The Behavior of Moist Potential Vorticity in the Interactions of Binary Typhoons Lekima and Krosa (2019) in with Different High-Resolution Simulations
Abstract
:1. Introduction
2. The Brief Description of the WRF Model and Experiment Setting
3. The MPV Theory
4. The Synoptic Background Associated with Lekima and Krosa
4.1. The Weather Conditions
4.2. The Background Circulations and the Intensity of Typhoons Lekima and Krosa (2019)
5. MPV Analysis
5.1. Analysis of MPV as Convective Instability Energy
5.2. Baroclinic Diagnosis of MPV
5.3. Analysis of Vertical Structures of Wet Potential Temperature
6. Discussion
7. Summary
- (1)
- The Krosa can greatly affect the west ridgeline of the West Pacific subtropical high and thus exert a great impact on the track of Lekima, critically determining its turning point toward the northeast. Since simulations at different spatial resolutions perform differently in the accuracy of reproducing the interaction between the Krosa and subtropical high, the finer resolution model has a much higher forecast skill on the track of Lekima.
- (2)
- The simulated instability energy appears as an asymmetric structure around a typhoon center at 27 km and 9 km resolution simulations, consisting of prominent parameterization characteristics, such as the entrainment of large-scale convective instability energy from the environment in the south. The 3 km resolution model simulates a more uniform and realistic instability energy distribution inside a typhoon system.
- (3)
- There exist an MPV conveying belt in the binary typhoon system at the middle-low atmosphere, which transfers the instability energy and exchanges the atmospheric baroclinicity between the binary typhoons.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riehl, H. On the formation of typhoons. J. Meteorol. 1948, 5, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Bjerknes, J.; Holmboe, J. On the Theory of Cyclones. J. Atmos. Sci. 1944, 1, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Cai, Y.P.; Tang, X.J. Moist potential vorticity and slantwise vorticity development. Acta Meteorol. Sin. 1995, 53, 387–405. [Google Scholar]
- Liu, H.; Zhang, S. Moist potential vorticity and the three-dimensional structure of a cold front with heavy rainfall. J. Appl. Meteorol. Sci. 1996, 7, 275–284. [Google Scholar]
- Wu, G.; Cai, Y. Vertical Wind Shear and Down-sliding Slantwise Vorticity Development. Chin. J. Atmos. Sci. 1997, 21, 273–282. [Google Scholar]
- Yu, H.; Wu, G. Moist Baroclinity and Abrupt Intensity Change of Tropical Cyclone. Acta Meteorol. Sin. 2001, 59, 440–449. [Google Scholar]
- Schubert, W.; Hausman, S.; Garcia, M.; Ooyama, K.; Kuo, H. Potential Vorticity in a Moist Atmosphere. J. Atmos. Sci. 2001, 58, 3148–3157. [Google Scholar] [CrossRef]
- Wang, X.; Wu, K.; Shi, C. The Introduction of the Condensation Probability Function and the Dynamic Equations on Non-uniform Saturated Moist Air. J. Trop. Meteorol. 1999, 15, 64–70. [Google Scholar]
- Gao, S.; Cui, C. Generalized Moist Potential Vorticity Theory and Its Application Research. Torrential Rain Disasters 2007, 26, 3–8. [Google Scholar]
- Zhou, Y. Application of Generalized Moist Potential Vorticity to Analysis and Forecast of the Torrential Rain over the Changjiang-Huaihe River Basin. Chin. J. Atmos. Sci. 2009, 33, 1101–1110. [Google Scholar] [CrossRef]
- Gao, S.; Lei, T. Moist Potential Vorticity Anomaly with Heat and Mass Forcings in Torrential Rain Systems. Chin. Phys. Lett. 2002, 19, 878–880. [Google Scholar]
- Deng, G.; Gao, S. The Theory of Moist Potential Vorticity and Its Application in the Diagnosis of Typhoon Rainfall and Intensity. J. Trop. Meteorol. 2009, 15, 204–209. [Google Scholar]
- Cho, H.-R.U.; Cao, Z. Generation of Moist Potential Vorticity in Extratropical Cyclones. Part II: Sensitivity to Moisture Distribution. J. Atmos. Sci. 1998, 55, 595–610. [Google Scholar] [CrossRef]
- Han, F.; Chu, K.; Tan, Z.; Zhang, Y.; Liu, H. The Adoint-derived Sensitivity Analysis of the Motion and Intensity of the Binary Typhoons: Mawar (2005) and Guchol (2005). Chin. J. Geophys. 2019, 62, 3247–3258. [Google Scholar]
- Wang, H.; Ma, F.; Wang, W.; Peng, J. Application of Moist Potential Vorticity Analysis in Heavy Rain Forecast in Northeast Hebei Province. Arid Meteorol. 2008, 26, 86–90. [Google Scholar]
- Pan, Y.; Wang, T.; Tan, Y.; Peng, D.; Zhao, J. Application of Moist Potential Vorticity and Vertical Helicity in Numerical Forecast of Heavy Rain. Meteorological. Meteorol. Mar. Instrum. 2012, 29, 47–53. [Google Scholar]
- Shen, X. Analysis of Moist Potential Vorticity of Typhoon Haitang Rain Storm. Bull. Sci. Technol. 2007, 23, 180–186. [Google Scholar]
- Lai, S.; He, F.; Zhao, R.; Shen, T.; Wu, Q. The Diagnostic Analysis of “Longwang” Typhoon. Sci. Meteorol. Sin. 2007, 27, 266–271. [Google Scholar]
- Liu, F.; Ding, Z.; Liang, Y.; Zheng, H.; Huang, X. Evolution Characteristics of Moist Potential Vorticity in the Rainstorm Caused by “Morakot” Typhoon. Torrential Rain Disasters 2011, 30, 161–166. [Google Scholar]
- Cao, C.; Wang, Z.; Liu, F.; Liang, Y. Diagnostic Analysis of Moist Potential Vorticity for Heavy Rain Caused by “Fitow” (2013) Typhoon. Meteorol. Environ. Sci. 2016, 39, 86–92. [Google Scholar]
- Brand, S. Interaction of Binary Tropical Cyclones of the Western North Pacific Ocean. J. Appl. Meteorol. 1970, 9, 433–441. [Google Scholar] [CrossRef]
- Yang, S.; Cheng, Z.; Gong, Y. A Summary of the Research on Interactions of Twin Tropical Cyclones. Guangdong Meteorol. 2019, 41, 10–13. [Google Scholar]
- Yu, Z.; Ji, C.; Xu, J.; Bao, S.; Qiu, J. Numerical simulation and analysis of the Yangtze River Delta Rainstorm on 8 October 2013 caused by binary typhoons. Atmos. Res. 2015, 166, 33–48. [Google Scholar] [CrossRef]
- Yang, C.; Wu, C.; Chou, K.; Lee, C. Binary Interaction between Typhoons Fengshen (2002) and Fungwong (2002) Based on the Potential Vorticity Diagnosis. Mon. Weather Rev. 2008, 136, 4593–4611. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Huang, N.; Wen, X. Diagnostic Analysis of Interaction between Binay Typhoons Tembin and Bolaven. Meteorol. Sci. Technol. 2015, 43, 506–511. [Google Scholar]
- Li, M.; Zhang, S.; Wu, L.; Lin, X.; Chang, P.; Danabasoglu, G.; Wei, Z.; Yu, X.; Hu, H.; Ma, X.; et al. A high-resolution Asia-Pacific regional coupled prediction system with dynamically downscaling coupled data assimilation. Sci. Bull. 2020, 65, 1849–1858. [Google Scholar] [CrossRef]
- Kain, J.; Fritsch, J. Convective Parameterization for Mesoscale Models: The Kain-Fritcsh Scheme. The Representation of Cumulus Convection in Numerical Models; American Meteorological Society: Boston, MA, USA, 1993; Volume 24. [Google Scholar]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Hu, X.; Klein, P.; Xue, M. Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. 2013, 118, 10–490. [Google Scholar] [CrossRef]
- Hong, S.; Dudhia, J.; Chen, S. A Revised Approach to Ice Microphysical Processes for the Bulk Parametrisation of Clouds and Precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Tan, Z.; Liang, M.; Xue, Y.; Xu, J.; Xu, F. Diagnosis on the Heavy Precipitation of Typhoon Lekima. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.) 2020, 12, 450–459. [Google Scholar]
- Li, M.; Zhang, S.; Wu, L.; Lin, X.; Chang, P.P.; Danabasoglu, G.; Wei, Z.; Yu, X.; Hu, H.; Ma, X.; et al. An Examination of the Predictability of Tropical Cyclone Genesis in High-Resolution Coupled Models with Dynamically Downscaled Coupled Data Assimilation Initialization. Adv. Atmos. Sci. 2020, 37, 939–950. [Google Scholar] [CrossRef]
Settings | 27 km (16S,63N) (38E,178E) | 9 km (16S,63N) (38E,178E) | 3 km (16S,63N) (38E,178E) |
Grids | 560410 | 16761226 | 50263676 |
Longwave Radiation | Rapid Radiative Transfer Model (RRTMG) | RRTMG | RRTMG |
Shortwave Radiation | RRTMG | RRTMG | RRTMG |
Cloud Microphysics | WRF single moment 3-class simple ice scheme (WSM3) | WSM3 | WSM3 |
Cumulus Convection | Kain-Fritsch | Kain-Fritsch | No |
PBL Scheme | Yonsei University scheme (YSU) | YSU | YSU |
Vertical Levels | 28 | 28 | 28 |
Time Steps | 54s | 18s | 6s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, J.; Ren, S.; Zhang, S.; Wu, G.; Shao, C.; Zhao, H.; Yu, X.; Li, M.; Gao, Y. The Behavior of Moist Potential Vorticity in the Interactions of Binary Typhoons Lekima and Krosa (2019) in with Different High-Resolution Simulations. Atmosphere 2022, 13, 281. https://doi.org/10.3390/atmos13020281
Yong J, Ren S, Zhang S, Wu G, Shao C, Zhao H, Yu X, Li M, Gao Y. The Behavior of Moist Potential Vorticity in the Interactions of Binary Typhoons Lekima and Krosa (2019) in with Different High-Resolution Simulations. Atmosphere. 2022; 13(2):281. https://doi.org/10.3390/atmos13020281
Chicago/Turabian StyleYong, Jianlin, Simin Ren, Shaoqing Zhang, Guoxiong Wu, Caixia Shao, Haoran Zhao, Xiaolin Yu, Mingkui Li, and Yang Gao. 2022. "The Behavior of Moist Potential Vorticity in the Interactions of Binary Typhoons Lekima and Krosa (2019) in with Different High-Resolution Simulations" Atmosphere 13, no. 2: 281. https://doi.org/10.3390/atmos13020281
APA StyleYong, J., Ren, S., Zhang, S., Wu, G., Shao, C., Zhao, H., Yu, X., Li, M., & Gao, Y. (2022). The Behavior of Moist Potential Vorticity in the Interactions of Binary Typhoons Lekima and Krosa (2019) in with Different High-Resolution Simulations. Atmosphere, 13(2), 281. https://doi.org/10.3390/atmos13020281