The Summertime Circulation Types over Eurasia and Their Connections with the North Atlantic Oscillation Modulated by North Atlantic SST
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Anomalous Characteristics of Summertime Circulation Types over Eurasia
3.1.1. Classification of Summertime Anomalous Circulation Types over Eurasia
3.1.2. The Anomalous Characteristics of Summertime Circulation Types over Eurasia
3.2. The Connection between Summer NAO and Circulation Types over Eurasia
3.3. The Modulation of Summer North Atlantic SST Anomalies on the Connection between the NAO and Eurasian Circulation Types
4. Discussion
5. Conclusions
- (1)
- A wave train pattern is shown over the Eurasian mid-high latitude with opposite phases for the DR-type and DT-type. Compared with the DR-type, the WPSH is more intense and northwestward for the DT-type, and the EASJ and SAH expand more westward. Moreover, there exists a close relationship between the anomalous circulation types over Eurasia and precipitation in China. There is more precipitation over north China, and less precipitation over the MLYRV for the DT-type, which is opposite to the DR-type.
- (2)
- The summertime circulation types over Eurasia are closely connected to the NAO. In positive CI years, the EASJ shifts southward and dominates the MLYRV. With two positive height anomalies over the Ural Mountains and the Sea of Okhotsk, the cold air from the mid-high latitudes invades persistently into the MLYRV and converges with the warm air from the low latitudes. The moisture convergence and a strong ascending motion can be seen over the MLYRV, which is favorable for more precipitation. By contrast, the above patterns are reversed in positive NAO-index years, indicating a significantly negative correlation between summer NAO and circulation types over Eurasia.
- (3)
- A tri-pole SST anomaly pattern over the North Atlantic can modulate the connection between summer NAO and circulation types over Eurasia. This tri-pole pattern can induce NAO-like atmospheric circulation and strengthen the impacts of the NAO on Eurasian circulation types. Additionally, a wave train that originates from the North Atlantic and propagates eastward to East Asia is the potential mechanism of linking the NAO and summertime circulation types over Eurasia. The wave train is aroused by the tri-pole SST anomaly pattern and is favorable for maintaining and strengthening the anomalous circulation types over the Eurasian mid-high latitude.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ionita, M.; Scholz, P.; Lohmann, G.; Dima, M.; Prange, M. Linkages between Atmospheric Blocking, Sea Ice Export through Fram Strait and the Atlantic Meridional Overturning Circulation. Sci. Rep. 2016, 6, 32881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsueda, M. Predictability of Euro-Russian Blocking in Summer of 2010. Geophys. Res. Lett. 2011, 38, L06801. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Song, L.; Chen, W. Interannual Variability of Surface Air Temperature over Mid-High Latitudes of Eurasia during Boreal Autumn. Clim. Dyn. 2019, 53, 1805–1821. [Google Scholar] [CrossRef]
- Huang, W.; Yang, Z.; He, X.; Lin, D.; Wang, B.; Wright, J.S.; Chen, R.; Ma, W.; Li, F. A Possible Mechanism for the Occurrence of Wintertime Extreme Precipitation Events over South China. Clim. Dyn. 2019, 52, 2367–2384. [Google Scholar] [CrossRef]
- Tyrlis, E.; Hoskins, B.J. Aspects of a Northern Hemisphere Atmospheric Blocking Climatology. J. Atmos. Sci. 2008, 65, 1638–1652. [Google Scholar] [CrossRef]
- Xu, K.; Lu, R.; Mao, J.; Chen, R. Circulation Anomalies in the Mid–High Latitudes Responsible for the Extremely Hot Summer of 2018 over Northeast Asia. Atmos. Ocean. Sci. Lett. 2019, 12, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Zhai, P.; Chen, Y.; Lu, H. Atmospheric Circulation Patterns Associated with Persistent Wet-Freezing Events over Southern China. Int. J. Climatol. 2018, 38, 3976–3990. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, Y.; Zhou, B.; Chen, L. Comparison of Two Severe Low-temperature Snowstorm and Ice Freezing Events in China: Role of Eurasian Mid-high Latitude Circulation Patterns. Int. J. Climatol. 2020, 40, 3436–3450. [Google Scholar] [CrossRef]
- Yu, R.; Zhai, P. Changes in Summer Persistent Precipitation over the Middle–Lower Reaches of the Yangtze River and Associated Atmospheric Circulation Patterns. J. Meteorol. Res. 2021, 35, 9. [Google Scholar] [CrossRef]
- Zong, H.; Zhang, Q. A New Precipitation Index for the Spatiotemporal Distribution of Drought and Flooding in the Reaches of the Yangtze and Huaihe Rivers and Related Characteristics of Atmospheric Circulation. Adv. Atmos. Sci. 2011, 28, 375–386. [Google Scholar] [CrossRef]
- Samel, A.; Liang, X. Understanding Relationships between the 1998 Yangtze River Flood and Northeast Eurasian Blocking. Clim. Res. 2003, 23, 149–158. [Google Scholar] [CrossRef]
- Tian, B.; Fan, K. Factors Favorable to Frequent Extreme Precipitation in the Upper Yangtze River Valley. Meteorol. Atmos. Phys. 2013, 121, 189–197. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Synoptic-scale Precursors of the East Asia/Pacific Teleconnection Pattern Responsible for Persistent Extreme Precipitation in the Yangtze River Valley. Q. J. R. Meteorol. Soc. 2015, 141, 1389–1403. [Google Scholar] [CrossRef]
- Chen, W.; Yang, S.; Huang, R.-H. Relationship between Stationary Planetary Wave Activity and the East Asian Winter Monsoon. J. Geophys. Res. Atmos. 2005, 110, D14110. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W. Downward Arctic Oscillation Signal Associated with Moderate Weak Stratospheric Polar Vortex and the Cold December 2009. Geophys. Res. Lett. 2010, 37, L09707. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, D.; Dai, A.; Feldstein, S.B. The Positive North Atlantic Oscillation with Downstream Blocking and Middle East Snowstorms: Impacts of the North Atlantic Jet. J. Clim. 2016, 29, 1853–1876. [Google Scholar] [CrossRef]
- Folland, C.K.; Knight, J.; Linderholm, H.W.; Fereday, D.; Ineson, S.; Hurrell, J.W. The Summer North Atlantic Oscillation: Past, Present, and Future. J. Clim. 2009, 22, 1082–1103. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillations: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [Green Version]
- Cheung, H.N.; Zhou, W.; Mok, H.Y.; Wu, M.C. Relationship between Ural–Siberian Blocking and the East Asian Winter Monsoon in Relation to the Arctic Oscillation and the El Niño–Southern Oscillation. J. Clim. 2012, 25, 4242–4257. [Google Scholar] [CrossRef]
- Qiao, S.; Feng, G. Impact of the December North Atlantic Oscillation on the Following February East Asian Trough. J. Geophys. Res. Atmos. 2016, 121, 10074–10088. [Google Scholar] [CrossRef]
- Sung, M.-K.; Lim, G.-H.; Kug, J.-S. Phase Asymmetric Downstream Development of the North Atlantic Oscillation and Its Impact on the East Asian Winter Monsoon. J. Geophys. Res. 2010, 115, D09105. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Zhou, T. Impacts of Winter-NAO on March Cooling Trends over Subtropical Eurasia Continent in the Recent Half Century. Geophys. Res. Lett. 2004, 31, L12204. [Google Scholar] [CrossRef] [Green Version]
- Sung, M.-K.; Kwon, W.-T.; Baek, H.-J.; Boo, K.-O.; Lim, G.-H.; Kug, J.-S. A Possible Impact of the North Atlantic Oscillation on the East Asian Summer Monsoon Precipitation. Geophys. Res. Lett. 2006, 33, L21713. [Google Scholar] [CrossRef]
- Piao, J.; Chen, W.; Chen, S.; Wei, K. Intensified Impact of North Atlantic Oscillation in May on Subsequent July Asian Inland Plateau Precipitation since the Late 1970s. Int. J. Climatol. 2018, 38, 2605–2612. [Google Scholar] [CrossRef]
- Tian, B.; Fan, K. Relationship between the Late Spring NAO and Summer Extreme Precipitation Frequency in the Middle and Lower Reaches of the Yangtze River. Atmos. Ocean. Sci. Lett. 2012, 5, 455–460. [Google Scholar]
- Wu, R.; Yang, S.; Liu, S.; Sun, L.; Lian, Y.; Gao, Z. Northeast China Summer Temperature and North Atlantic SST. J. Geophys. Res. 2011, 116, D16116. [Google Scholar] [CrossRef]
- Zheng, F.; Li, J.; Li, Y.; Zhao, S.; Deng, D. Influence of the Summer NAO on the Spring-NAO-Based Predictability of the East Asian Summer Monsoon. J. Appl. Meteorol. Climatol. 2016, 55, 1459–1476. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophys. Monogr. Amer. Geophys. Union. 2003, 134, 279. [Google Scholar]
- Yuan, W.; Sun, J. Enhancement of the Summer North Atlantic Oscillation Influence on Northern Hemisphere Air Temperature. Adv. Atmos. Sci. 2009, 26, 1209–1214. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, S.; Lau, N.-C.; Duan, A. Teleconnection between Summer NAO and East China Rainfall Variations: A Bridge Effect of the Tibetan Plateau. J. Clim. 2018, 31, 6433–6444. [Google Scholar] [CrossRef]
- Linderholm, H.W.; Ou, T.; Jeong, J.-H.; Folland, C.K.; Gong, D.; Liu, H.; Liu, Y.; Chen, D. Interannual Teleconnections between the Summer North Atlantic Oscillation and the East Asian Summer Monsoon. J. Geophys. Res. 2011, 116, D13107. [Google Scholar] [CrossRef]
- Chang, C.-P.; Zhang, Y.; Li, T. Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge. J. Clim. 2000, 13, 4310–4325. [Google Scholar] [CrossRef]
- Chou, C.; Tu, J.-Y.; Yu, J.-Y. Interannual Variability of the Western North Pacific Summer Monsoon: Differences between ENSO and Non-ENSO Years. J. Clim. 2003, 16, 2275–2287. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Q.; Xie, S.-P.; Liu, Z.; Wu, L. Impact of the Indian Ocean SST Basin Mode on the Asian Summer Monsoon. Geophys. Res. Lett. 2007, 34, L02708. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wu, R.; Liu, Y. Dominant Modes of Interannual Variability in Eurasian Surface Air Temperature during Boreal Spring. J. Clim. 2016, 29, 1109–1125. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Chen, J. Contribution of the Tropical Western Atlantic Thermal Conditions during the Preceding Winter to Summer Temperature Anomalies over the Lower Reaches of the Yangtze River Basin-Jiangnan Region. Int. J. Climatol. 2017, 37, 4631–4642. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wu, R.; Wang, Z. Impacts of Summer North Atlantic Sea Surface Temperature Anomalies on the East Asian Winter Monsoon Variability. J. Clim. 2019, 32, 6513–6532. [Google Scholar] [CrossRef]
- Liu, G.; Ji, L.; Wu, R. An East-West SST Anomaly Pattern in the Midlatitude North Atlantic Ocean Associated with Winter Precipitation Variability over Eastern China. J. Geophys. Res. Atmos. 2012, 117, D15104. [Google Scholar] [CrossRef] [Green Version]
- Ogi, M.; Tachibana, Y.; Yamazaki, K. Impact of the Wintertime North Atlantic Oscillation (NAO) on the Summertime Atmospheric Circulation. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Gong, D.-Y.; Yang, J.; Kim, S.-J.; Gao, Y.; Guo, D.; Zhou, T.; Hu, M. Spring Arctic Oscillation-East Asian Summer Monsoon Connection through Circulation Changes over the Western North Pacific. Clim. Dyn. 2011, 37, 2199–2216. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, B.; Li, J.; Jin, F.-F. An Empirical Seasonal Prediction Model of the East Asian Summer Monsoon Using ENSO and NAO. J. Geophys. Res. 2009, 114, D18120. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Plumb, R.A. On the Three-Dimensional Propagation of Stationary Waves. J. Atmos. Sci. 1985, 42, 217–229. [Google Scholar] [CrossRef]
- An, S.-I. Conditional Maximum Covariance Analysis and Its Application to the Tropical Indian Ocean SST and Surface Wind Stress Anomalies. J. Clim. 2003, 16, 2932–2938. [Google Scholar] [CrossRef]
- Liu, G.; Shen, B.; Lian, Y.; Li, S.; Cao, L.; Liu, P. The Sorts of 500 hPa Blocking High in Asia and It’s Relations to Cold Vortex and Aestival Low Temperature in Northeast of China. Sci. Geogr. Sin. 2012, 32, 1269–1274. [Google Scholar]
- Park, Y.; Ahn, J. Characteristics of Atmospheric Circulation over East Asia Associated with Summer Blocking. J. Geophys. Res. Atmospheres 2014, 119, 726–738. [Google Scholar] [CrossRef]
- Pan, J.; Ji, L.; Cholaw, B. Intraseasonal Climate Characteristics of the Summertime Persistent Anomalous Circulation over Eurasian Middle and High Latitudes. Chin. J. Atmos. Sci. 2009, 33, 300–312. [Google Scholar]
- Dole, R.M.; Gordon, N.D. Persistent Anomalies of the Extratropical Northern Hemisphere Wintertime Circulation: Geographical Distribution and Regional Persistence Characteristics. Mon. Wea. Rev. 1983, 111, 1567–1586. [Google Scholar] [CrossRef]
- Gao, H.; Jiang, W.; Li, W. Changed Relationships between the East Asian Summer Monsoon Circulations and the Summer Rainfall in Eastern China. J. Meteorol. Res. 2014, 28, 1075–1084. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, D.-Q.; Dai, Y.; Chen, X. Recent Heterogeneous Warming and the Associated Summer Precipitation over Eastern China. Theor. Appl. Climatol. 2016, 123, 619–627. [Google Scholar] [CrossRef]
- Ronghui, H.; Li, L. Numerical Simulation of the Relationship between the Anomaly of Subtropical High over East Asia and the Convective Activities in the Western Tropical Pacific. Adv. Atmos. Sci. 1989, 6, 202–214. [Google Scholar] [CrossRef]
- Huang, G. An Index Measuring the Interannual Variation of the East Asian Summer Monsoon—The EAP Index. Adv. Atmos. Sci. 2004, 21, 41–52. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Yuan, W. Decadal Variations of the Relationship between the Summer North Atlantic Oscillation and Middle East Asian Air Temperature. J. Geophys. Res. 2008, 113, D15107. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.X.L. A New North Atlantic Oscillation Index and Its Variability. Adv. Atmos. Sci. 2003, 20, 661–676. [Google Scholar]
- Wang, S.; Zuo, H.; Yin, Y.; Wang, J.; Ma, X. Asymmetric impact of East Asian jet’s variation on midsummer rainfall in North China and Yangtze River Valley. Clim. Dyn. 2019, 53, 6199–6213. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, H. Relationship between the Boreal Spring Hadley Circulation and the Summer Precipitation in the Yangtze River Valley. J. Geophys. Res. 2006, 111, D16109. [Google Scholar] [CrossRef]
- Watanabe, M. Asian Jet Waveguide and a Downstream Extension of the North Atlantic Oscillation. J. Clim. 2004, 17, 4674–4691. [Google Scholar] [CrossRef]
- Pan, L.-L. Observed positive feedback between the NAO and the North Atlantic SSTA tripole. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Peng, S.; Robinson, W.A.; Li, S. Mechanisms for the NAO Responses to the North Atlantic SST Tripole. J. Clim. 2003, 16, 1987–2004. [Google Scholar] [CrossRef]
- Cassou, C.; Deser, C.; Terray, L.; Hurrell, J.W.; Drévillon, M. Summer Sea Surface Temperature Conditions in the North Atlantic and Their Impact upon the Atmospheric Circulation in Early Winter. J. Clim. 2004, 17, 3349–3363. [Google Scholar] [CrossRef]
- Gu, W.; Li, C.; Wang, X.; Zhou, W.; Li, W. Linkage between Mei-Yu Precipitation and North Atlantic SST on the Decadal Timescale. Adv. Atmos. Sci. 2009, 26, 101–108. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Yuan, W. Role of the Tropical Atlantic Sea Surface Temperature in the Decadal Change of the Summer North Atlantic Oscillation. J. Geophys. Res. 2009, 114, D20110. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Chen, W. Strengthened Connection between Springtime North Atlantic Oscillation and North Atlantic Tripole SST Pattern since the Late 1980s. J. Clim. 2020, 33, 2007–2022. [Google Scholar] [CrossRef]
- Nie, Y.; Ren, H.-L.; Zhang, Y. The Role of Extratropical Air–Sea Interaction in the Autumn Subseasonal Variability of the North Atlantic Oscillation. J. Clim. 2019, 32, 7697–7712. [Google Scholar] [CrossRef]
- O’Reilly, C.H.; Minobe, S.; Kuwano-Yoshida, A.; Woollings, T. The Gulf Stream influence on wintertime North Atlantic jet variability. Quart. J. Roy. Meteor. Soc. 2017, 143, 173–183. [Google Scholar] [CrossRef]
- Sampe, T.; Nakamura, H. Potential Influence of a Midlatitude Oceanic Frontal Zone on the Annular Variability in the Extratropical Atmosphere as Revealed by Aqua-Planet Experiments. J. Meteorol. Soc. Jpn. 2013, 91, 25. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wu, R.; Chen, W. The Changing Relationship between Interannual Variations of the North Atlantic Oscillation and Northern Tropical Atlantic SST. J. Clim. 2015, 28, 485–504. [Google Scholar] [CrossRef]
- Czaja, A.; Frankignoul, C. Observed Impact of Atlantic SST Anomalies on the North Atlantic Oscillation. J. Clim. 2002, 15, 606–623. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Lee, S.; Baldwin, M.P. Atmospheric Processes Governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 2003, 134, 81–112. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Wang, L. The Summertime Circulation Types over Eurasia and Their Connections with the North Atlantic Oscillation Modulated by North Atlantic SST. Atmosphere 2022, 13, 2093. https://doi.org/10.3390/atmos13122093
Yang D, Wang L. The Summertime Circulation Types over Eurasia and Their Connections with the North Atlantic Oscillation Modulated by North Atlantic SST. Atmosphere. 2022; 13(12):2093. https://doi.org/10.3390/atmos13122093
Chicago/Turabian StyleYang, Dan, and Lijuan Wang. 2022. "The Summertime Circulation Types over Eurasia and Their Connections with the North Atlantic Oscillation Modulated by North Atlantic SST" Atmosphere 13, no. 12: 2093. https://doi.org/10.3390/atmos13122093
APA StyleYang, D., & Wang, L. (2022). The Summertime Circulation Types over Eurasia and Their Connections with the North Atlantic Oscillation Modulated by North Atlantic SST. Atmosphere, 13(12), 2093. https://doi.org/10.3390/atmos13122093