Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Numerical Weather Prediction
3.1.1. Photovoltaic and Wind Energy
3.1.2. Atmospheric Physics and Processes
3.2. Climate
3.2.1. Parametrizations
3.2.2. Extreme Events
3.2.3. Climate Change
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Networks |
CPU | Central Processing Unit |
DL | Deep Learning |
ECMWF | European Centre for Medium-Range Weather Forecasts |
GCM | General Circulation Model |
GPU | Graphics Processing Units |
K-means | K-means Clustering |
NOAA | National Oceanic and Atmospheric Administration |
NWP | Numerical Weather Prediction |
PCA | Principal Component Analysis |
PV | Photovoltaic |
RF | Random Forest |
SVM | Support Vector Machine |
XGB | XGBoost |
References
- Fradkov, A.L. Early History of Machine Learning. IFAC-PapersOnLine 2020, 53, 1385–1390. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms—A Review; International Journal of Science and Research: Raipur, India, 2019. [Google Scholar] [CrossRef]
- Dhall, D.; Kaur, R.; Juneja, M. Machine Learning: A Review of the Algorithms and Its Applications. In Lecture Notes in Electrical Engineering, Proceedings of the ICRIC, Jammu, India, 8–9 March 2019; Singh, P.K., Kar, A.K., Singh, Y., Kolekar, M.H., Tanwar, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 47–63. [Google Scholar] [CrossRef]
- Singh, A.; Thakur, N.; Sharma, A. A Review of Supervised Machine Learning Algorithms. In Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016; pp. 1310–1315. [Google Scholar]
- Iverson, L.R.; Prasad, A.M.; Liaw, A. New Machine Learning Tools for Predictive Vegetation Mapping after Climate Change: Bagging and Random Forest Perform Better than Regression Tree Analysis. In Landscape Ecology of Trees and Forests, Proceedings of the 12th Annual IALE(UK) Conference, Cirencester, UK, 21–24 June 2004; Smithers, R., Ed.; International Association for Landscape Ecology: Piestany, Slovakia, 2004; pp. 317–320. [Google Scholar]
- Huang, L.; Kang, J.; Wan, M.; Fang, L.; Zhang, C.; Zeng, Z. Solar Radiation Prediction Using Different Machine Learning Algorithms and Implications for Extreme Climate Events. Front. Earth Sci. 2021, 9, 202. [Google Scholar] [CrossRef]
- Abbot, J.; Marohasy, J. The Application of Machine Learning for Evaluating Anthropogenic versus Natural Climate Change. GeoResJ 2017, 14, 36–46. [Google Scholar] [CrossRef]
- Davenport, F.V.; Diffenbaugh, N.S. Using Machine Learning to Analyze Physical Causes of Climate Change: A Case Study of U.S. Midwest Extreme Precipitation. Geophys. Res. Lett. 2021, 48, e2021GL093787. [Google Scholar] [CrossRef]
- Tripathi, S.; Srinivas, V.V.; Nanjundiah, R.S. Downscaling of Precipitation for Climate Change Scenarios: A Support Vector Machine Approach. J. Hydrol. 2006, 330, 621–640. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, H.; Lin, Y.; Zhao, C.; Lin, Y.; Zhou, F. Classification of Northeast China Cold Vortex Activity Paths in Early Summer Based on K-Means Clustering and Their Climate Impact. Adv. Atmos. Sci. 2021, 38, 400–412. [Google Scholar] [CrossRef]
- Zong, L.; Yang, Y.; Gao, M.; Wang, H.; Wang, P.; Zhang, H.; Wang, L.; Ning, G.; Liu, C.; Li, Y.; et al. Large-Scale Synoptic Drivers of Co-Occurring Summertime Ozone and PM2.5 Pollution in Eastern China. Atmos. Chem. Phys. 2021, 21, 9105–9124. [Google Scholar] [CrossRef]
- Silge, J.; Robinson, D. tidytext: Text Mining and Analysis Using Tidy Data Principles in R. J. Open Sour. Softw. 2016, 1, 37. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 17 December 2021).
- Kosovic, B.; Haupt, S.E.; Adriaansen, D.; Alessandrini, S.; Wiener, G.; Delle Monache, L.; Liu, Y.; Linden, S.; Jensen, T.; Cheng, W.; et al. A Comprehensive Wind Power Forecasting System Integrating Artificial Intelligence and Numerical Weather Prediction. Energies 2020, 13, 1372. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Yang, Q.; Fang, X. Multi-Step Ahead Wind Power Generation Prediction Based on Hybrid Machine Learning Techniques. Energies 2018, 11, 1975. [Google Scholar] [CrossRef] [Green Version]
- Barque, M.; Martin, S.; Vianin, J.E.N.; Genoud, D.; Wannier, D. Improving Wind Power Prediction with Retraining Machine Learning Algorithms. In Proceedings of the 2018 International Workshop on Big Data and Information Security (IWBIS), Jakarta, Indonesia, 12–13 May 2018; pp. 43–48. [Google Scholar] [CrossRef]
- Ma, Y.-J.; Zhai, M.-Y. A Dual-Step Integrated Machine Learning Model for 24h-Ahead Wind Energy Generation Prediction Based on Actual Measurement Data and Environmental Factors. Appl. Sci. 2019, 9, 2125. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-K.; Su, P.-E.; Wu, T.-Y.; Hong, J.-S.; Hassan, M.Y. Probabilistic Wind Power Forecasting Using Weather Ensemble Models. IEEE Trans. Ind. Appl. 2018, 54, 5609–5620. [Google Scholar] [CrossRef]
- Kim, D.; Hur, J. Short-Term Probabilistic Forecasting of Wind Energy Resources Using the Enhanced Ensemble Method. Energy 2018, 157, 211–226. [Google Scholar] [CrossRef]
- Donadio, L.; Fang, J.; Porté-Agel, F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies 2021, 14, 338. [Google Scholar] [CrossRef]
- Bochenek, B.; Jurasz, J.; Jaczewski, A.; Stachura, G.; Sekuła, P.; Strzyżewski, T.; Wdowikowski, M.; Figurski, M. Day-Ahead Wind Power Forecasting in Poland Based on Numerical Weather Prediction. Energies 2021, 14, 2164. [Google Scholar] [CrossRef]
- Theocharides, S.; Venizelou, V.; Makrides, G.; Georghiou, G.E. Day-Ahead Forecasting of Solar Power Output from Photovoltaic Systems Utilising Gradient Boosting Machines. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 2371–2375. [Google Scholar] [CrossRef]
- Mellit, A. An Overview on the Application of Machine Learning and Deep Learning for Photovoltaic Output Power Forecasting. In Lecture Notes in Electrical Engineering, Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems, Saidia, Morocco, 13–15 April 2020; Hajji, B., Mellit, A., Marco, T.G., Rabhi, A., Launay, J., Naimi, S.E., Eds.; Springer: Singapore, 2021; pp. 55–68. [Google Scholar] [CrossRef]
- Mathe, J.; Miolane, N.; Sebastien, N.; Lequeux, J. PVNet: A LRCN Architecture for Spatio-Temporal Photovoltaic PowerForecasting from Numerical Weather Prediction. arXiv 2020, arXiv:1902.01453. [Google Scholar]
- Gómez, J.L.; Martínez, A.O.; Pastoriza, F.T.; Garrido, L.F.; Álvarez, E.G.; García, J.A.O. Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data. Sustainability 2020, 12, 10295. [Google Scholar] [CrossRef]
- Theocharides, S.; Makrides, G.; Livera, A.; Theristis, M.; Kaimakis, P.; Georghiou, G.E. Day-Ahead Photovoltaic Power Production Forecasting Methodology Based on Machine Learning and Statistical Post-Processing. Appl. Energy 2020, 268, 115023. [Google Scholar] [CrossRef]
- Kirkwood, C.; Economou, T.; Odbert, H.; Pugeault, N. A Framework for Probabilistic Weather Forecast Post-Processing across Models and Lead Times Using Machine Learning. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200099. [Google Scholar] [CrossRef]
- Cho, D.; Yoo, C.; Im, J.; Cha, D.-H. Comparative Assessment of Various Machine Learning-Based Bias Correction Methods for Numerical Weather Prediction Model Forecasts of Extreme Air Temperatures in Urban Areas. Earth Sp. Sci. 2020, 7, e2019EA000740. [Google Scholar] [CrossRef] [Green Version]
- Belochitski, A.; Krasnopolsky, V. Stable Emulation of an Entire Suite of Model Physics in a State-of-the-Art GCM Using a Neural Network. arXiv 2021, arXiv:2103.07028. [Google Scholar]
- Walsh, E.; Bessardon, G.; Gleeson, E.; Ulmas, P. Using Machine Learning to Produce a Very High Resolution Land-Cover Map for Ireland. Adv. Sci. Res. 2021, 18, 65–87. [Google Scholar] [CrossRef]
- Seifert, A.; Rasp, S. Potential and Limitations of Machine Learning for Modeling Warm-Rain Cloud Microphysical Processes. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002301. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, X.; Decker, J. A GPU-Accelerated Radiation Transfer Model Using the Lattice Boltzmann Method. Atmosphere 2021, 12, 1316. [Google Scholar] [CrossRef]
- Bodini, N.; Lundquist, J.K.; Optis, M. Can Machine Learning Improve the Model Representation of Turbulent Kinetic Energy Dissipation Rate in the Boundary Layer for Complex Terrain? Geosci. Model Dev. 2020, 13, 4271–4285. [Google Scholar] [CrossRef]
- Harder, P.; Watson-Parris, D.; Strassel, D.; Gauger, N.; Stier, P.; Keuper, J. Emulating Aerosol Microphysics with Machine Learning. arXiv 2021, arXiv:2109.10593. [Google Scholar]
- Moosavi, A.; Rao, V.; Sandu, A. A Learning Based Approach for Uncertainty Analysis in Numerical Weather Prediction Models. arXiv 2018, arXiv:1802.08055. [Google Scholar]
- Moosavi, A.; Rao, V.; Sandu, A. Machine Learning Based Algorithms for Uncertainty Quantification in Numerical Weather Prediction Models. J. Comput. Sci. 2021, 50, 101295. [Google Scholar] [CrossRef]
- O’Gorman, P.A.; Dwyer, J.G. Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events. J. Adv. Model. Earth Syst. 2018, 10, 2548–2563. [Google Scholar] [CrossRef] [Green Version]
- Yuval, J.; O’Gorman, P.A. Stable Machine-Learning Parameterization of Subgrid Processes for Climate Modeling at a Range of Resolutions. Nat. Commun. 2020, 11, 3295. [Google Scholar] [CrossRef]
- Pielke, R.A. Chapter 8—New Parameterization Approaches. In Mesoscale Meteorological Modeling; International Geophysics; Pielke, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 98, pp. 225–235. [Google Scholar] [CrossRef]
- Brajard, J.; Carrassi, A.; Bocquet, M.; Bertino, L. Combining Data Assimilation and Machine Learning to Infer Unresolved Scale Parametrization. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200086. [Google Scholar] [CrossRef] [PubMed]
- Watt-Meyer, O.; Brenowitz, N.D.; Clark, S.K.; Henn, B.; Kwa, A.; McGibbon, J.; Perkins, W.A.; Bretherton, C.S. Correcting Weather and Climate Models by Machine Learning Nudged Historical Simulations. Geophys. Res. Lett. 2021, 48, e2021GL092555. [Google Scholar] [CrossRef]
- Couvreux, F.; Hourdin, F.; Williamson, D.; Roehrig, R.; Volodina, V.; Villefranque, N.; Rio, C.; Audouin, O.; Salter, J.; Bazile, E.; et al. Process-Based Climate Model Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization Improvement. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002217. [Google Scholar] [CrossRef]
- Nowack, P.; Braesicke, P.; Haigh, J.; Abraham, N.L.; Pyle, J.; Voulgarakis, A. Using Machine Learning to Build Temperature-Based Ozone Parameterizations for Climate Sensitivity Simulations. Environ. Res. Lett. 2018, 13, 104016. [Google Scholar] [CrossRef]
- Alfonso, L.; Zamora, J.M. A Two-Moment Machine Learning Parameterization of the Autoconversion Process. Atmos. Res. 2021, 249, 105269. [Google Scholar] [CrossRef]
- Ukkonen, P.; Pincus, R.; Hogan, R.J.; Pagh Nielsen, K.; Kaas, E. Accelerating Radiation Computations for Dynamical Models With Targeted Machine Learning and Code Optimization. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002226. [Google Scholar] [CrossRef]
- Beucler, T.; Rasp, S.; Pritchard, M.; Gentine, P. Achieving Conservation of Energy in Neural Network Emulators for Climate Modeling. arXiv 2019, arXiv:1906.06622. [Google Scholar]
- Ramadhan, A.; Marshall, J.; Souza, A.; Wagner, G.L.; Ponnapati, M.; Rackauckas, C. Capturing Missing Physics in Climate Model Parameterizations Using Neural Differential Equations. arXiv 2020, arXiv:2010.12559. [Google Scholar]
- Beucler, T.; Pritchard, M.; Yuval, J.; Gupta, A.; Peng, L.; Rasp, S.; Ahmed, F.; O’Gorman, P.A.; Neelin, J.D.; Lutsko, N.J.; et al. Climate-Invariant Machine Learning. arXiv 2021, arXiv:2112.08440. [Google Scholar]
- Krasnopolsky, V.M.; Fox-Rabinovitz, M.S. Complex Hybrid Models Combining Deterministic and Machine Learning Components for Numerical Climate Modeling and Weather Prediction. Neural Netw. 2006, 19, 122–134. [Google Scholar] [CrossRef]
- Gentine, P.; Pritchard, M.; Rasp, S.; Reinaudi, G.; Yacalis, G. Could Machine Learning Break the Convection Parameterization Deadlock? Geophy. Res. Lett. 2018, 45, 5742–5751. [Google Scholar] [CrossRef]
- Rasp, S. Coupled Online Learning as a Way to Tackle Instabilities and Biases in Neural Network Parameterizations. arXiv 2020, arXiv:1907.01351. [Google Scholar] [CrossRef] [Green Version]
- Brenowitz, N.D.; Beucler, T.; Pritchard, M.; Bretherton, C.S. Interpreting and Stabilizing Machine-Learning Parametrizations of Convection. J. Atmos. Sci. 2020, 77, 4357–4375. [Google Scholar] [CrossRef]
- Brenowitz, N.D.; Henn, B.; McGibbon, J.; Clark, S.K.; Kwa, A.; Perkins, W.A.; Watt-Meyer, O.; Bretherton, C.S. Machine Learning Climate Model Dynamics: Offline versus Online Performance. arXiv 2020, arXiv:2011.03081. [Google Scholar]
- Gagne, D.J., II; Christensen, H.M.; Subramanian, A.C.; Monahan, A.H. Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz ’96 Model. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001896. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Gagne, D.J.; Chen, C.-C.; Christensen, M.W.; Lebo, Z.J.; Morrison, H.; Gantos, G. Machine Learning the Warm Rain Process. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002268. [Google Scholar] [CrossRef]
- Silva, S.J.; Ma, P.-L.; Hardin, J.C.; Rothenberg, D. Physically Regularized Machine Learning Emulators of Aerosol Activation. Geosci. Model Dev. 2021, 14, 3067–3077. [Google Scholar] [CrossRef]
- Pielke, R., Sr.; Stokowski, D.; Wang, J.-W.; Vukicevic, T.; Leoncini, G.; Matsui, T.; Castro, C.L.; Niyogi, D.; Kishtawal, C.M.; Biazar, A.; et al. Satellite-Based Model Parameterization of Diabatic Heating. Eos Trans. Am. Geophys. Un. 2007, 88, 96–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Han, Y.; Xue, W.; Yang, G.; Zhang, G.J. Stable Climate Simulations Using a Realistic GCM with Neural Network Parameterizations for Atmospheric Moist Physics and Radiation Processes. Geosci. Model Dev. Discuss. 2021, 1–35. [Google Scholar] [CrossRef]
- Yuval, J.; O’Gorman, P.A.; Hill, C.N. Use of Neural Networks for Stable, Accurate and Physically Consistent Parameterization of Subgrid Atmospheric Processes With Good Performance at Reduced Precision. Geophys. Res. Lett. 2021, 48, e2020GL091363. [Google Scholar] [CrossRef]
- Anochi, J.A.; de Almeida, V.A.; de Campos Velho, H.F. Machine Learning for Climate Precipitation Prediction Modeling over South America. Remote Sens. 2021, 13, 2468. [Google Scholar] [CrossRef]
- Anderson, G.J.; Lucas, D.D. Machine Learning Predictions of a Multiresolution Climate Model Ensemble. Geophys. Res. Lett. 2018, 45, 4273–4280. [Google Scholar] [CrossRef]
- Mansfield, L.A.; Nowack, P.J.; Kasoar, M.; Everitt, R.G.; Collins, W.J.; Voulgarakis, A. Predicting Global Patterns of Long-Term Climate Change from Short-Term Simulations Using Machine Learning. NPJ Clim. Atmos. Sci. 2020, 3, 1–9. [Google Scholar] [CrossRef]
- Hourdin, F.; Williamson, D.; Rio, C.; Couvreux, F.; Roehrig, R.; Villefranque, N.; Musat, I.; Fairhead, L.; Diallo, F.B.; Volodina, V. Process-Based Climate Model Development Harnessing Machine Learning: II. Model Calibration From Single Column to Global. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002225. [Google Scholar] [CrossRef]
- Bochenek, B.; Ustrnul, Z.; Wypych, A.; Kubacka, D. Machine Learning-Based Front Detection in Central Europe. Atmosphere 2021, 12, 1312. [Google Scholar] [CrossRef]
- Liu, Y.; Racah, E.; Prabhat; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W. Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets. arXiv 2016, arXiv:1605.01156. [Google Scholar]
- Biard, J.C.; Kunkel, K.E. Automated Detection of Weather Fronts Using a Deep Learning Neural Network. Adv. Stat. Climatol. Meteorol. Oceanogr. 2019, 5, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Niebler, S.; Miltenberger, A.; Schmidt, B.; Spichtinger, P. Automated Detection and Classification of Synoptic Scale Fronts from Atmospheric Data Grids. Weather. Clim. Dyn. Discuss. [Preprint] 2021, 1–28. [Google Scholar] [CrossRef]
- Knighton, J.; Pleiss, G.; Carter, E.; Lyon, S.; Walter, M.T.; Steinschneider, S. Potential Predictability of Regional Precipitation and Discharge Extremes Using Synoptic-Scale Climate Information via Machine Learning: An Evaluation for the Eastern Continental United States. J. Hydrometeorol. 2019, 20, 883–900. [Google Scholar] [CrossRef]
- Hu, H.; Ayyub, B.M. Machine Learning for Projecting Extreme Precipitation Intensity for Short Durations in a Changing Climate. Geosciences 2019, 9, 209. [Google Scholar] [CrossRef] [Green Version]
- Elsanabary, M.H.; Gan, T.Y. Wavelet Analysis of Seasonal Rainfall Variability of the Upper Blue Nile Basin, Its Teleconnection to Global Sea Surface Temperature, and Its Forecasting by an Artificial Neural Network. Mon. Weather Rev. 2014, 142, 1771–1791. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T.; Hassan, Q.K. Application of the Least-Squares Wavelet Software in Hydrology: Athabasca River Basin. J. Hydrol. Reg. Stud. 2021, 36, 100847. [Google Scholar] [CrossRef]
- Coulibaly, P.; Burn, D.H. Wavelet Analysis of Variability in Annual Canadian Streamflows. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling Climate Change with Machine Learning. arXiv 2019, arXiv:1906.05433. [Google Scholar]
- Schneider, T.; Lan, S.; Stuart, A.; Teixeira, J. Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations. Geophys. Res. Lett. 2017, 44, 12396–12417. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine Learning and Artificial Intelligence to Aid Climate Change Research and Preparedness. Environ. Res. Lett. 2019, 14, 124007. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, H.A.; Petersik, P.; Hernández-García, E.; López, C. The Application of Machine Learning Techniques to Improve El Niño Prediction Skill. Front. Phys. 2019, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Mohammadiziazi, R.; Bilec, M.M. Application of Machine Learning for Predicting Building Energy Use at Different Temporal and Spatial Resolution under Climate Change in USA. Buildings 2020, 10, 139. [Google Scholar] [CrossRef]
- Piryonesi, S.M.; El-Diraby, T. Climate Change Impact on Infrastructure: A Machine Learning Solution for Predicting Pavement Condition Index. Constr. Build. Mater. 2021, 306, 124905. [Google Scholar] [CrossRef]
- Leng, G.; Hall, J.W. Predicting Spatial and Temporal Variability in Crop Yields: An Inter-Comparison of Machine Learning, Regression and Process-Based Models. Environ. Res. Lett. 2020, 15, 044027. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Wang, B.; Liu, D.L.; Waters, C.; Yu, Q. Incorporating Machine Learning with Biophysical Model Can Improve the Evaluation of Climate Extremes Impacts on Wheat Yield in South-Eastern Australia. Agric. For. Meteorol. 2019, 275, 100–113. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, Q.; Sun, R. Comparison of Machine Learning Methods to Up-Scale Gross Primary Production. Remote Sens. 2021, 13, 2448. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, Y.; Zhou, S.; Gao, Z.; Zong, L.; Fan, S.; Yin, J. Estimating Gross Primary Productivity (GPP) over Rice–Wheat-Rotation Croplands by Using the Random Forest Model and Eddy Covariance Measurements: Upscaling and Comparison with the MODIS Product. Remote Sens. 2021, 13, 4229. [Google Scholar] [CrossRef]
- Zeng, J.; Matsunaga, T.; Tan, Z.-H.; Saigusa, N.; Shirai, T.; Tang, Y.; Peng, S.; Fukuda, Y. Global Terrestrial Carbon Fluxes of 1999–2019 Estimated by Upscaling Eddy Covariance Data with a Random Forest. Sci. Data 2020, 7, 313. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Z.; Gui, K.; Yan, X.; Gao, M.; Luo, M.; Geng, H.; Liao, T.; Li, X.; An, J.; et al. Daily Global Solar Radiation in China Estimated From High-Density Meteorological Observations: A Random Forest Model Framework. Earth Space Sci. 2020, 7, e2019EA001058. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, M.; Li, Q.; Chen, B.; Gao, Z.; Ning, G.; Liu, C.; Li, Y.; Luo, M. Modulations of Surface Thermal Environment and Agricultural Activity on Intraseasonal Variations of Summer Diurnal Temperature Range in the Yangtze River Delta of China. Sci. Environ. 2020, 736, 139445. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Mi, J.; Bi, X.; Zhao, Y.; Huang, Z.; Liu, C.; Zong, L.; Li, W. Leveraging Machine Learning for Quantitative Precipitation Estimation from Fengyun-4 Geostationary Observations and Ground Meteorological Measurements. Atmos. Meas. Tech. 2021, 14, 7007–7023. [Google Scholar] [CrossRef]
- Ustrnul, Z. Zmienność Cyrkulacji Atmosfery na Półkuli Północnej w XX Wieku (Variability of the Atmospheric Circulation on the Northern Hemisphere in the 20th Century); Materiały Badawcze, seria Meteorologia; IMGW: Warszawa, Poland, 1997; Volume 27, p. 208, (In Polish, Eng. Summary). [Google Scholar]
- Tveito, O.E.; Ustrnul, Z. A Review of The Use of Large-Scale Atmospheric Circulation Classification in Spatial Climatology; KLIMA; DNMI: Oslo, Norway, 3 October 2003; p. 27. [Google Scholar]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Kyselý, J.; Tveito, O.E. Classifications of atmospheric circulation patterns: Recent advances and applications. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [CrossRef]
- Ustrnul, Z.; Wypych, A.; Czekierda, D. Composite circulation index of weather extremes (the example for Poland). Meteorol. Z. 2013, 22, 551–559. [Google Scholar] [CrossRef]
- Gordon, A.D. Classification; Chapman & Hall: London, UK; New York, NY, USA; Washington, DC, USA, 1999. [Google Scholar]
- Everitt, B.S.; Landau, S.; Leese, M. Cluster Analysis; Arnold: London, UK; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Bednorz, E.; Kolendowicz, L.; Bielec-Bąkowska, Z.; Bokwa, A.; Żelazny, M.; Kicińska, B.; Lewik, P.; Nowosad, M.; Ustrnul, Z. Regionalizacje, typologie i wydzielanie sezonów klimatycznych z zastosowaniem analizy skupień (Regionalisations, typologies and climatic seasons with application of cluster analysis). Prz. Geofiz. 2003, 1–2, 11–32, (In Polish, Eng. Summary). [Google Scholar]
- Sheridan, S.C.; Lee, C.C. The self-organizing map in synoptic climatological research. Prog. Phys. Geogr. Earth Environ. 2011, 35, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.C.; Sheridan, S.C. A six-step approach to developing future synoptic classifications based on GCM output. Int. J. Climatol. 2012, 32, 1792–1802. [Google Scholar] [CrossRef]
- Davis, R.E.; Kalkstein, L.S. Development of an automated spatial synoptic classification. Int. J. Climatol. 1990, 10, 769–794. [Google Scholar] [CrossRef]
- Wilks, S.D. Statistical Methods in the Atmospheric Sciences, an Introduction; Academic Press: San Diego, CA, USA, 1995; p. 464. [Google Scholar]
- Oliver, J.E. The history, status, and future of climatic classifications. Phys. Geogr. 1991, 12, 231–251. [Google Scholar] [CrossRef]
- Yarnal, B. Synoptic Climatology in Environmental Analysis: A Primer; Belhaven Press: London, UK, 1993; pp. xv + 195. [Google Scholar]
- Barry, R.G.; Carleton, A.M. Synoptic and Dynamic Climatology; Routledge: London, UK, 2001; p. 664. [Google Scholar] [CrossRef]
- Yarnal, B.; Comrie, A.C.; Frakes, B.; Brown, D.P. Developments and prospects in synoptic climatology. Int. J. Climatol. 2001, 21, 1923–1950. [Google Scholar] [CrossRef]
- Palarz, A.; Luterbacher, J.; Ustrnul, Z.; Xoplaki, E.; Celiński-Myslaw, D. Representation of low-tropospheric temperature inversions in ECMWF reanalyses over Europe. Environ. Res. Lett. 2020, 15, 074043. [Google Scholar] [CrossRef]
- Hertz, J.; Krogh, A.; Palmer, R.G. Introduction to the Theory of Neural Computation; Addison-Wesley Publ. Company: Reading, MA, USA, 1991. [Google Scholar] [CrossRef] [Green Version]
- Pasini, A.; Pelino, V.; Potesta, S. A neural network model for visibility nowcasting from surface observations: Results and sensitivity to physical input variables. J. Geophys. Res. Atmos. 2001, 106, 14951–14960. [Google Scholar] [CrossRef]
- Domańska, D.; Wojtylak, M. Application of fuzzy time series models for forecasting pollution concentrations. Expert. Syst. Appl. 2012, 39, 7673–7679. [Google Scholar] [CrossRef]
- Czernecki, B.; Marosz, M.; Jędruszkiewicz, J. Assessment of Machine Learning Algorithms in Short-Term Forecasting of PM10 and PM2.5 Concentrations in Selected Polish Agglomerations. Aerosol Air Qual. Res. 2021, 21, 200586. [Google Scholar] [CrossRef]
- Zalewska, T.; Biernacik, D.; Marosz, M. Correlations between 7Be, 210Pb, Dust and PM10 Concentrations in Relation to Meteorological Conditions in Northern Poland in 1998–2018. J. Environ. Radioact. 2021, 228, 106526. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P.G.; Allen, M.; Gosling, S.N.; Hondula, D.M.; Vijendra, I.; Lucas, R.; Vanos, J. Perspectives on the Synoptic Climate Classification and its Role in Interdisciplinary Research. Geogr. Compass 2016, 10, 147–164. [Google Scholar] [CrossRef] [Green Version]
- Bauer, P.; Dueben, P.D.; Hoefler, T.; Quintino, T.; Schulthess, T.C.; Wedi, N.P. The Digital Revolution of Earth-System Science. Nat. Comput. Sci. 2021, 1, 104–113. [Google Scholar] [CrossRef]
- Dewitte, S.; Cornelis, J.P.; Müller, R.; Munteanu, A. Artificial Intelligence Revolutionises Weather Forecast, Climate Monitoring and Decadal Prediction. Remote Sens. 2021, 13, 3209. [Google Scholar] [CrossRef]
- Mock, C.J.; Shinker, J.J. Paleoclimate—Modern Analog Approaches in Paleoclimatology. In Paleoclimate, Encyclopedia of Quaternary Science, 2nd ed.; Elias, S.A., Mock, C.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 102–112. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bochenek, B.; Ustrnul, Z. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere 2022, 13, 180. https://doi.org/10.3390/atmos13020180
Bochenek B, Ustrnul Z. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere. 2022; 13(2):180. https://doi.org/10.3390/atmos13020180
Chicago/Turabian StyleBochenek, Bogdan, and Zbigniew Ustrnul. 2022. "Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives" Atmosphere 13, no. 2: 180. https://doi.org/10.3390/atmos13020180
APA StyleBochenek, B., & Ustrnul, Z. (2022). Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives. Atmosphere, 13(2), 180. https://doi.org/10.3390/atmos13020180