.004 | −0.008 | 0.004 | |
6 | … | |||||||
5 | 0.093 | −0.002 | −0.005 | 0.002 | −0.006 | 0.006 | −0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, M.; Zhang, K.; Wu, S.; Shen, Z.; Sun, P.; Li, L. New Models for Vertical Distribution and Variation of Tropospheric Water Vapor—A Case Study for China. Atmosphere 2022, 13, 2039. https://doi.org/10.3390/atmos13122039
Wan M, Zhang K, Wu S, Shen Z, Sun P, Li L. New Models for Vertical Distribution and Variation of Tropospheric Water Vapor—A Case Study for China. Atmosphere. 2022; 13(12):2039. https://doi.org/10.3390/atmos13122039
Chicago/Turabian StyleWan, Moufeng, Kefei Zhang, Suqin Wu, Zhen Shen, Peng Sun, and Longjiang Li. 2022. "New Models for Vertical Distribution and Variation of Tropospheric Water Vapor—A Case Study for China" Atmosphere 13, no. 12: 2039. https://doi.org/10.3390/atmos13122039
APA StyleWan, M., Zhang, K., Wu, S., Shen, Z., Sun, P., & Li, L. (2022). New Models for Vertical Distribution and Variation of Tropospheric Water Vapor—A Case Study for China. Atmosphere, 13(12), 2039. https://doi.org/10.3390/atmos13122039