Status of Air Pollution during COVID-19-Induced Lockdown in Delhi, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Data Processing
2.4. Data Pre-Processing and Cross-Validation
2.5. Data Estimation–Air Quality Index
3. Results and Discussion
3.1. Cross-Validation-Error Estimation
3.2. Data Interpolation and Mapping-Particulate Matter Concentration
3.3. Data Interpolation and Mapping-Air Quality Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, M.; Dixit, O. Comprehensive study on air pollution and Green House Gases (GHGs) in Delhi. Biochem. J. 2015, 465. Available online: http://www.indiaenvironmentportal.org.in/content/439149/comprehensive-study-on-green-house-gases-ghgs-in-delhi/ (accessed on 31 December 2021).
- CPCB. National Air Quality Index. Central Pollution Control Board (CPCB). 2014. Available online: https://app.cpcbccr.com/AQI_India/ (accessed on 1 February 2022).
- Talukdar, S.; Tripathi, S.N.; Lalchandani, V.; Rupakheti, M.; Bhowmik, H.S.; Shukla, A.K.; Murari, V.; Sahu, R.; Jain, V.; Tripathi, N.; et al. Air pollution in New Delhi during late winter: An overview of a group of campaign studies focusing on composition and sources. Atmosphere 2021, 12, 1432. [Google Scholar] [CrossRef]
- Anselin, L.; Le Gallo, J. Interpolation of air quality measures in hedonic house price models: Spatial aspects. Spat. Econ. Anal. 2006, 1, 31–52. [Google Scholar] [CrossRef]
- Janssen, S.; Dumont, G.; Fierens, F.; Mensink, C. Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos. Environ. 2008, 42, 4884–4903. [Google Scholar] [CrossRef]
- Jha, D.K.; Sabesan, M.; Das, A.; Vinithkumar, N.V.; Kirubagaran, R. Evaluation of interpolation technique for air quality parameters in Port Blair, India. Univers. J. Environ. Res. Technol. 2011, 1, 301–310. [Google Scholar]
- Narashid, R.H.; Mohd, W.M.N.W. Air quality monitoring using remote sensing and GIS technologies. In Proceedings of the 2010 International Conference on Science and Social Research, Kuala Lumpur, Malaysia, 5–7 December 2010; pp. 1186–1191. [Google Scholar] [CrossRef]
- Dadhich, A.P.; Goyal, R.; Dadhich, P.N. Assessment of spatio-temporal variations in air quality of Jaipur city, Rajasthan, India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 173–181. [Google Scholar] [CrossRef]
- Meraj, G.; Farooq, M.; Singh, S.K.; Romshoo, S.A.; Nathawat, M.S.; Kanga, S. Coronavirus pandemic versus temperature in the context of Indian subcontinent: A preliminary statistical analysis. Environ. Dev. Sustain. 2021, 23, 6524–6534. [Google Scholar] [CrossRef]
- Kanga, S.; Sudhanshu Meraj, G.; Farooq, M.; Nathawat, M.S.; Singh, S.K. Reporting the management of COVID-19 threat in India using remote sensing and GIS based approach. Geocarto Int. 2020, 37, 1337–1344. [Google Scholar] [CrossRef]
- Kanga, S.; Meraj, G.; Farooq, M.; Nathawat, M.S.; Singh, S.K. Risk assessment to curb COVID-19 contagion: A preliminary study using remote sensing and GIS. Res. Sq. preprint. [CrossRef]
- Ranga, V.; Pani, P.; Kanga, S.; Meraj, G.; Farooq, M.; Nathawat, M.S.; Singh, S.K. National health-GIS Portal-A conceptual framework for effective epidemic management and control in India. Preprints 2020, 2020060325. [Google Scholar] [CrossRef]
- Wong, D.W.; Yuan, L.; Perlin, S.A. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 404–415. [Google Scholar] [CrossRef]
- Bhaskar, A.; Chandra, J.; Braun, D.; Cellini, J.; Dominici, F. Air pollution, SARS-CoV-2 transmission, and COVID-19 outcomes: A State-of-the-science review of a rapidly evolving research area. medRxiv 2020. [Google Scholar] [CrossRef]
- Banerji, S.; Mitra, D. Assessment of air quality in Kolkata before and after COVID-19 lockdown. Geocarto Int. 2022, 37, 6351–6374. [Google Scholar] [CrossRef]
- Kaloni, D.; Lee, Y.H.; Dev, S. Air quality in the New Delhi metropolis under COVID-19 lockdown. Syst. Soft Comput. 2022, 4, 200035. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Mishra, A.K.; Rajput, P.; Singh, A.; Singh, C.K.; Mall, R.K. Effect of lockdown amid COVID-19 on ambient air quality in 16 Indian cities. Front. Sustain. Cities 2021, 3, 101. [Google Scholar] [CrossRef]
- Association between Air Pollution and COVID-19 Disease Severity via Bayesian Multinomial Logistic Regression with Partially Missing Outcomes. Available online: https://www.researchgate.net/publication/362390654_Association_between_air_pollution_and_COVID-19_disease_severity_via_Bayesian_multinomial_logistic_regression_with_partially_missing_outcomes (accessed on 14 November 2022).
- Census Population Data. Delhi Population Sex Ratio in Delhi Literacy rate Delhi NCR. 2015. Available online: http://www.census2011.co.in/census/state/delhi.html (accessed on 31 January 2020).
- EPA. Guidelines for Reporting of Daily Air Quality—Air Quality Index (AQI); EPA: Washington, DC, USA, 2006. [Google Scholar]
- Burrough, P.A. Principles of geographical information systems for land resources assessment. Geocarto Int. 1998, 1, 54. [Google Scholar] [CrossRef]
- Stoter, J.; de Kluijver, H.; Kurakula, V. 3D noise mapping in urban areas. Int. J. Geogr. Inf. Sci. 2008, 22, 907–924. [Google Scholar] [CrossRef]
- Davis, B.M. Uses and abuses of cross-validation in geostatistics. Mathematical Geology, Math. Geol. 1987, 19, 241–248. [Google Scholar] [CrossRef]
- Da Silva, N.A.; Webber, B.G.; Matthews, A.J.; Feist, M.M.; Stein, T.H.; Holloway, C.E.; Abdullah, M.F. Validation of GPM IMERG extreme precipitation in the Maritime Continent by station and radar data. Earth Space Sci. 2021, 8, e2021EA001738. [Google Scholar] [CrossRef]
- Dung, P.T.; Chuc, M.D.; Thanh, N.T.N.; Hung, B.Q.; Chung, D.M. Comparison of resampling methods on different remote sensing images for Vietnam’s Urban Classification. J. Inf. Technol. Commun. 2018. [CrossRef]
- Meraj, G.; Singh, S.K.; Kanga, S.; Islam, M. Modeling on comparison of ecosystem services concepts, tools, methods and their ecological-economic implications: A review. Model. Earth Syst. Environ. 2021, 8, 15–34. [Google Scholar] [CrossRef]
- Bera, A.; Taloor, A.K.; Meraj, G.; Kanga, S.; Singh, S.K.; Đurin, B.; Anand, S. Climate vulnerability and economic determinants: Linkages and risk reduction in Sagar Island, India; A geospatial approach. Quat. Sci. Adv. 2021, 4, 100038. [Google Scholar] [CrossRef]
- Fayaz, M.; Meraj, G.; Khader, S.A.; Farooq, M.; Kanga, S.; Singh, S.K.; Sahu, N. Management of landslides in a rural–urban transition zone using machine learning algorithms—A case study of a National Highway (NH-44), India, in the Rugged Himalayan Terrains. Land 2022, 11, 884. [Google Scholar] [CrossRef]
- Sinha, K.K.; Gupta, M.K.; Banerjee, M.K.; Meraj, G.; Singh, S.K.; Kanga, S.; Sahu, N. Neural network-based modeling of water quality in Jodhpur, India. Hydrology 2022, 9, 92. [Google Scholar] [CrossRef]
- Meraj, G.; Kanga, S.; Ambadkar, A.; Kumar, P.; Singh, S.K.; Farooq, M.; Sahu, N. Assessing the yield of wheat using satellite remote sensing-based machine learning algorithms and simulation modeling. Remote Sens. 2022, 14, 3005. [Google Scholar] [CrossRef]
- Burns, J.; Boogaard, H.; Polus, S.; Pfadenhauer, L.M.; Rohwer, A.C.; Van Erp, A.M.; Rehfuess, E.A. Interventions to reduce ambient air pollution and their effects on health: An abridged Cochrane systematic review. Environ. Int. 2020, 135, 105400. [Google Scholar] [CrossRef]
- Huang, J.; Pan, X.; Guo, X.; Li, G. Health impact of China’s Air Pollution Prevention and Control Action Plan: An analysis of national air quality monitoring and mortality data. Lancet Planet. Health 2018, 2, e313–e323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2. 5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide And Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Tan, X.; Han, L.; Zhang, X.; Zhou, W.; Li, W.; Qian, Y. A review of current air quality indexes and improvements under the multi-contaminant air pollution exposure. J. Environ. Manag. 2021, 279, 111681. [Google Scholar] [CrossRef]
- Zhong, S.; Yu, Z.; Zhu, W. Study of the effects of air pollutants on human health based on Baidu indices of disease symptoms and air quality monitoring data in Beijing, China. Int. J. Environ. Res. Public Health 2019, 16, 1014. [Google Scholar] [CrossRef] [Green Version]
- Mohd Shafie, S.H.; Mahmud, M.; Mohamad, S.; Rameli, N.L.F.; Abdullah, R.; Mohamed, A.F. Influence of urban air pollution on the population in the Klang Valley, Malaysia: A spatial approach. Ecol. Process. 2022, 11, 1–16. [Google Scholar] [CrossRef]
- Munyati, C.; Sinthumule, N.I. Comparative suitability of ordinary kriging and inverse distance weighted interpolation for indicating intactness gradients on threatened savannah woodland and forest stands. Environ. Sustain. Indic. 2021, 12, 100151. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Y.; Gan, V.J.; Lin, C.; Wan, Z. Spatiotemporal prediction of PM2. 5 concentrations at different time granularities using IDW-BLSTM. IEEE Access 2019, 7, 107897–107907. [Google Scholar] [CrossRef]
- Carswell, G.; De Neve, G.; Subramanyam, N. Getting home during lockdown: Migration disruption, labour control and linked lives in India at the time of COVID-19. J. Ethn. Migr. Stud. 2022, 48, 1–19. [Google Scholar] [CrossRef]
- Viswanathan, M.; Faruque Aly, H.; Duncan, R.; Mandhan, N. Unequal but essential: How subsistence consumer–entrepreneurs negotiate unprecedented shock with extraordinary resilience during COVID-19. J. Consum. Aff. 2021, 55, 151–178. [Google Scholar] [CrossRef]
- Wang, C.; Wang, D.; Abbas, J.; Duan, K.; Mubeen, R. Global financial crisis, smart lockdown strategies, and the COVID-19 spillover impacts: A global perspective implications from Southeast Asia. Front. Psychiatry 2021, 12, 643783. [Google Scholar] [CrossRef]
- Debnath, J.; Sahariah, D.; Lahon, D.; Nath, N.; Chand, K.; Meraj, G.; Farooq, M.; Kumar, P.; Kanga, S.; Singh, S.K. Geospatial modeling to assess the past and future land use-land cover changes in the Brahmaputra Valley, NE India, for sustainable land resource management. Environ. Sci. Pollut. Res. 2022, 1–24. [Google Scholar] [CrossRef]
- Wetchayont, P. Investigation on the impacts of COVID-19 lockdown and influencing factors on air quality in greater Bangkok, Thailand. Adv. Meteorol. 2021, 2021, 6697707. [Google Scholar] [CrossRef]
- Aboagye, E.M.; Mensah, F.; Effah, K.O.; Afrane, S.; Ampah, J.D.; Brenyah, S.A. “Temporal not Permanent:” The impact of Covid-19 cities lockdown on improving Air Quality—A critical review of Africa. J. Environ. Sustain. 2021, 8, 5. [Google Scholar]
- Ghecham, M.A. The impact of COVID-19 on economic growth of countries: What role has income inequality in it? Economies 2022, 10, 158. [Google Scholar] [CrossRef]
- Agarwal, S.; Punn, N.S.; Sonbhadra, S.K.; Tanveer, M.; Nagabhushan, P.; Pandian, K.K.; Saxena, P. Unleashing the power of disruptive and emerging technologies amid COVID-19: A detailed review. arXiv 2020, arXiv:2005.11507. [Google Scholar]
- Chakrabarty, D. The Anthropocene and the convergence of histories. In The Anthropocene and the Global Environmental Crisis; Routledge: London, UK, 2015; pp. 44–56. [Google Scholar]
- Amil, N.; Latif, M.T.; Khan, M.F.; Mohamad, M. Seasonal variability of PM 2.5 composition and sources in the Klang Valley urban-industrial environment. Atmos. Chem. Phys. 2016, 16, 5357–5381. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Bravo, M.; Martínez-del-Río, J. Urban pollution and emission reduction. Sustain. Cities Communities 2020, 905–915. [Google Scholar] [CrossRef]
- Meo, S.A.; Almutairi, F.J.; Abukhalaf, A.A.; Alessa, O.M.; Al-Khlaiwi, T.; Meo, A.S. Sandstorm and its effect on particulate matter PM 2.5, carbon monoxide, nitrogen dioxide, ozone pollutants and SARS-CoV-2 cases and deaths. Sci. Total Environ. 2021, 795, 148764. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lv, J.; Tan, Y.; Guo, M.; Gu, Y.; Xu, S.; Zhou, Y. Temporospatial variations and Spearman correlation analysis of ozone concentrations to nitrogen dioxide, sulfur dioxide, particulate matters and carbon monoxide in ambient air, China. Atmos. Pollut. Res. 2019, 10, 1203–1210. [Google Scholar] [CrossRef]
- Ramasamy, D. Enchanted improvements in air quality across India-A study from COVID-19 lockdown perspective. Adalya J. 2020, 9. [Google Scholar] [CrossRef]
- Kabiraj, S.; Gavli, N.V. Impact of SARS-CoV-2 pandemic lockdown on air quality using satellite imagery with ground station monitoring data in most polluted city Kolkata, India. Aerosol Sci. Eng. 2020, 4, 320–330. [Google Scholar] [CrossRef]
- Selvan Christyraj, J.R.S.; Selvan Christyraj, J.D.; Adhimoorthy, P.; Rajagopalan, K.; Nimita Jebaranjitham, J. Impact of biomedical waste management system on infection control in the midst of COVID-19 pandemic. In The Impact of the COVID-19 Pandemic on Green Societies; Springer: Cham, Switzerland, 2021; pp. 235–262. [Google Scholar]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Llopis-Morales, A.; Morales-Suárez-Varela, M. Air quality during COVID-19 lockdown. Encyclopedia 2021, 1, 519–526. [Google Scholar] [CrossRef]
- Soni, M.; Verma, S.; Jethava, H.; Payra, S.; Lamsal, L.; Gupta, P.; Singh, J. Impact of COVID-19 on the air quality over china and india using long-term (2009–2020) multi-satellite data. Aerosol Air Qual. Res 2021, 21, 200295. [Google Scholar] [CrossRef]
- Roy, S.; Saha, M.; Dhar, B.; Pandit, S.; Nasrin, R. Geospatial analysis of COVID-19 lockdown effects on air quality in the South and Southeast Asian region. Sci. Total Environ. 2021, 756, 144009. [Google Scholar] [CrossRef]
- Chowdhuri, I.; Pal, S.C.; Arabameri, A.; Ngo, P.T.T.; Roy, P.; Saha, A.; Chakrabortty, R. Have any effect of COVID-19 lockdown on environmental sustainability? A study from most polluted metropolitan area of India. Stoch. Environ. Res. Risk Assess. 2022, 36, 283–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, B.; Jiang, Y.; Xing, J.; Sahu, S.K.; Zheng, H.; Hao, J. Non-negligible contributions to human health from increased household air pollution exposure during the COVID-19 lockdown in China. Environ. Int. 2022, 158, 106918. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Azad, M.A.K.; Hasanuzzaman, M.; Salam, R.; Islam, A.R.M.T.; Rahman, M.M.; Hoque, M.M.M. How air quality and COVID-19 transmission change under different lockdown scenarios? A case from Dhaka city, Bangladesh. Sci. Total Environ. 2021, 762, 143161. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.K.; Patra, A.K.; Gorai, A.K. Effect of lockdown due to SARS COVID-19 on aerosol optical depth (AOD) over urban and mining regions in India. Sci. Total Environ. 2020, 745, 141024. [Google Scholar] [CrossRef] [PubMed]
- Aix, M.L.; Petit, P.; Bicout, D.J. Air pollution and health impacts during the COVID-19 lockdowns in Grenoble, France. Environ. Pollut. 2022, 303, 119134. [Google Scholar] [CrossRef] [PubMed]
- Bontempi, E.; Carnevale, C.; Cornelio, A.; Volta, M.; Zanoletti, A. Analysis of the lockdown effects due to the COVID-19 on air pollution in Brescia (Lombardy). Environ. Res. 2022, 212, 113193. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Z.; He, Z.; Li, X.; Meng, J.; Hou, Z.; Yang, J. Changes in air quality from the COVID to the post-COVID era in the beijing-tianjin-tangshan region in China. Aerosol Air Qual. Res. 2021, 21, 210270. [Google Scholar] [CrossRef]
- Khan, S.; Dahu, B.M.; Scott, G.J.A. Spatio-temporal study of changes in air quality from Pre-COVID era to Post-COVID era in Chicago, USA. Aerosol Air Qual. Res. 2022, 22, 220053. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, L.; Liu, J.; Ding, K.; Lou, S.; Ding, A.; Huang, X. Roles of atmospheric aerosols in extreme meteorological events: A systematic review. Curr. Pollut. Rep. 2022, 8, 177–188. [Google Scholar] [CrossRef]
- Debdas, S.; Roy, K.; Saha, A.; Kundu, S.; Dasray, S.; Chouhan, S. Analysis and prediction of climate change in Post-Covid19 India. In Proceedings of the 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7 November 2020; pp. 1530–1536. [Google Scholar]
- Razak, N.I.A.; Ezani, N.E.; Ismail, N. Particulate matter-induced acute coronary syndrome: MicroRNAs as microregulators for inflammatory factors. Mediat. Inflamm. 2021, 2021, 6609143. [Google Scholar] [CrossRef]
- Silveyra, P.; Fuentes, N.; Rivera, L. Ozone I. human disorders: An overview. In A Handbook of Environmental Toxicology: Human Disorders and Ecotoxicology; CABI Books. CABI International, 2020; pp. 75–92. [Google Scholar]
- Gaur, A.; Tripathi, S.N.; Kanawade, V.P.; Tare, V.; Shukla, S.P. Four-year measurements of trace gases (SO2, NOx, CO, and O3) at an urban location, Kanpur, in Northern India. J. Atmos. Chem. 2014, 71, 283–301. [Google Scholar] [CrossRef]
- Pratap, V.; Tiwari, S.; Kumar, A.; Singh, A.K. COVID-19 lockdown induced air pollution reduction over India: A lesson for future air pollution mitigation strategies. J. Earth Syst. Sci. 2021, 130, 1–16. [Google Scholar] [CrossRef]
- de Frutos, F.; Cuerdo-Vilches, T.; Alonso, C.; Martín-Consuegra, F.; Frutos, B.; Oteiza, I.; Navas-Martín, M.Á. Indoor environmental quality and consumption patterns before and during the COVID-19 lockdown in twelve social dwellings in Madrid, Spain. Sustainability 2021, 13, 7700. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh, T.; Vardhan, S.; Shrivastava, A.; Singh, S.; Kumar, P.; Mor, S. COVID-19 pandemic: What can we learn for better air quality and human health? J. Infect. Public Health 2022, 15, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Bolaño-Ortiz, T.R.; Pascual-Flores, R.M.; Puliafito, S.E.; Camargo-Caicedo, Y.; Berná-Peña, L.L.; Ruggeri, M.F.; Cereceda-Balic, F. Spread of COVID-19, meteorological conditions and air quality in the city of Buenos Aires, Argentina: Two facets observed during its pandemic lockdown. Atmosphere 2020, 11, 1045. [Google Scholar] [CrossRef]
- Fu, F.; Purvis-Roberts, K.L.; Williams, B. Impact of the COVID-19 pandemic lockdown on air pollution in 20 major cities around the World. Atmosphere 2020, 11, 1189. [Google Scholar] [CrossRef]
Sl. No. | Station Name | Sl. No. | Station Name |
---|---|---|---|
1 | Anand Vihar, Delhi-DPCC | 20 | NSIT Dwarka, New Delhi-CPCB |
2 | Ashok Vihar, Delhi-DPCC | 21 | Najafgarh, Delhi-DPCC |
3 | Aya Nagar, New Delhi-IMD | 22 | Narela, Delhi-DPCC |
4 | Bawana, Delhi-DPCC | 23 | Nehru Nagar, Delhi-DPCC |
5 | Burari Crossing, New Delhi-IMD | 24 | North Campus, DU, New Delhi-IMD |
6 | CRRI Mathura Road, New Delhi-IMD | 25 | Okhla Phase-2, Delhi-DPCC |
7 | DTU, New Delhi-CPCB | 26 | Patparganj, Delhi-DPCC |
8 | Dr Karni Singh Shooting Range, Delhi-DPCC | 27 | Punjabi Bagh, Delhi-DPCC |
9 | Dwarka-Sector 8, Delhi-DPCC | 28 | Pusa, Delhi-DPCC |
10 | East Arjun Nagar, Delhi-CPCB | 29 | Pusa, New Delhi-IMD |
11 | IGI Airport (T3), New Delhi-IMD | 30 | R K Puram, New Delhi-DPCC |
12 | IHBAS, Dilshad Garden, New Delhi-CPCB | 31 | Rohini, Delhi-DPCC |
13 | ITO, New Delhi-CPCB | 32 | Shadipur, New Delhi-CPCB |
14 | Jahangirpuri, Delhi-DPCC | 33 | Sirifort, New Delhi-CPCB |
15 | Jawaharlal Nehru Stadium, Delhi-DPCC | 34 | Sonia Vihar, Delhi-DPCC |
16 | Lodhi Road, New Delhi-IMD | 35 | Sri Aurobindo Marg, Delhi-DPCC |
17 | Major Dhyan Chand National Stadium, Delhi-DPCC | 36 | Vivek Vihar, Delhi-DPCC |
18 | Mandir Marg, New Delhi-DPCC | 37 | Wazirpur, Delhi-DPCC |
19 | Mundaka, Delhi-DPCC |
Breakpoints (BP) | Air Quality Index (AQI) | Category | |
---|---|---|---|
PM2.5 (µg/m3) | PM10 (µg/m3) | ||
0.0–15.4 | 0–54 | 0–50 | Good |
15.5–40.4 | 55–154 | 51–100 | Moderate |
40.5–65.4 | 155–254 | 101–150 | Unhealthy for sensitive groups |
65.5–150.4 | 255–354 | 151–200 | Unhealthy |
150.5–250.4 | 355–424 | 201–300 | Very unhealthy |
>250.5 | >425 | 301–400 | Hazardous |
IDW | Kriging | NN | Spline | |
---|---|---|---|---|
MIN | 37.11 | 51.92 | 37.58 | −17.20 |
MAX | 82.37 | 71.66 | 82.21 | 120.80 |
RANGE | 45.26 | 19.74 | 44.63 | 138.01 |
MEAN | 62.57 | 60.67 | 62.04 | 60.30 |
STD | 6.95 | 4.76 | 7.88 | 21.40 |
ME | 2.18 | 2.25 | 3.63 | 9.85 |
RMSE | 5.62 | 6.05 | 5.70 | 24.40 |
GOODNESS RANK OF ME | I | II | III | IV |
GOODNESS RANK OF RMSE | I | III | II | IV |
S No. | District Name | 12–22 March 2020 | 23 March–2 April 2020 | ||||
---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | ||
1 | North | 151 | 170 | 161 | 95 | 125 | 112 |
2 | North East | 151 | 156 | 154 | 74 | 99 | 89 |
3 | West | 102 | 169 | 147 | 71 | 155 | 102 |
4 | East | 137 | 157 | 146 | 75 | 129 | 90 |
5 | South West | 138 | 162 | 154 | 87 | 120 | 108 |
6 | Central | 125 | 160 | 150 | 73 | 148 | 99 |
7 | New Delhi | 103 | 161 | 139 | 68 | 153 | 88 |
8 | South | 127 | 156 | 139 | 72 | 93 | 82 |
9 | Shahdara | 150 | 158 | 154 | 60 | 104 | 83 |
10 | South East | 123 | 154 | 144 | 74 | 93 | 84 |
11 | North West | 128 | 169 | 158 | 73 | 120 | 109 |
S No. | District Name | 12–22 March 2020 | 23rd March–02nd April 2020 | ||||
---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | ||
1 | North | 102 | 134 | 122 | 59 | 76 | 68 |
2 | North East | 99 | 114 | 104 | 55 | 63 | 58 |
3 | West | 89 | 136 | 114 | 52 | 64 | 59 |
4 | East | 89 | 128 | 101 | 55 | 62 | 57 |
5 | South West | 101 | 144 | 113 | 54 | 65 | 59 |
6 | Central | 86 | 124 | 102 | 47 | 68 | 58 |
7 | New Delhi | 84 | 145 | 101 | 46 | 66 | 54 |
8 | South | 75 | 133 | 97 | 42 | 61 | 53 |
9 | Shahdara | 95 | 131 | 107 | 57 | 63 | 60 |
10 | South East | 84 | 121 | 101 | 52 | 58 | 56 |
11 | North West | 97 | 137 | 121 | 55 | 69 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, H.; Meraj, G.; Singh, S.; Shrivastava, V.; Sharma, V.; Farooq, M.; Kanga, S.; Singh, S.K.; Kumar, P. Status of Air Pollution during COVID-19-Induced Lockdown in Delhi, India. Atmosphere 2022, 13, 2090. https://doi.org/10.3390/atmos13122090
Singh H, Meraj G, Singh S, Shrivastava V, Sharma V, Farooq M, Kanga S, Singh SK, Kumar P. Status of Air Pollution during COVID-19-Induced Lockdown in Delhi, India. Atmosphere. 2022; 13(12):2090. https://doi.org/10.3390/atmos13122090
Chicago/Turabian StyleSingh, Harikesh, Gowhar Meraj, Sachchidanand Singh, Vaibhav Shrivastava, Vishal Sharma, Majid Farooq, Shruti Kanga, Suraj Kumar Singh, and Pankaj Kumar. 2022. "Status of Air Pollution during COVID-19-Induced Lockdown in Delhi, India" Atmosphere 13, no. 12: 2090. https://doi.org/10.3390/atmos13122090
APA StyleSingh, H., Meraj, G., Singh, S., Shrivastava, V., Sharma, V., Farooq, M., Kanga, S., Singh, S. K., & Kumar, P. (2022). Status of Air Pollution during COVID-19-Induced Lockdown in Delhi, India. Atmosphere, 13(12), 2090. https://doi.org/10.3390/atmos13122090