Spatiotemporal Distribution of Precipitation over the Mongolian Plateau during 1976–2017
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Sen’s Slope
2.3.2. Innovative Trend Analysis
2.3.3. Mann–Kendall (MK) Test
2.3.4. Inspection Methods
3. Results
3.1. Interannual Variability of Precipitation
3.2. Spatial Distribution of Precipitation
3.3. The Correlation between Precipitation and Atmospheric Circulation Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doblas–Reyes, F.J.; Srensson, A.A.; Almazroui, M.; Dosio, A.; Zou, Z. IPCC AR6 WGI Chapter 10: Linking global to regional climate change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson–Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Pal, M.; Patwardhan, S.; Pandey, S.; Panigrahi, P.K. On the role of natural multidecadal oscillations on global warming and its hiatus. Financ. Anal. Econophys. 2021, 1–13. [Google Scholar] [CrossRef]
- Wang, X.X.; Jiang, D.B.; Lang, X.M. Future extreme climate changes linked to global warming intensity. Sci. Bull. 2017, 62, 1673–1680. [Google Scholar] [CrossRef] [Green Version]
- Woelders, L.; Lenaerts, J.T.M.; Hagemans, K. Recent climate warming drives ecological change in a remote high-Arctic Lake. Sci. Rep. 2018, 8, 6858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, J.E.; Ruedy, R.; Sato; Lo, K. NASA GISS Surface Temperature (GISTEMP) Analysis. In Trends: A Compendium of Data on Global Change; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy: Oak Ridge, TN, USA, 2011. [Google Scholar] [CrossRef]
- Wu, Z.H.; Chassignet Eric, P.; Huang, J.P.; Ji, F. Evolution of land surface air temperature trend. Nat. Clim. Change 2014, 4, 462–466. [Google Scholar]
- Alizadeh, O.; Lin, Z. Rapid Arctic warming and its link to the waviness and strength of the westerly jet stream over West Asia. Glob. Planet. Change 2021, 199, 103447. [Google Scholar] [CrossRef]
- Yang, T.; Ding, J.Z.; Liu, D.; Wang, X.Y.; Wang, T. Combined Use of Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet Gets Wetter Paradigm. J. Clim. 2019, 32, 737–748. [Google Scholar] [CrossRef]
- Ji, Q.; Yang, J.P.; Chen, H.J. Comprehensive analysis of the precipitation changes over the Tibetan Plateau during 1961–2015. J. Glaciol. Geocryol. 2018, 40, 1090–1099. [Google Scholar]
- Sun, Q.H.; Miao, C.Y.; Duan, Q.Y. Changes in the Spatial Heterogeneity and Annual Distribution of Observed Precipitation across China. J. Clim. 2017, 30, 9399–9416. [Google Scholar] [CrossRef]
- Alizadeh, O.; Najafi, M.S. Extreme weather events in Iran under a changing climate. Clim. Dyn. 2017, 50, 249–260. [Google Scholar] [CrossRef]
- Alizadeh, O.; Morteza, B. Seasonally dependent precipitation changes and their driving mechanisms in Southwest Asia. Clim. Change 2022, 171, 1–20. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.P.; Li, H.W. Analysis of drought change and its impact in Central Asia. Adv. Earth Sci. 2022, 37, 37–50. [Google Scholar]
- Greve, P.; Orlowsky, B.; Mueller, B.; Sheffield, J.; Seneviratne, S.I. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014, 7, 716–721. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, M. Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep. 2015, 5, 18018. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.Y.; Chen, X.; Chen, D.L. “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. Int. J. Climatol. 2018, 39, 1072–1091. [Google Scholar] [CrossRef]
- Chou, C.; Neelin, J.; Chen, C.; Tu, J. Evaluating the “rich–get–ricer” mechanism in tropical precipitation change under global warming. J. Clim. 2009, 22, 1982–2004. [Google Scholar] [CrossRef]
- Brugnara, Y.; Maugeri, M. Daily precipitation variability in the southern Alps since the late 19th century. J. Climatol. 2019, 39, 3492–3504. [Google Scholar] [CrossRef]
- Fessehaye, M.; Brugnara, Y.; Savage, M.J.; Bronnimann, S. A note on air temperature and precipitation variability and extremes over Asmara: 1914-2015. J. Climatol. 2019, 39, 5215–5227. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 2017, 6, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Chen, Y.; Shen, Y.; Li, Y. Changes of precipitation extremes in arid Central Asia. Quat. Int. 2017, 4, 16–27. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, H.; Chen, X. Robust drying and wetting trends found in regions over China based on Köppen climate classifications. J. Geophys. Res. Atmos. 2017, 122, 4228–4237. [Google Scholar] [CrossRef]
- Adina-Eliza, C.; Adrian, P.; Doina, C.B. Changes in precipitation extremes in Romania. Quat. Int. 2016, 9, 325–335. [Google Scholar]
- Yan, H.; Wang, S.; Wang, J. Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982–2011 by using PDSI indices and agriculture drought survey data. J. Geophys. Res. Atmos. 2016, 121, 2283–2298. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.P.; Wang, H.J.; Chen, Y.N. Characteristics of drought in the aird region of Northwestern China. Clim. Res. 2015, 62, 99–113. [Google Scholar]
- Huang, Q.Z.; Zhang, Q.; Vijay, P.S.; Shi, P.; Zheng, Y. Variations of dryness/wetness across China: Changing properties, drought risks, and causes. Glob. Planet Change 2017, 155, 1–12. [Google Scholar] [CrossRef]
- Rehfeld, K.; Laepple, T. Warmer and wetter or warmer and dryer? Observed versus simulated covariability of Holocene temperature and rainfall in Asia. Earth Planet Sci. Lett. 2016, 436, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ljungqvist, F.C.; Seim, A.; Krusic, P.J. European warm-season temperature and hydroclimate since 850 CE. Environ. Res. Lett. 2019, 14, 084015. [Google Scholar] [CrossRef]
- Chen, F.H.; Chen, J.; Huang, W. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth Sci. Rev. 2019, 192, 337–354. [Google Scholar] [CrossRef]
- Chen, J.; Huang, W.; Zhang, Q.; Feng, S. Origin of the spatial consistency of summer precipitation variability between the Mongolian Plateau and the mid-latitude East Asian summer monsoon region. Sci. China Earth Sci. 2020, 63, 1199–1208. [Google Scholar] [CrossRef]
- Shi, Z.G.; Sha, Y.Y.; Liu, X.D. Effect of marginal topography around the Tibetan Plateau on the evolution of central Asian arid climate: Yunnan-Guizhou and Mongolian Plateau as examples. Clim. Dyn. 2019, 53, 4433–4445. [Google Scholar] [CrossRef]
- Babaei, M.; Alizadeh, O.; Irannejad, P. Impacts of orography on large-scale atmospheric circulation: Application of a regional climate model. Clim. Dyn. 2021, 57, 1973–1992. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Yao, T.D.; Piao, S.L. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 2017, 44, 252–260. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, Z.; Huang, H.Q. Climate variability and change on the Mongolian Plateau: Historical variation and future predictions. Clim. Res. 2016, 67, 1–14. [Google Scholar] [CrossRef]
- Jiang, K.; Bao, G.; WuLan, T.Y. Spatiotemporal changes of snow cover in Mongolia Plateau based on MODIS data. Arid Land Geogr. 2019, 42, 789–792. [Google Scholar]
- Na, Y.T.; Qin, F.Y.; Jia, G.S. Change trend and regional differentiation of precipitation over the Mongolian Plateau in recent 54 years. Arid Land Geogr. 2019, 42, 1253–1261. [Google Scholar]
- Qin, F.Y.; Jia, G.S.; Yang, J.; Na, Y.T.; Hou, M.T.; Narenmandula. Spatiotemporal variability of precipitation during 1961–2014 across the Mongolian Plateau. J. Mt. Sci. 2018, 15, 992–1005. [Google Scholar] [CrossRef]
- Yang, X.P. Landscape evolution and precipitation changes in the Badain Jaran Desert during the last 30000 years. China Sci. Bull. 2006, 45, 1042–1047. [Google Scholar] [CrossRef]
- Li, C.L.; Filho, W.L.; Wang, J.; Hubert, F.; Mariia, F.; Hu, R.; Yin, S.; Bao, Y.H.; Yu, S.; Julian, H. An Analysis of Precipitation Extremes in the Inner Mongolian Plateau: Spatial-Temporal Patterns, Causes, and Implications. Atmosphere 2018, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, O.; Ghafarian, P.; Adibi, P. Inter-annual variations and trends of the urban warming in Tehran. Atmos. Res. 2016, 176–185. [Google Scholar] [CrossRef]
- You, Q.L.; Cai, Z.Y.; Pepin, N.; Chen, D.; Zhang, Y. Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth Sci. Rev. 2021, 217, 103625. [Google Scholar] [CrossRef]
- Xu, L.J.; Hu, Z.Y.; Zhao, Y.N. Climate change characteristics in Qinghai-Tibetan Plateau during 1961–2010. Meteorol. Plateau 2019, 38, 911–919. [Google Scholar]
- Zhang, H.; Wen, Z.; Wu, R. An inter-decadal increase in summer sea level pressure over the Mongolian region around the early 1990s. Clim. Dyn. 2019, 52, 1935–1948. [Google Scholar] [CrossRef]
- Liu, J.B.; Chen, F.H.; Chen, J.H.; Zhang, X.; Liu, J.; Bloemendal, J. Weakening of the East Asian summer monsoon at 1000–1100 A.D. within the Medieval Climate Anomaly: Possible linkage to changes in the Indian Ocean-western Pacific. J. Geophys. Res. Atmos. 2014, 119, 2209–2219. [Google Scholar] [CrossRef]
- Liu, B.Q.; He, J.H. Reviews on the dynamics of Asian summer monsoon. J. Trop. Meteorol. 2015, 31, 869–880. [Google Scholar]
- Wang, L.; Zhen, L.; Liu, X.L. Comparative studies on climate changes and influencing factors in central Mongolian Plateau region. Geogr. Res. 2008, 27, 171–180. [Google Scholar]
- Zhou, T.J. Why the Western Pacific subtropical high has extended westward since the late 1970s. J. Clim. 2009, 22, 2199–2215. [Google Scholar] [CrossRef] [Green Version]
- Adiya, S.; Dalantai, S.; Wu, T.H. Spatial and temporal change patterns of near-surface CO2 and CH4 concentrations in different permafrost regions on the Mongolian Plateau from 2010 to 2017. Sci. Total Environ. 2021, 800, 149433. [Google Scholar] [CrossRef]
- WuYun, G.R.L.; Zhang, Y.; Zong, Z.D. Mongolia fish species and environment of fishery economy thinking. J. Inn. Mong. Agric. Univ. 2015, 36, 167–172. [Google Scholar]
- John, R.; Chen, J.; Giannico, V.; Park, H.; Xiao, J.; Shirkey, G.; Ouyang, Z.; Shao, C.; Lafortezza, R.; Qi, J. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors. Remote Sens. Environ. 2018, 213, 34–48. [Google Scholar] [CrossRef]
- Li, Z.J.; Sun, D.H.; Chen, F.H. Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China. Quat. Sci. Rev. 2014, 85, 5–98. [Google Scholar] [CrossRef]
- Wang, C.H.; Zhang, S.N.; Li, K.C. Change Characteristics of Precipitation in Northwest China from 1961 to 2018. Chin. J. Atmos. Sci. 2021, 45, 713–724. [Google Scholar]
- Cao, X.M.; Feng, Y.M.; Shi, Z.J. Spatio-temporal Variations in Drought with Remote Sensing from the Mongolian Plateau During 1982–2018. Chin. Geogr. Sci. 2020, 30, 1081–1094. [Google Scholar] [CrossRef]
- Liu, Y.J.; Ding, Y.H. Analysis of the basic features of the onset of Asian summer monsoon. J. Meteorol. 2007, 65, 511–526. [Google Scholar]
- Ren, Z.H.; Zhang, Z.F.; Sun, C. Development of Three-Step quality control system of real-time observation data from AWS in China. Meteorology 2015, 41, 1268–1277. [Google Scholar]
- Wang, B.Z.; Wu, J.; Li, J. How to measure the strength of the East Asian summer monsoon. J. Clim. 2008, 21, 4449–4463. [Google Scholar] [CrossRef]
- Sen, P. Estimates of the regression coefficient based on Kendall’s tau. J. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Singh, R.; Sah, S.; Das, B. Innovative trend analysis of spatio-temporal variations of rainfall in India during 1901–2019. Theor. Appl. Climatol. 2021, 145, 821–838. [Google Scholar] [CrossRef]
- Wu, H.; Qian, H. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Int. J. Climatol. 2017, 37, 2582–2592. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrical 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin Press: London, UK, 1975. [Google Scholar]
- Wei, F.Y. Modern Statistical Diagnosis and Prediction Techniques for Climate, 2nd ed.; China Meteorology Press: Beijing, China, 2007; pp. 63–64. [Google Scholar]
- Xing, W.; Wang, B. Predictability and prediction of summer rainfall in the arid and semi-arid regions of China. Clim. Dyn. 2017, 49, 419–431. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, B.; Qian, W.; Zhang, B. Recent weakening of northern East Asian summer monsoon: A possible response to global warming. Geophys. Res. Lett. 2012, 39, L09701. [Google Scholar] [CrossRef]
- Liu, L.H.; Zhang, D.E. Spatio-temporal variation of annual precipitation in China and its relationship with the East Asian summer monsoon. Quat. Sci. 2013, 33, 97–107. [Google Scholar]
- Guan, X.; Yang, L.; Zhang, Y. Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over Central Asia and the arid region of China. Glob. Planet. Change 2019, 172, 159–178. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, R.; Wen, M. Relationship between the Asian westerly jet stream and summer rainfall over central Asia and North China: Roles of the Indian monsoon and the South Asian high. J. Clim. 2017, 30, 537–552. [Google Scholar] [CrossRef]
- Zhang, R. Changes in East Asian summer monsoon and summer rainfall over eastern China during recent decades. Sci. Bull. 2015, 60, 1222–1224. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.G.; Fu, C.B.; Yang, Q. Drying trend in Northern China and its shift during 1951-2016. Chin. J. Atmos. Sci. 2018, 42, 951–961. [Google Scholar]
- Yin, Y.H.; Ma, D.Y.; Wu, S.H. Enlargement of the semi-arid region in China from 1961 to 2010. Clim. Dyn. 2019, 52, 509–521. [Google Scholar] [CrossRef]
- Huang, J.P.; Ji, M.X.; Xie, Y.K. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Bao, G. Relationships between tree-ring growth of Hailar Pine and the North Atlantic Oscillation/Arctic Oscillation. J. Baoji Univ. Arts Sci. (Nat. Sci.) 2014, 34, 39–45. [Google Scholar]
- Bao, G.; Liu, Y.; Liu, N. Characteristics of climate changes during the instrumental period in the eastern and southern Mongolia Plateau and their ecological-environmental effects. J. Environ. 2013, 4, 1444–1460. [Google Scholar]
- Fallah, B.; Cubasch, U.; Prömmel, K. A numerical model study on the behaviour of Asian summer monsoon and AMOC due to orographic forcing of Tibetan Plateau. Clim. Dyn. 2016, 47, 1485–1495. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Shen, B.Z.; Sui, B. The influences of East Asian monsoon on summer precipitation in Northeast China. Clim. Dyn. 2017, 48, 1647–1659. [Google Scholar] [CrossRef]
- Piao, J.; Chen, W.; Zhang, Q. Comparison of moisture transport between Siberia and northeast Asia on annual and interannual time scales. J. Clim. 2018, 31, 7645–7660. [Google Scholar] [CrossRef]
- Whiteman, C.D. Observations of thermally developed wind systems in mountainous terrain. In Atmospheric Processes over Complex Terrain; Meteorological Monographs; AMS: Boston, MA, USA, 1990; pp. 5–42. [Google Scholar]
- He, B.H.; Sun, J.Q.; Yu, E.T. Simulation Study on the Influence of the Great Khingan Strip and Changbai Mountain on Summer Rainfall in Northeast China. Clim. Res. 2020, 25, 268–280. [Google Scholar]
- Wu, M.H.; Chen, Y.N.; Xu, C.C. Assessment of meteorological disasters based on information diffusion theory in Xinjiang, Northwest China. J. Geogr. Sci. 2015, 25, 69–84. [Google Scholar] [CrossRef]
- Bolin, B. On the Influence of the Earth’s Orography on the General Character of the Westerlies. Tellus 1950, 2, 184–195. [Google Scholar] [CrossRef]
Season | Average (mm) | CV (%) | SD (mm) | Max (mm) | Min (mm) | Range (%) |
---|---|---|---|---|---|---|
Annual | 239.4 | 13.9 | 33.4 | 314.5 | 187.2 | 40.5 |
Spring | 33.1 | 26.1 | 8.6 | 55.7 | 20.5 | 63.2 |
Summer | 160.1 | 18.1 | 28.9 | 221.9 | 110.1 | 50.4 |
Autumn | 39.3 | 26.6 | 10.4 | 67.8 | 23.4 | 65.4 |
Winter | 6.6 | 25.8 | 1.7 | 10.1 | 2.6 | 73.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Dan, D.; Liu, H.; Zhou, H.; Wan, Z. Spatiotemporal Distribution of Precipitation over the Mongolian Plateau during 1976–2017. Atmosphere 2022, 13, 2132. https://doi.org/10.3390/atmos13122132
Xia Y, Dan D, Liu H, Zhou H, Wan Z. Spatiotemporal Distribution of Precipitation over the Mongolian Plateau during 1976–2017. Atmosphere. 2022; 13(12):2132. https://doi.org/10.3390/atmos13122132
Chicago/Turabian StyleXia, Yingying, Dan Dan, Hongyu Liu, Haijun Zhou, and Zhiqiang Wan. 2022. "Spatiotemporal Distribution of Precipitation over the Mongolian Plateau during 1976–2017" Atmosphere 13, no. 12: 2132. https://doi.org/10.3390/atmos13122132
APA StyleXia, Y., Dan, D., Liu, H., Zhou, H., & Wan, Z. (2022). Spatiotemporal Distribution of Precipitation over the Mongolian Plateau during 1976–2017. Atmosphere, 13(12), 2132. https://doi.org/10.3390/atmos13122132