Long-Term Analysis of Tropospheric Ozone in the Urban Area of Guadalajara, Mexico: A New Insight of an Alternative Criterion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Quality Control
2.3. Time Series Analysis
2.4. The Normalized-Difference Ozone Index (NDO3I)
2.5. Statistical Probability
3. Results and Discussion
3.1. Spatial Variation
3.2. Long-Term Trend Analysis
3.2.1. Bias Trends
3.2.2. Atypical Ozone Measurements
3.3. Inter-Annual Cycles and Seasonal Variability
3.3.1. Pattern Description
3.3.2. Human and Environmental Influences
3.4. Diurnal Changes
3.5. Tropospheric Ozone under the Strictest Limit
3.5.1. Comparison among Standards
3.5.2. Normal Pattern under the WHO-MPL
3.6. Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Fact Sheet: Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 30 June 2021).
- Malley, C.S.; Henze, D.K.; Kuylenstierna, J.C.; Vallack, H.W.; Davila, Y.; Anenberg, S.C.; Turner, M.C.; Ashmore, M.R. Updated global estimates of respiratory mortality in adults≥ 30 years of age attributable to long-term ozone exposure. Environ. Health Perspect. 2017, 125, 087021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Eiguren-Fernandez, A.; Miguel, A.H.; Lu, R.; Purvis, K.; Grant, B.; Mayo, P.; Di Stefano, E.; Cho, A.K.; Froines, J. Atmospheric formation of 9,10-phenanthraquinone in the Los Angeles air basin. Atmos. Environ. 2008, 42, 2312–2319. [Google Scholar] [CrossRef]
- Zhang, L.; Jacob, D.J.; Boersma, K.F.; Jaffe, D.A.; Olson, J.R.; Bowman, K.W.; Worden, J.R.; Thomson, A.M.; Avery, M.A.; Cohen, R.C.; et al. Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: An integrated analysis using satellite, aircraft, ozone-sonde, and surface observations. Atmos. Chem. Phys. Discuss. 2008, 8, 8143–8191. [Google Scholar] [CrossRef] [Green Version]
- Walgraeve, C.; Demeestere, K.; Dewulf, J.; Zimmermann, R.; Van Langenhove, H. Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence. Atmos. Environ. 2010, 44, 1831–1846. [Google Scholar] [CrossRef]
- Haagen-Smit, A.J. Chemistry and physiology of Los Angeles smog. Ind. Eng. Chem. 1952, 44, 1342–1346. [Google Scholar] [CrossRef]
- Wild, O.; Akimoto, H. Intercontinental transport of ozone and its precursors in a three-dimensional global CTM. J. Geophys. Res. Atmos. 2001, 106, 27729–27744. [Google Scholar] [CrossRef] [Green Version]
- Molina, L.; Molina, M.J. Air Quality in the Mexico Megacity: An Integrated Assessment (Vol. 2); Kluwer Academic Publishers: Dortrecht, The Netherlands, 2002; 384p. [Google Scholar]
- Akimoto, H. Global air quality and pollution. Science 2003, 302, 1716–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopacz, M.; Jacob, D.J.; Fisher, J.A.; Logan, J.A.; Zhang, L.; Megretskaia, I.A.; Yantosca, R.M.; Singh, K.; Henze, D.K.; Burrows, J.P.; et al. Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES). Atmos. Chem. Phys. 2010, 10, 855–876. [Google Scholar] [CrossRef] [Green Version]
- WHO. Air Quality Guidelines for Europe, 2nd ed.; European Series, No. 91; WHO Regional Publications: Copenhagen, Denmark, 2000; 288p. [Google Scholar]
- WHO. Health Aspects of Air Pollution: Results from the WHO Project "Systematic Review of Health Aspects of Air Pollution in Europe"; (No. EUR/04/5046026); WHO Regional Office for Europe: Copenhagen, Denmark, 2004. [Google Scholar]
- USEPA (United States Environmental Protection Agency). National Ambient Air Quality Standards for Ozone, Rules and Regulations; Federal Register; US Government: Washington, DC, USA, 2015; Volume 80, No. 206; 177p.
- WHO. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005: Summary of Risk Assessment; (No. WHO/SDE/PHE/OEH/06.02); World Health Organization: Geneva, Switzerland, 2006; 22p. [Google Scholar]
- Bell, M.; Peng, R.D.; Dominici, F. The Exposure–Response Curve for Ozone and Risk of Mortality and the Adequacy of Current Ozone Regulations. Env. Health Perspect. 2006, 114, 532–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SEMADET. Air Quality Reports of the Guadalajara Metropolitan Area, 1996–2019. Available online: http://siga.jalisco.gob.mx/aire2020/reportes2020 (accessed on 30 June 2021).
- Health Secretary. Official Mexican Standard NOM-020-SSA1-2014, Environmental Health. Allowable Limit Value for the Concentration of Ozone (O3) in Ambient Air and Criteria for Its Evaluation. Mexican Official Diary. 2014. Available online: dof.gob.mx/nota_detalle.php?codigo=5356801&fecha=19/08/2014 (accessed on 8 January 2022).
- Benitez-Garcia, S.E.; Kanda, I.; Wakamatsu, S.; Okazaki, Y.; Kawano, M. Analysis of criteria air pollutant trends in three Mexican metropolitan areas. Atmosphere 2014, 5, 806–829. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Paniagua, I.Y.; Clemitshaw, K.C.; Mendoza, A. Observed trends in tropospheric O3 in Monterrey, Mexico, during 1993–2014: Comparison with Mexico City and Guadalajara. Atmos. Chem. Phys. 2017, 17, 9163. [Google Scholar] [CrossRef] [Green Version]
- Fonseca-Hernández, M.; Tereshchenko, I.; Mayor, Y.; Figueroa-Montaño, A.; Cuesta-Santos, O.; Monzón, C. Atmospheric Pollution by PM10 and O3 in the Guadalajara Metropolitan Area, Mexico. Atmosphere 2018, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Garcia, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Instituto de Geografía, Universidad Nacional Autónoma de México: Mexico City, Mexico, 1988. [Google Scholar]
- Servicio Meteorológico Nacional. Available online: Smn.conagua.gob.mx/es/ (accessed on 8 January 2022).
- Díaz-Torres, J.J.; Hernández-Mena, L.; Murillo-Tovar, M.A.; León-Becerril, E.; López-López, A.; Suárez-Plascencia, C.; Aviña-Rodriguez, E.; Barradas-Gimate, A.; Ojeda-Castillo, V. Assessment of the modulation effect of rainfall on solar radiation availability at the Earth’s surface. Meteorol. Appl. 2017, 24, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-Castillo, V.; López-López, A.; Hernández-Mena, L.; Murillo-Tovar, M.A.; Díaz-Torres, J.D.J.; Hernández-Paniagua, I.Y.; Del Real-Olvera, J.; León-Becerril, E. Atmospheric distribution of PAHs and quinones in the gas and PM1 phases in the Guadalajara Metropolitan Area, Mexico: Sources and health risk. Atmosphere 2018, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Gobierno del Estado de Jalisco. Programa para el Mejoramiento de la Calidad del Aire en la ZMG 1997–2001; Gobierno del Estado de Jalisco: Guadalajara, Mexico, 1996; 219p. [Google Scholar]
- Zuk, M.; Tzintzun-Cervantes, M.G.; Rojas-Bracho, L. Tercer Almanaque de Datos y Tendencias de la Calidad del Aire en Nueve Ciudades Mexicanas, 1st ed.; Instituto Nacional de Ecología: Mexico City, Mexico, 2007. [Google Scholar]
- Statpoint, Inc. The User’s Guide to STATGRAPHICS® Centurion XV; Statgraphics Technologies, Inc.: The Plains, VA, USA, 2005; 287p. [Google Scholar]
- Gobierno del Estado de Jalisco. Programa para el Mejoramiento de la Calidad del Aire en la ZMG 2014–2020; Gobierno del Estado de Jalisco: Guadalajara, Mexico, 2013; 257p. [Google Scholar]
- SEMADET-Secretaria de Medio Ambiente y Desarrollo territorial. Inventario de Emisiones de Contaminantes Criterio del Estado de Jalisco; Gobierno del Estado de Jalisco: Guadalajara, Mexico, 2014; 97p. [Google Scholar]
- Gobierno del Estado de Jalisco. Informe Calidad del Aire 2016, Sistema de Monitoreo Atmosférico de Jalisco; Gobierno del Estado de Jalisco: Guadalajara, Mexico, 2017; 56p. [Google Scholar]
- Kanda, I.; Basaldud, R.; Magaña, M.; Retama, A.; Kubo, R.; Wakamatsu, S. Comparison of ozone production regimes between two Mexican cities: Guadalajara and Mexico City. Atmosphere 2016, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- García, M.; Ulloa, H.; Ramírez, H.; Fuentes, M.; Arias, S.; Espinosa, M. Comportamiento de los vientos dominantes y su influencia en la contaminación atmosférica en la zona metropolitana de Guadalajara, Jalisco, México. Rev. Iberoam. Cienc. 2014, 1, 97–116. [Google Scholar]
- CPC–Central Pollution Control Board. National Air Quality Standards. Ministry of Environment, Forest and Climate Change; Govt. of India: New Deli, India, 2009.
- Barboza-Chiquetto, J.; Siqueira-Silva, M.E.; Cabral-Miranda, W.; Dutra-Ribeiro, F.N.; Ibarra-Espinosa, S.A.; Ynoue, R.Y. Air quality standards and extreme ozone events in the São Paulo megacity. Sustainability 2019, 11, 3725. [Google Scholar] [CrossRef] [Green Version]
- European Union. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off. J. Eur. Union 2008, 29, L152. [Google Scholar]
- CCME-Canadian Council of Ministers of the Environment. Guidance Document on Achievement Determination: Canadian Ambient Air Quality Standards for Particulate Matter and Ozone; Canadian Council of Ministers of the Environment: Winipeg, MB, Canada, 2012; 53p.
- MOE, Menister of the Environment, Government of Japan. Environmental Quality Standard in Japan for Air Quality; Menister of the Environment, Government of Japan: Tokyo, Japan, 2018.
Mean Ozone | Max Ozone | Max Average Ozone | |||||||
---|---|---|---|---|---|---|---|---|---|
Month | Typical | Atypical | Difference % | Typical | Atypical | Difference % | Typical | Atypical | Difference % |
January | 0.020 | 0.028 | 39.1 | 0.117 | 0.177 | 51.3 | 0.054 | 0.080 | 48.4 |
February | 0.023 | 0.031 | 37.9 | 0.125 | 0.193 | 54.9 | 0.056 | 0.079 | 41.1 |
March | 0.027 | 0.035 | 29.7 | 0.129 | 0.188 | 45.2 | 0.059 | 0.082 | 38.2 |
April | 0.032 | 0.039 | 20.4 | 0.139 | 0.190 | 36.8 | 0.064 | 0.085 | 31.2 |
May | 0.036 | 0.052 | 43.9 | 0.159 | 0.228 | 43.5 | 0.073 | 0.113 | 54.7 |
June | 0.031 | 0.046 | 48.0 | 0.147 | 0.221 | 50.2 | 0.064 | 0.098 | 53.8 |
July | 0.027 | 0.031 | 16.9 | 0.120 | 0.157 | 30.0 | 0.054 | 0.065 | 20.9 |
August | 0.024 | 0.031 | 25.1 | 0.107 | 0.149 | 39.5 | 0.048 | 0.064 | 32.6 |
September | 0.021 | 0.026 | 24.8 | 0.104 | 0.153 | 46.3 | 0.043 | 0.060 | 39.4 |
October | 0.022 | 0.027 | 24.8 | 0.128 | 0.190 | 47.7 | 0.050 | 0.066 | 30.6 |
November | 0.020 | 0.027 | 34.1 | 0.119 | 0.176 | 48.4 | 0.053 | 0.078 | 45.4 |
December | 0.019 | 0.026 | 41.3 | 0.111 | 0.172 | 55.3 | 0.053 | 0.084 | 57.3 |
Average differences | 32.2 | 45.8 | 41.1 |
1-h Data | 8-h Moving Average Data | ||||
---|---|---|---|---|---|
Total dataset | 166,560 | 100.0% | 166,560 | 100.0% | |
Filtred dataset | 155,134 | 93.1% | 144,967 | 87.0% | |
Mean ozone | Freq O3 > 0.095 ppmv (NOM) 1 | 685 | 0.4% | n.a. | n.a. |
Freq O3 > 0.070 ppmv (EPA) 2 | n.a. | n.a. | 4870 | 3.4% | |
Freq O3 > 0.050 ppmv (WHO) 3 | n.a. | n.a. | 17,747 | 12.4% | |
Maximum average ozone | Freq O3 > 0.095 ppmv (NOM) 1 | n.a. | n.a. | n.a. | n.a. |
Freq O3 > 0.070 ppmv (EPA) 2 | n.a. | n.a. | 11,169 | 7.7% | |
Freq O3 > 0.050 ppmv (WHO) 3 | n.a. | n.a. | 33,259 | 22.8% | |
Maximum ozone | Freq O3 > 0.095 ppmv (NOM) 1 | 5591 | 3.6% | n.a. | n.a. |
Freq O3 > 0.070 ppmv (EPA) 2 | n.a. | n.a. | 15,642 | 10.8% | |
Freq O3 > 0.050 ppmv (WHO) 3 | n.a. | n.a. | 34,333 | 23.7% |
Fixed Probability | ||||
---|---|---|---|---|
Limits | 0.050 ppmv | 0.070 ppmv | 0.080 ppmv | |
p(O3 > limit) | 0.84 | 0.78 | 0.75 | |
q(O3 > limit) | 0.16 | 0.22 | 0.25 | |
n= | 8 h | O3 range = 0.003−0.322 ppmv | ||
x= | 1−8 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Torres, J.d.J.; Ojeda-Castillo, V.; Hernández-Mena, L.; Vergara-Sánchez, J.; Saldarriaga-Noreña, H.A.; Murillo-Tovar, M.A. Long-Term Analysis of Tropospheric Ozone in the Urban Area of Guadalajara, Mexico: A New Insight of an Alternative Criterion. Atmosphere 2022, 13, 152. https://doi.org/10.3390/atmos13020152
Díaz-Torres JdJ, Ojeda-Castillo V, Hernández-Mena L, Vergara-Sánchez J, Saldarriaga-Noreña HA, Murillo-Tovar MA. Long-Term Analysis of Tropospheric Ozone in the Urban Area of Guadalajara, Mexico: A New Insight of an Alternative Criterion. Atmosphere. 2022; 13(2):152. https://doi.org/10.3390/atmos13020152
Chicago/Turabian StyleDíaz-Torres, José de Jesús, Valeria Ojeda-Castillo, Leonel Hernández-Mena, Josefina Vergara-Sánchez, Hugo Albeiro Saldarriaga-Noreña, and Mario Alfonso Murillo-Tovar. 2022. "Long-Term Analysis of Tropospheric Ozone in the Urban Area of Guadalajara, Mexico: A New Insight of an Alternative Criterion" Atmosphere 13, no. 2: 152. https://doi.org/10.3390/atmos13020152
APA StyleDíaz-Torres, J. d. J., Ojeda-Castillo, V., Hernández-Mena, L., Vergara-Sánchez, J., Saldarriaga-Noreña, H. A., & Murillo-Tovar, M. A. (2022). Long-Term Analysis of Tropospheric Ozone in the Urban Area of Guadalajara, Mexico: A New Insight of an Alternative Criterion. Atmosphere, 13(2), 152. https://doi.org/10.3390/atmos13020152