Snow Cover as an Indicator of Dust Pollution in the Area of Exploitation of Rock Materials in the Świętokrzyskie Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Measurements
2.2. Laboratory Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alfaro Degan, G.; Lippiello, D.; Pinzari, M. Total suspended particulate from mobile sources in an Italian opencast quarry: A proposal to improve US EPA ISC3 model. Advances in Safety, Reliability and Risk Management. In Proceedings of the European Safety and Reliability Conference (ESREL), Troyes, France, 18–22 September 2011. [Google Scholar]
- Gao, X.; Gao, W.; Sun, X.; Jiang, W.; Wang, Z.; Li, W. Measurements of Indoor and Outdoor Fine Particulate Matter during the Heating Period in Jinan, in North China: Chemical Composition, Health Risk, and Source Apportionment. Atmosphere 2020, 11, 885. [Google Scholar] [CrossRef]
- Mutlag, N.H.; Al Duhaidahawi, F.J.; Jawad, H.; Hassan, W.; Ali, E.I. Evaluating the effect of dust at Al Kufa cement plant on humans health. plants and microorganisms in South of Al-Najaf Al-Alshraf. Ann. Trop. Med. Public Health 2020, 23, 231–358. [Google Scholar] [CrossRef]
- Sairanen, M.; Rinne, M. Dust emission from crushing of hard rock aggregates. Atmos. Pollut. Res. 2019, 10, 656–664. [Google Scholar] [CrossRef]
- Warrah, M.M.; Senchi, D.S.; Fakai, I.M.; Daboh, U.M. Effects of Cement dust on Vegetation around Sokoto Cement Company. Int. J. Environ. Agric. Biotechnol. 2021, 6, 17–24. [Google Scholar] [CrossRef]
- Kozłowski, R.; Jarzyna, K.; Jóźwiak, M.; Szwed, M. Influence of cement-lime industry on the physico-chemical and chemical properties of snow cover in a “Białe Zagłębie” region in February 2012. Monit. Sr. Przyr. 2012, 13, 71–80. [Google Scholar]
- Kozłowski, R.; Szwed, M. Heavy metals content in the snow cover in the Holy Cross Mountains. Monit. Sr. Przyr. 2016, 18, 61–69. [Google Scholar]
- Kozłowki, R.; Szwed, M.; Jarzyna, K. Analysis of snow pollutants in an industrial urban zone near the city of Ostrowiec Swietokrzyski. Ecol. Chem. Eng. A 2018, 25, 7–18. [Google Scholar]
- Konieczyński, J. The Properties of Respirable Dust Emitted from the Selected Plants; Institute of Environmental Engineering of the Polish Academy of Sciences: Zabrze, Poland, 2010. [Google Scholar]
- Luo, R.; Dai, H.; Zhang, Y.; Wang, P.; Zhou, Y.; Li, J.; Zhou, M.; Qiao, L.; Ma, Y.; Zhu, S.; et al. Association of short-term exposure to source-specific PM2.5 with the cardiovascular response during pregnancy in the Shanghai MCPC study. Sci. Total Environ. 2021, 775, 145725. [Google Scholar] [CrossRef]
- Susihono, W.; Adiatmika, I.P.G. Assessment of inhaled dust by workers and suspended dust for pollution control change and ergonomic intervention in metal casting industry: A cross-sectional study. Heliyon 2020, 6, e04067. [Google Scholar] [CrossRef]
- Szuflicki, M.; Malon, A.; Tymiński, M. Bilans Zasobów złóż Kopalin w Polsce; Polish Geological Institute: Warsaw, Poland, 2020. [Google Scholar]
- Sporek, M.; Sporek, A. Monitoring odczynu śniegu w aglomeracji miejskiej Opola. Proc. ECOpole 2008, 2, 489–492. [Google Scholar]
- Kasina, M. Variation of snow cover chemistry between Kraków and the Upper Silesian Industrial Area. Prac Geogr. Inst. Geogr. Spat. Manag. Jagiellonian Univ. 2008, 120, 51–64. [Google Scholar]
- Nawrot, A.; Migała, K.; Luks, B.; Pakszys, P.; Głowacki, P. Chemistry of snow cover and acidic snowfall during a season with a high level of air pollution on the Hans Glacier, Spitsbergen. Polar Sci. 2016, 10, 149–261. [Google Scholar] [CrossRef]
- Dinu, M.; Moiseenko, T.; Baranov, D. Snowpack as Indicators of Atmospheric Pollution: The Valday Upland. Atmosphere 2020, 11, 462. [Google Scholar] [CrossRef]
- Eremina, I.D.; Vasil’chuk, J.Y. Temporal variations in chemical composition of snow cover in Moscow. Geogr. Environ. Sustain. 2019, 12, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Nazarenko, Y.; Ariya, P.A. Interaction of Air Pollution with Snow and Seasonality Effects. Atmosphere 2021, 12, 490. [Google Scholar] [CrossRef]
- Szwed, M.; Kozłowski, R. Pokrywa śnieżna jako wskaźnik zanieczyszczeń pyłowych (Padół Kielceko-Łagowski). Przem. Chem. 2021, 100, 498–501. [Google Scholar]
- Kozłowski, R.; Szwed, M.; Przybylska, J. Physico-chemical properties of snow in the city of Kielce in January 2016. Proc. ECOpole 2017, 11, 185–191. [Google Scholar]
- Jarzyna, K.; Kozłowski, R.; Szwed, M. Chemical properties of snow cover as an impact indicator for local air pollution sources. Infrastruct. Ecol. Rural. Areas 2017, 4, 1591–1607. [Google Scholar]
- Stepanova, N.V.; Fomina, S.F.; Valeeva, E.R.; Ziyatdinova, A.I. Heavy metals as criteria of health and ecological well-being of the urban environment. J. Trace Elem. Med. Biol. 2018, 50, 646–651. [Google Scholar] [CrossRef]
- Shevchenko, V.P.; Vorobyev, S.N.; Krickov, I.V.; Boev, A.G.; Lim, A.G.; Novigatsky, A.N.; Starodymova, D.P.; Pokrovsky, O.S. Insoluble Particles in the Snowpack of the Ob River Basin (Western Siberia) a 2800 km Submeridional Profile. Atmosphere 2020, 11, 1184. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak, M. Assessment of the Impact of Aggregate Mines on Air Pollution in the Łagów Commune; I Ogólnokształcące Liceum Akademickie im. Janiny Kossakowskiej-Dębickiej w Kielcach: Lagow, Poland, 2017. [Google Scholar]
- Regulation of the Minister of Environment. J. Laws 2010, 87.
- Regulation of the Minister of Environment. J. Laws 2018, 799.
- Kozłowski, R. The functioning of selected Polish geoecosystems under diverse anthropopressure conditions: The case of low mountains and foothills. Landf. Anal. 2013, 23, 1–150. [Google Scholar]
- Szwed, M.; Żukowski, W.; Kozłowski, R. The Presence of Selected Elements in the Microscopic Image of Pine Needles as an Effect of Cement and Lime Pressure within the Region of Białe Zagłębie (Central Europe). Toxics 2021, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Kondracki, J. Geografia Regionalna Polski; Polish Scientific Publishers: Warsaw, Poland, 1978. [Google Scholar]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Balwirczak-Jakubowska, M.; Czarnecki, R. Mikroregiony fizycznogeograficzne Gór Świętokrzyskich. Przegląd Geogr. 1989, 61, 541–558. [Google Scholar]
- Cieśliński, S.; Mityk, J. Kielecki Okręg Eksploatacji Surowców Węglanowych. Wybrane Problem z Zakresu Ochrony i Ksztłtowania Środowiska; Kielce Scientific Society: Kielce, Poland, 1982. [Google Scholar]
- Świercz, A. Impact of Alkaline Emissions on Soils and Pine Forests in the “Białe Zagłębie”. Part 1; Kielce Scientific Society: Kielce, Poland, 1997. [Google Scholar]
- Szwed, M.; Kozłowski, R.; Żukowski, W. Assessment of Air Quality in the South-Western Part of the Świętokrzyskie Mountains Based on Selected Indicators. Forests 2020, 11, 499. [Google Scholar] [CrossRef]
- Kozłowski, R.; Szwed, M.; Żelezik, M. Environmental Aspect of the Cement Manufacturing in the Świętokrzyskie Mountains (Southeastern Poland). Minerals 2021, 11, 277. [Google Scholar] [CrossRef]
- Świercz, A.; Gandzel, A.; Tomczyk-Wydrych, I. Dynamics of changes in selected soil traits in the profiles of arable soils anthropogenically alkalised by the cement and lime industry within the Kielecko-Łagowski Vale (Poland). Land 2021, 10, 84. [Google Scholar] [CrossRef]
- Available online: https://kielce.stat.gov.pl (accessed on 26 August 2021).
- Walczowski, A. Objaśnienia do Szczegółowej Mapy Geologicznej Polski. Arkusz Łagów; Geological Publishers: Warsaw, Poland, 1968. [Google Scholar]
- Available online: http://www.geologia.pgi.gov.pl (accessed on 26 August 2021).
- Kalembasa, S.; Godlewska, A.; Wysokiński, A. The chemical composition of ashes from brown coal and hard coal in the context of their agricultural utylization. Rocz. Glebozn. 2008, 14, 93–97. [Google Scholar]
- Vlasov, D.; Vasil’chuk, J.; Kosheleva, N.; Kasimov, N. Dissolved and Suspended Forms of Metals and Metalloids in Snow Cover of Megacity: Partitioning and Deposition Rates in Western Moscow. Atmosphere 2020, 11, 907. [Google Scholar] [CrossRef]
- Niedźwiedź, T. Variability of Atmospheric Circulation in Southern Poland in the 20th Century. Studia Geogr. 2003, 75, 230–240. [Google Scholar]
- Piaskowska-Silarska, M.; Pytel, K.; Gumuła, S.; Hudy, W. Evaluation of the impact of meteorological conditions on the amount of air pollution in Krakow. E3S Web Conf. 2019, 108, 02012. [Google Scholar] [CrossRef]
- Grahn, H. Modeling of Dispersion, Deposition and Evaporation from Ground Deposition in a Stochastic Particle Model; Swedish Defence Research Agency: Umeå, Sweden, 2004.
- Kaasik, M.; Rõõm, R.; Røyset, O.; Vadset, M.; Sõukand, Ü.; Tõugu, K.; Kaasik, H. Elemental and Base Anions Deposition in the Snow Cover of North-Eastern Estonia. Water Air Soil Pollut. 2000, 121, 349–366. [Google Scholar] [CrossRef]
- Siudek, P.; Frankowski, M.; Siepak, J. Trace element distribution in the snow cover from an urban area in central Poland. Environ. Monit. Assess. 2015, 187, 4446. [Google Scholar] [CrossRef] [Green Version]
- Kondrat’ev, I.I.; Mukha, D.E.; Boldeskul, A.G.; Yurchenko, S.G.; Lutsenko, T.N. Chemical composition of precipitation and snow cover in the Primorsky krai. Russ. Meteorol. Hydrol. 2015, 42, 64–70. [Google Scholar] [CrossRef]
- Grebenshchikova, V.I.; Efimova, N.V.; Doroshkov, A. Chemical composition of snow and soil in Svirsk city (Irkutsk Region, Pribaikal’e). Environ. Earth Sci. 2017, 76, 712. [Google Scholar] [CrossRef]
- Jansen, W.; Block, A.; Knaack, J. Acid rain, History, generation, results. Aura 1988, 4, 18–19. [Google Scholar]
Metals | ERM CA713 | ICP-MS-TOF | Difference * % | ||
---|---|---|---|---|---|
Content (µg L−1) | Uncertainty (µg L−1) | Content (µg L−1) | Standard Deviation | ||
Cr | 20.9 | 0.2 | 19.7 | ±2.0 | −5.0 |
Cu | 101.0 | 1.3 | 99.4 | ±1.9 | −1.0 |
Ni | 50.3 | 1.4 | 53.0 | ±4.3 | 5.0 |
Pb | 49.7 | 1.7 | 51.8 | ±3.7 | 4.0 |
Variable | Series | Unit | Average | Minimum | Maximum | Standard Deviation | Coefficient of Variation | Reference Sample | Multiplication Factor |
---|---|---|---|---|---|---|---|---|---|
Ca | I | (mg L−1) | 2.57 | 0.1 | 4.8 | 1.3 | 50.6 | 0.361 | 7.1 |
II | 9.97 | 4.2 | 21 | 4.5 | 44.6 | 4.341 | 2.3 | ||
Cl | I | 4.47 | 0.1 | 17.5 | 4.7 | 105.3 | 0.476 | 9.3 | |
II | 3.50 | 0.9 | 12.1 | 3.1 | 88.4 | 0.935 | 3.8 | ||
SO4 | I | 0.69 | 0 | 1.1 | 0.4 | 55 | 0.939 | 0.7 | |
II | 1.65 | 0.9 | 3.6 | 0.7 | 42.3 | 0.798 | 2.1 | ||
NO3 | I | 1.37 | 0.1 | 2 | 0.6 | 45.3 | 1.769 | 0.8 | |
II | 1.96 | 0.7 | 3.3 | 0.9 | 47.2 | 1.772 | 1.1 | ||
pH | I | (-) | 7.71 | 6.3 | 8.4 | 0.7 | 8.5 | 6.76 | 1.1 |
II | 8.05 | 7.1 | 8.7 | 0.5 | 5.8 | 7.47 | 1.1 | ||
EC | I | (mS cm−1) | 44.77 | 20.7 | 115.3 | 26.3 | 58.8 | 8.91 | 5 |
II | 59.10 | 27.9 | 90.2 | 16.5 | 27 | 12.67 | 4.7 | ||
Al | I | (µg L−1) | 22.231 | 1.6 | 84.7 | 24.7 | 111.3 | 2.781 | 8 |
II | 60.082 | 1.9 | 353.7 | 92.7 | 154.2 | 5.346 | 11.2 | ||
Co | I | 0.011 | <0.039 * | 0.1 | 0.0 | 360.6 | <0.039 * | 0.3 | |
II | 0.006 | <0.039 * | 0.1 | 0.0 | 300.2 | <0.039 * | 0.2 | ||
Cr | I | 0.612 | <0.116 * | 2.5 | 0.9 | 149.4 | <0.116 * | 5.3 | |
II | 0.046 | <0.116 * | 0.6 | 0.2 | 360.6 | <0.116 * | 0.4 | ||
Cu | I | 0.336 | <0.120 * | 0.8 | 0.3 | 100.1 | <0.120 * | 2.8 | |
II | 0.045 | <0.120 * | 0.6 | 0.2 | 360.6 | <0.120 * | 0.4 | ||
Ni | I | 0.191 | <0.018 * | 0.9 | 0.3 | 156.9 | <0.018 * | 10.6 | |
II | 0.096 | <0.018 * | 1.2 | 0.3 | 360.6 | <0.018 * | 5.3 | ||
Sr | I | 13.164 | 5.3 | 39.6 | 10.7 | 81.2 | 1.491 | 8.8 | |
II | 13.431 | 7.7 | 22.3 | 4.6 | 34.4 | 5.114 | 2.6 | ||
Pb | I | 0.009 | <0.096 * | 0.1 | 0.0 | 360.6 | <0.096 * | 0.1 | |
II | 0.014 | <0.096 * | 0.2 | 0.1 | 360.6 | <0.096 * | 0.1 | ||
Zn | I | 8.417 | <0.139 * | 20.5 | 6.0 | 71.2 | 11.367 | 0.7 | |
II | 3.314 | <0.139 * | 15.0 | 4.3 | 130.1 | 10.403 | 0.3 |
Variable | Component | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
Ca | −0.821 | 0.198 | 0.252 |
Cl | −0.067 | −0.683 | 0.130 |
SO4 | −0.587 | −0.246 | −0.600 |
NO3 | −0.486 | −0.265 | −0.802 |
pH | −0.340 | 0.873 | −0.005 |
EC | −0.700 | −0.243 | 0.481 |
Al | −0.321 | 0.580 | −0.422 |
Sr | −0.707 | −0.534 | 0.117 |
Zn | 0.706 | −0.312 | −0.346 |
% of variance | 33 | 24 | 18 |
% in total | 33 | 57 | 75 |
Source of Air Pollution | Unit | Cement and Lime Industry | Metallurgical Industry | Remote Pollution | Urban Area | ||||
---|---|---|---|---|---|---|---|---|---|
Białe Zagłebie, Poland [6,7] | Kunda, Estonia [47] | Ostrowiec Św., Poland [21] | Świętokrzyski National Park, Poland [7] | Kielce, Poland [20] | Poznań, Poland [48] | Primorsky Krai, Russia [49] | Svirsk, Russia [50] | ||
pH | (-) | 6.39 | 7.38 | 5.23 | 5.59 | 4.8 | 5.05 | 6.63 | |
EC * | (mS m−1) | 3.28 | 4.15 | 2.61 | 2.78 | 2.07 | 4.2 | ||
Ca2+ | (mg L−1) | 4.4 | 18.8 | 4 | 2.5 | 2.5 | 8.7 | ||
Mg2+ | 0.2 | 0.4 | 0.2 | 0.4 | 1.4 | ||||
SO42− | (mg L−1) | 3.2 | 18.8 | 3.6 | 1.8 | 4.9 | 14.9 | ||
NO3− | 2.3 | 2.6 | 3.1 | 3.4 | 1.2 | ||||
Zn | 48.8 | 57.1 | 66 | 49.1 | 13.2 | 32 | 18 | ||
Pb | 7.7 | 0.1 | 0.1 | 0.5 | 4.9 | 0.9 | 0.5 | ||
Cr | 0.6 | 0.1 | 0.3 | 0.4 | 0.4 | ||||
Cd | 0.1 | 0.1 | 0.1 | 0.1 | |||||
Ni | 0.34 | 0.5 | 0.2 | 3.8 | 0.6 | 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szwed, M.; Kozłowski, R. Snow Cover as an Indicator of Dust Pollution in the Area of Exploitation of Rock Materials in the Świętokrzyskie Mountains. Atmosphere 2022, 13, 409. https://doi.org/10.3390/atmos13030409
Szwed M, Kozłowski R. Snow Cover as an Indicator of Dust Pollution in the Area of Exploitation of Rock Materials in the Świętokrzyskie Mountains. Atmosphere. 2022; 13(3):409. https://doi.org/10.3390/atmos13030409
Chicago/Turabian StyleSzwed, Mirosław, and Rafał Kozłowski. 2022. "Snow Cover as an Indicator of Dust Pollution in the Area of Exploitation of Rock Materials in the Świętokrzyskie Mountains" Atmosphere 13, no. 3: 409. https://doi.org/10.3390/atmos13030409
APA StyleSzwed, M., & Kozłowski, R. (2022). Snow Cover as an Indicator of Dust Pollution in the Area of Exploitation of Rock Materials in the Świętokrzyskie Mountains. Atmosphere, 13(3), 409. https://doi.org/10.3390/atmos13030409