Polycyclic Aromatic Hydrocarbons in the Atmosphere of the Southern Baikal Region (Russia): Sources and Relationship with Meteorological Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Determination of PAHs
2.3. Meteorological Parameters and Back Trajectories
2.4. Diagnostic Coefficients
2.5. Health Risk Assessment
3. Results
3.1. Seasonal and Interannual Dynamics of PAH Concentrations
3.2. Analysis of PAH Sources
3.3. Characteristics of Meteorological Parameters
3.4. Human Health RiskAssessment Associatedwith PAH Concentrations in the Atmospheric Air
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Federal Law of 1 May 1999 № 94-FL “On the Protection of Lake Baikal”. Available online: https://base.garant.ru/2157025/ (accessed on 8 December 2021).
- State Report “On the State and Environmental Protection of the Russian Federation in 2018”. Available online: https://www.mnr.gov.ru/docs/o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii/gosudarstvennyy_doklad_o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii_v_2018_/ (accessed on 8 December 2021).
- Gorshkov, A.G.; Izosimova, O.N.; Kustova, O.V.; Marinaite, I.I.; Galachyants, Y.P.; Sinyukovich, V.N.; Khodzher, T.V. Wildfires as a source of PAHs in surface waters of background areas (Lake Baikal, Russia). Water 2021, 13, 2636. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Omar, N.Y.V.J.; Abas, M.R.B.; Ketuly, K.A.; Tahir, N.M. Concentrations of PAHs in atmospheric particles (PM10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmos. Environ. 2002, 36, 247–254. [Google Scholar] [CrossRef]
- Gorshkov, A.G.; Marinaite, I.I.; Zhamsueva, G.S.; Zayakhanov, A.S. Benzopyrene isomer ratioin organic reaction of aerosols over water surface of Lake Baikal. J. Aerosol Sci. 2004, 2, 1059–1060. [Google Scholar] [CrossRef]
- Fang, M.; Zeng, M.; Wang, F.; To, K.L.; Jaafar, A.B.; Tong, S.L. The solvent-extractable organic compounds in the Indonesia biomass burning aerosols-characterization studies. Atmos. Environ. 1999, 33, 783–795. [Google Scholar] [CrossRef]
- Zeng, M.; Wan, T.S.M.; Fang, M.; Wang, F. Characterization of the non-volatile organic compounds in the aerosols of Hong Kong-identification, abundance and origin. Atmos. Environ. 1997, 31, 227–237. [Google Scholar] [CrossRef]
- Yang, L.; Suzuki, G.; Zhang, L.; Zhou, Q.; Zhang, X.; Xing, W.; Shima, M.; Yoda, Y.; Nakatsubo, R.; Hiraki, T.; et al. The characteristics of polycyclic aromatic hydrocarbons in different emission source areas in Shenyang, China. Int. J. Environ. Public Health 2019, 16, 2817. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, K.; Tang, N.; Nagato, E.G.; Toriba, A.; Sakai, S.; Kano, F.; Goto, S.; Endo, O.; Arashidani, K.; Kakimoto, H. Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclicaromatichydrocarbons: Astudy of Japanese cities from 1997 to 2014. Environ. Pollut. 2018, 233, 474–482. [Google Scholar] [CrossRef]
- GN 2.1.6.3492-17 “On Approval of Hygienic Standards “Maximum Permissible Concentrations (MPC) of Pollutants in the Air of Urban and Rural Settlements” (as amended on 31 May 2018). Resolution of the Chief State Sanitary Physician of the Russian Federation of 22 December 2017 №165. Available online: https://www.garant.ru/products/ipo/prime/doc/71750374/ (accessed on 8 December 2021).
- Rekefu, S.; Talifu, D.; Gao, B.; Turap, Y.; Maihemuti, M.; Wang, X.; Abulizi, A. Polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in Urumqi, China: Temporal variations, health risk, and sources. Atmosphere 2018, 9, 412. [Google Scholar] [CrossRef] [Green Version]
- Arctic and Antarctic Research Institute Website. Available online: https://www.aari.ru/ (accessed on 8 December 2021).
- Weather Archive rp5. Available online: http://rp5.ru/ (accessed on 8 December 2021).
- University of Wyoming Website. Available online: http://weather.uwyo.edu/upperair/sounding.html/ (accessed on 8 December 2021).
- National Oceanic and Atmospheric Administration. Lagrangian Integrated Trajectory Model. Available online: https://ready.arl.noaa.gov/hypub-bin/trajtype.pl (accessed on 18 September 2021).
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, T.; Jorgensen, H.E.; Larsen, J.C.; Poulsen, M. City air pollution of polycyclic hydrocarbons and other mutagens: Occurrence, sources and health effects. Sci. Total Environ. 1996, 189–190, 41–49. [Google Scholar] [CrossRef]
- Masclet, P.; Hoyau, V.; Jaffrezo, J.L.; Cachier, H. Polycyclic aromatic hydrocarbon deposition on the ice sheet of Greenland. Part I: Superficial snow. Atmos. Environ. 2000, 34, 3195–3207. [Google Scholar] [CrossRef]
- Malcolm, H.M.; Dobson, S. The Calculation of an Environmental Assessment Level (EAL) for Atmospheric PAHs Using Relative Potencies; Department of the Environment: London, UK, 1994; pp. 34–46.
- Hayakawa, K. Polycyclic Aromatic Hydrocarbons: Environmental Behavior and Toxicity in East Asia; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–274. [Google Scholar]
- Liu, J.; Man, R.; Ma, S.; Li, J.; Wu, Q.; Peng, J. Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Mar. Pollut. Bull. 2015, 100, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Behymer, T.D.; Hites, R.A. Photolysis of polycyclic aromatic hydrocarbons adsorbed on simulated atmospheric particulates. Environ. Sci. Technol. 1985, 19, 1004–1006. [Google Scholar] [CrossRef]
- Masclet, P.; Mouvier, G.; Nikolaou, K. Relative decay index and sources of polycyclic aromatic hydrocarbons. Atmos. Environ. 1986, 20, 439–446. [Google Scholar] [CrossRef]
- Marinaite, I.; Penner, I.; Khodzher, T. Effect of meteorological conditions on the distribution of PAHs in the atmosphere of the southern Baikal region. In Proceedings of 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics; SPIE: Bellingham, WA, USA, 2020. [Google Scholar]
- Marinaite, I.; Penner, I.; Molozhnikova, Y.; Shikhovtsev, M.; Obolkin, V.; Kustova, O.; Khodzher, T. PAHs and Meteorological Parameters in the Atmosphere of the Southern Baikal Region from 2019 to 2021. In Proceedings of the 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics; SPIE: Bellingham, WA, USA, 2021. [Google Scholar]
- Cetin, B.; Ozturk, F.; Keles, M.; Yurdakul, S. PAHs and PCBs in an eastern Mediterranean megacity, Istanbul: Their spatial and temporal distributions, air–soil exchange and toxicological effects. Environ. Pollut. 2017, 220, 1322–1332. [Google Scholar] [CrossRef]
- Franco, J.; de Resende, F.; de Almeida Furtado, L.; Brasil, F.; Eberlin, N.; Netto, P. Polycyclic aromatic hydrocarbons (PAHs) in street dust of Rio de Janeiro and Niterói, Brazil: Particle size distribution, sources and cancer risk assessment. Sci. Total Environ. 2017, 599–600, 305–313. [Google Scholar] [CrossRef]
- Hamid, N.; Syed, H.; Junaid, M.; Mahmood, A.; Li, J.; Zhang, G.; Naseem-Malik, R. Elucidating the urban levels, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in Pakistan: Implications for changing energy demand. Sci. Total Environ. 2018, 619–620, 165–175. [Google Scholar] [CrossRef]
- Yang, J.; Xu, W.; Cheng, H. Seasonal variations and sources of airborne polycyclic aromatic hydrocarbons (PAHs) in Chengdu, China. Atmosphere 2018, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Byambaa, B.; Yang, L.; Matsuki, A.; Nagato, E.G.; Gankhuyang, K.; Chuluunpurev, B.; Banzragch, L.; Chonokhuu, S.; Tang, N.; Hayakawa, K. Sources and characteristics of polycyclic aromatic hydrocarbons in ambient total suspended particles in Ulaanbaatar city, Mongolia. Int. J. Environ. Res. Public Health 2019, 16, 442. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Tian, M.; Zhang, L.; Yang, F.; Peng, C.; Chen, Y.; Shi, G.; Yao, X.; Jiang, C.; Wang, J. Sources and gas-particle partitioning of atmospheric parent, oxygenated, and nitrated polycyclic aromatic hydrocarbons in a humidcity in southwest China. Atmos. Environ. 2019, 206, 1–10. [Google Scholar] [CrossRef]
- Emine, A.; Fatma, E. Atmospheric polycyclic aromatic hydrocarbons (PAHs) at two sites, in Bursa, Turkey: Determination of concentrations, gas–particle partitioning, sources, and health risk. Arch. Environ. Contam. Toxicol. 2020, 78, 350–366. [Google Scholar]
- Yang, L.; Zhang, X.; Xing, W.; Zhou, Q.; Zhang, L.; Wu, Q.; Zhou, Z.; Chen, R.; Toriba, A.; Hayakawa, K.; et al. Yearly variation in characteristics and health risk of polycyclic aromatic hydrocarbons and nitro-PAHs in urban Shanghai from 2010–2018. Environ. Sci. 2021, 99, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Tang, N.; Xing, W.; Oanh, P.K.; Hara, A.; Nakamura, H. Concentrations and sources of atmospheric PM, polycyclic aromatic hydrocarbons and nitropolycyclicaromatichydrocarbons in Kanazawa, Japan. Atmosphere 2021, 12, 256. [Google Scholar] [CrossRef]
- WHO. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project: Final Technical Report, WHO Regional Office for Europe. 2013. Available online: https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-projectfinal-technical-report (accessed on 18 September 2021).
- European Environment Agency. Annual Mean Bap Concentrations in 2018. 2020. Available online: https://www.eea.europa.eu/data-and-maps/figures/annual-mean-bap-concentrations-in-4 (accessed on 18 September 2021).
- Kozielska, B.; Rogula-Kozłowska, W.; Klejnowski, K. Seasonal variations in health hazards from polycyclic aromatic hydrocarbons bound to submicrometerparticles at three characteristic sites in the heavily polluted Polish Region. Atmosphere 2015, 6, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Křůmal, K.; Mikuška, P.; Večeřa, Z. Polycyclic aromatic hydrocarbons and hopanes in PM1 aerosols in urban areas. Atmos. Environ. 2013, 67, 27–37. [Google Scholar] [CrossRef]
- Mirante, F.; Alves, C.; Pio, C.; Pindado, O.; Perez, R.; Revuelta, M.A.; Artiñano, B. Organic composition of size segregated atmospheric particulate matter, during summer and winter sampling campaigns at representative sites in Madrid, Spain. Atmos. Res. 2013, 132–133, 345–361. [Google Scholar] [CrossRef]
- Martellini, T.; Giannoni, M.; Lepri, L.; Katsoyiannis, A.; Cincinelli, A. One year intensive PM2.5 bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environ. Pollut. 2012, 164, 252–258. [Google Scholar] [CrossRef]
- Singh, D.P.; Gadi, R.; Mandal, T.K. Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmos. Environ. 2011, 45, 7653–7663. [Google Scholar] [CrossRef]
Winter (n = 62) | Spring (n = 62) | Summer (n = 62) | Autumn (n = 62) | |||||
---|---|---|---|---|---|---|---|---|
T (°C) | −15.1 (−39 ~ +6) | 4.2 (−29 ~ +27) | 17.5 (+1 ~ +33) | −1.6 (−32 ~ +26) | ||||
Name | Irkutsk | Listvyanka | Irkutsk | Listvyanka | Irkutsk | Listvyanka | Irkutsk | Listvyanka |
Nap | 0.05–0.58 | 0.14–0.3 | 0.06–0.3 | 0.07–1.0 | 0.05–0.10 | 0.04–0.1 | 0.03–0.17 | 0.01–3.0 |
2-MetNap | 0.03–0.31 | 0.06–0.16 | 0.03–0.15 | 0.04–0.13 | 0.01–0.07 | 0.03–0.1 | 0.04–0.12 | 0.05–0.1 |
1-MetNap | 0.03–0.35 | 0.05–0.17 | 0.03–0.15 | 0.03–0.08 | 0.01–0.05 | 0.02–0.08 | 0.02–0.14 | 0.01–0.04 |
AcPy | 0.06–1.4 | 0.01–0.34 | 0.01–0.28 | 0.01–0.02 | 0.01 | 0.01 | 0.01–0.79 | 0.02–0.05 |
Acp | 0.01–0.06 | 0.01–0.2 | 0.01–0.02 | 0.01–0.02 | 0.01 | 0.01 | 0.01–0.05 | 0.01 |
Flu | 0.07–0.41 | 0.05–6.4 | 0.04–0.19 | 0.03–1.0 | 0.02–0.03 | 0.01–0.05 | 0.07–0.23 | 0.05–0.8 |
Phe | 0.7–9.7 | 0.6–4.9 | 0.4–1.9 | 0.2–2.0 | 0.30–0.48 | 0.1–0.4 | 0.4–5.5 | 0.4–12 |
Ant | 0.09–1.6 | 0.04–0.3 | 0.01–1.3 | 0.01–0.1 | 0.01 | 0.01–0.02 | 0.02–0.56 | 0.02–0.1 |
FluT | 2.3–59 | 0.4–18 | 0.3–3.7 | 0.14–0.7 | 0.12–0.26 | 0.18–0.45 | 0.4–30 | 0.16–6.3 |
Pyr | 2.0–53 | 0.3–16 | 0.24–3.6 | 0.1–1.0 | 0.18–1.2 | 0.14–0.36 | 0.25–27 | 0.13–4.7 |
BaA | 0.1–15 | 0.1–4.6 | 0.03–1.0 | 0.01–0.3 | 0.01–0.02 | 0.01–0.05 | 0.02–6.7 | 0.1–0.67 |
Chr | 0.1–18 | 0.1–9.0 | 0.08–1.2 | 0.04–0.5 | 0.04–0.3 | 0.05–0.16 | 0.36–8.3 | 0.06–1.4 |
BbF | 0.2–51 | 0.3–41 | 0.2–2.3 | 0.18–0.78 | 0.07–1.0 | 0.1–0.72 | 0.10–21 | 0.09–6.0 |
BkF | 0.10–29 | 0.1–17 | 0.10–1.8 | 0.1–0.34 | 0.06–0.13 | 0.05–0.29 | 0.10–13 | 0.07–4.3 |
BeP | 0.13–21 | 0.2–24 | 0.13–1.8 | 0.14–0.55 | 0.06–0.8 | 0.10–0.55 | 0.18–11.7 | 0.09–4.3 |
BaP | 0.10–27 | 0.1–8.9 | 0.03–2.4 | 0.06–0.14 | 0.01–0.04 | 0.03–0.13 | 0.02–6.8 | 0.02–1.0 |
Per | 0.2–2.8 | 0.1–8.9 | 0.03–0.3 | 0 | 0.01–0.4 | 0 | 0.1–1.3 | 0.07–0.15 |
IcdP | 1.0–9.0 | 0.2–5.9 | 0.08–1.5 | 0.07–0.17 | 0.01–0.30 | 0.06–0.25 | 0.4–4.2 | 0.09–1.8 |
BghiP | 0.4–6.5 | 0.2–6.2 | 0.09–1.4 | 0.09–0.4 | 0.02–0.30 | 0.04–0.30 | 0.1–3.9 | 0.5–1.7 |
DahA | 0.09–0.70 | 0.05–0.4 | 0.0 | 0 | 0.0 | 0 | 0.07–0.3 | 0.03–0.11 |
Σ20PAHs | 8.1–318 | 5.3–158 | 1.9–24 | 3.5–36 | 1.1–12 | 1.3–3.4 | 2.2–89 | 2.3–37 |
Average annual Σ20PAHs in 2016 | 36 | 11 | ||||||
Average annual Σ20PAHs in 2020 | 13 | 4 |
PAH Ratios | Source Indicator | Irkutsk City | Listvyanka Settlement |
---|---|---|---|
FluT/FluT + Pyr | <0.4 Petrogenic >0.4 Combustion of coal and wood [4,9] | 0.44–0.60 (0.49) | 1.2–16.9 (2.63) |
IcdP/IcdP + BghiP | >0.5 Combustion of coal and wood <0.5 Combustion of liquid fuel [4,9] | 0.41–0.97 (0.50) | 0.39–0.47 (0.46) |
B[a]P/B[ghi]Per | <0.6 Vehicles [9] >0.6 Stationary sources [4] | 0.6–46.7 (2.0) | 0.3–1.2 (0.49) |
BeP/BeP + BaP | <0.5 Close sources >0.5 Distant sources [4,5,6,7,8] | 0.4–0.7 (0.62) | 0.68–0.9 (0.74) |
PAH (Irkutsk) | PAH (Listvyanka) | P0 Max | Tmin | Umin | |
---|---|---|---|---|---|
PAH (Irkutsk) | 1 | 0.77 | 0.63 | −0.85 | 0.79 |
PAH (Listvyanka) | 0.77 | 1 | 0.51 | −0.71 | 0.83 |
Sampling Stations | Winter | Spring | Summer | Autumn | |
---|---|---|---|---|---|
Irkutsk, Southern Baikal region, Russia | BaPeq | 2.1–38 | 0.1–1.8 | 0.1–0.2 | 7.9–10 |
BaP/BaPeq (%) | 61–70 | 38–65 | 30–31 | 30–66 | |
Listvyanka, Southern Baikal region, Russia | BaPeq | 0.17–1.9 | 0.06–0.25 | 0.05–0.25 | 0.06–1.6 |
BaP/BaPeq (%) | 54–55 | 49–53 | 48 | 41–60 | |
Urumqi, China [12] | BaPeq | 13–84 | 1.1–10 | 1.9–2.0 | 1.7–20 |
BaP/BaPeq (%) | 17–36 | 28–34 | 47–41 | 15–16 | |
Delhi, India [42] | BaPeq | 28.9 | 17.6 | ||
BaP/BaPeq (%) | 34 | 29 | |||
Kanazawa, Japan [35] | BaPeq | 0.060 | 0.070 | 0.028 | 0.059 |
BaP/BaPeq (%) | 62 | 62 | 62 | 62 | |
Florence, Italy [41] | BaPeq | 2.7–5.4 | 0.41–1.54 | ||
BaP/BaPeq (%) | 17–18 | 12–13 | |||
Madrid, Spain [40] | BaPeq | 0.12–0.5 | 0.10–0.12 | ||
BaP/BaPeq (%) | 45–47 | 22–28 | |||
Katowice, Poland [38] | BaPeq | 18–106 | 5.3–15.5 | ||
BaP/BaPeq (%) | 13–67 | 34–62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinaite, I.; Penner, I.; Molozhnikova, E.; Shikhovtsev, M.; Khodzher, T. Polycyclic Aromatic Hydrocarbons in the Atmosphere of the Southern Baikal Region (Russia): Sources and Relationship with Meteorological Conditions. Atmosphere 2022, 13, 420. https://doi.org/10.3390/atmos13030420
Marinaite I, Penner I, Molozhnikova E, Shikhovtsev M, Khodzher T. Polycyclic Aromatic Hydrocarbons in the Atmosphere of the Southern Baikal Region (Russia): Sources and Relationship with Meteorological Conditions. Atmosphere. 2022; 13(3):420. https://doi.org/10.3390/atmos13030420
Chicago/Turabian StyleMarinaite, Irina, Ioganes Penner, Elena Molozhnikova, Maksim Shikhovtsev, and Tamara Khodzher. 2022. "Polycyclic Aromatic Hydrocarbons in the Atmosphere of the Southern Baikal Region (Russia): Sources and Relationship with Meteorological Conditions" Atmosphere 13, no. 3: 420. https://doi.org/10.3390/atmos13030420
APA StyleMarinaite, I., Penner, I., Molozhnikova, E., Shikhovtsev, M., & Khodzher, T. (2022). Polycyclic Aromatic Hydrocarbons in the Atmosphere of the Southern Baikal Region (Russia): Sources and Relationship with Meteorological Conditions. Atmosphere, 13(3), 420. https://doi.org/10.3390/atmos13030420