Personal Exposure and Inhaled Dose Estimation of Air Pollutants during Travel between Albany, NY and Boston, MA
Abstract
:1. Introduction
2. Methodology
2.1. Field Study
2.2. Sampling and Analysis
2.3. Datasets
3. Results and Discussion
3.1. Exposure Concentrations during Long-Haul Journeys
3.2. Concentration Profile during Walk
3.3. Differences in Exposure during Different Activities
3.4. Inhaled Dose
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Seaton, A.; MacNee, W.; Donaldson, K.; Godden, D. PM air pollution and acute health effects. Lancet 1995, 345, 176–178. [Google Scholar] [CrossRef]
- Gauderman, W.J.; Gilliland, G.F.; Vora, H.; Avol, E.; Stram, D.; McConnell, R.; Thomas, D.; Lurmann, F.; Margolis, H.G.; Rappaport, E.B.; et al. Association between air pollution and lung function growth in southern California children. Am. J. Respir. Crit. Care Med. 2002, 166, 76–84. [Google Scholar] [CrossRef]
- Li, N.; Xia, T.; Nel, A.E. The role of oxidative stress in ambient PM-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic. Biol Med. 2008, 44, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Arbex, M.A.; Santos, U.d.P.; Martins, L.C.; Saldiva, P.H.N.; Pereira, L.A.A.; Braga, A.L.F. Air pollution and respiratory system. J. Bras. Pneumol. 2012, 38, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Khwaja, H.A.; Fatmi, A.; Malashock, D.; Aminov, Z.; Siddique, A.; Carpenter, D.O. Effect of air pollution on daily morbidity in Karachi. J. Local Glob. Health Sci. 2012, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Burnett, R.T.; Kwong, J.C.; Villeneuve, P.J.; Goldberg, M.S.; Brook, R.D.; van Donkelaar, A.; Jerrett, M.; Martin, R.V.; Brook, J.R.; et al. Risk of incident diabetes in relation to long-term exposure to fine PM in Ontario, Canada. Environ. Health Perspect. 2013, 121, 804–810. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Fondelli, P.; Marra, M.; Ameling, C.; Cassee, F.R. Short-term effects of PM2.5, PM10, and PM2.5–10 on daily mortality in The Netherlands. Sci. Total Environ. 2013, 463, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.R.; Lin, Y.T.; Hwang, B.F. Air pollution and newly diagnostic autism spectrum disorders: A population-based cohort study in Taiwan. PLoS ONE 2013, 8, e75510. [Google Scholar] [CrossRef] [Green Version]
- Kloog, I.; Ridgway, B.; Koutrakis, P.; Coull, B.A.; Schwartz, J.D. Long- and short-term exposure to PM2.5 and mortality: Using novel exposure models. Epidemiology 2013, 24, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.S.; Chang, C.C.; Yang, C.Y. Fine PM air pollution and hospital admissions for chronic obstructive pulmonary disease: A case-crossover study in Taipei. Int. J. Environ. Res. Public Health 2013, 10, 6015–6026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Villarrubia, E.; Iñiguez, C.; Costa, O.; Ballester, F. Acute effects of urban air pollution on respiratory emergency hospital admissions in Canary Islands. Air Qual. Atmos. Health 2016, 9, 713–722. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne PM. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Kioumourtzoglou, M.A.; Schwartz, J.D.; Weisskopf, M.G.; Melly, S.J.; Wang, Y.; Dominici, F.; Zanobetti, A. Long-term PM2.5 exposure and neurological hospital admissions in the northeastern US. Environ. Health Perspect. 2016, 124, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Wu, X.; Yazdi, M.D.; Braun, D.; Awad, Y.A.; Wei, Y.; Liu, P.; Di, Q.; Wang, Y.; Schwartz, J.; et al. Long-term effects of PM2.5 on neurological disorders in the American Medicare population. Lancet 2020, 4, e557–e565. [Google Scholar] [CrossRef]
- Li, A.J.; Pal, V.K.; Kannan, K. A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ. Chem. Ecotoxicol. 2021, 3, 91–116. [Google Scholar] [CrossRef]
- Pal, V.K.; Li, A.J.; Zhu, H.; Kannan, K. Diurnal variability in urinary volatile organic compound metabolites and its association with oxidative stress biomarkers. Sci. Total Environ. 2021, 818, 151704. [Google Scholar] [CrossRef]
- Schwartz, J.; Dockery, D.W.; Neas, M.L. Is daily mortality associated specifically with fine particles? J. Air Waste Manag. Assoc. 1996, 46, 927–939. [Google Scholar] [CrossRef]
- Dockery, D.W. Epidemiologic evidence of cardiovascular effects of PM air pollution. Environ. Health Perspect. 2001, 109, 483–486. [Google Scholar]
- Gulliver, J.; Briggs, D.J. Personal exposure to particulate air pollution in transport microenvironments. Atmos. Environ. 2004, 38, 1–8. [Google Scholar] [CrossRef]
- Spinazzé, A.; Cattaneo, A.; Scocca, D.R.; Bonzini, M.; Cavallo, D.M. Multi-metric measurement of personal exposure to ultrafine particles in selected urban microenvironments. Atmos. Environ. 2015, 110, 8–17. [Google Scholar] [CrossRef]
- Schiavon, M.; Rada, E.C.; Ragazzi, M.; Antognoni, S.; Zanoni, S. Domestic activities and PM generation: A contribution to the understanding of indoor sources of air pollution. Int. J. Sustain. Dev. Plan. 2015, 10, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Barupal, J.; Zhang, W.; Zheng, Y.; Liu, L.; Zhang, X.; Dou, C.; McCracken, J.P.; Díaz, A.; Motta, V.; et al. Particulate Air Pollution Exposure and Expression of Viral and Human MicroRNAs in Blood: The Beijing Truck Driver Air Pollution Study. Environ. Health Perspect. 2016, 124, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Fondelli, M.C.; Chellini, E.; Yli-Tuomi, T.; Cenni, I.; Gasparrini, A.; Nava, S.; Garcia-Orellana, I.; Lupi, A.; Grechi, D.; Mallone, S.; et al. Fine PM concentrations in buses and taxis in Florence, Italy. Atmos. Environ. 2008, 42, 8185–8193. [Google Scholar] [CrossRef]
- Huang, H.; Hsu, D. Exposure levels of PM in long-distance buses in Taiwan. Indoor Air 2009, 19, 234–242. [Google Scholar] [CrossRef]
- Praml, G.; Schierl, R. Dust exposure in Munich public transportation: A comprehensive 4-year survey in buses and trams. Int. Arch. Occup. Environ. Health 2000, 73, 209–214. [Google Scholar] [CrossRef]
- Chan, L.Y.; Lau, W.L.; Lee, S.C.; Chan, C.Y. Commuter exposure to PM in public transportation modes in Hong Kong. Atmos. Environ. 2002, 36, 3363–3373. [Google Scholar] [CrossRef]
- Suárez, L.; Mesías, S.; Iglesias, V.; Silva, C.; Cáceres, D.D.; Rudolph, P.R. Personal exposure to PM in commuters using different transport modes (bus, bicycle, car and subway) in an assigned route in downtown Santiago, Chile. Environ. Sci. Process Impacts 2014, 16, 1309–1317. [Google Scholar] [CrossRef]
- McNabola, A.; Broderick, B.; Gill, L.W. Relative exposure to fine PM and VOCs between transport microenvironments in Dublin: Personal exposure and uptake. Atmos. Environ. 2008, 42, 6496–6512. [Google Scholar] [CrossRef]
- Kaur, S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Fine PM and CO exposure concentrations in urban street transport microenvironments. Atmos. Environ. 2007, 41, 4781–4810. [Google Scholar] [CrossRef]
- Dons, E.; Int Panis, L.; Poppel, M.V.; Theunis, J.; Wets, G. Personal exposure to BC in transport microenvironments. Atmos. Environ. 2012, 55, 392–398. [Google Scholar] [CrossRef]
- Karanasiou, A.; Viana, M.; Querol, X.; Moreno, T.; de Leeuw, F. Assessment of personal exposure to particulate air pollution during commuting in European cities. Sci. Total Environ. 2014, 490, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.A.; Wolterbeek, H.T.; Almeida, S.M. Air pollutant exposure and inhaled dose during urban commuting: A comparison between cycling and motorized modes. Air Qual. Atmos. Health 2016, 9, 867–879. [Google Scholar] [CrossRef]
- Kaur, S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Pedestrian exposure to air pollution along a major road in Central London, UK. Atmos. Environ. 2005, 39, 7307–7320. [Google Scholar] [CrossRef]
- De Nazelle, A.; Fruin, S.; Westerdahl, D.; Martinez, D.; Ripoll, A.; Kubesch, N.; Nieuwenhuijsen, M. Travel mode comparison of commuter’s exposures to air pollutants in Barcelona. Atmos. Environ. 2012, 59, 151–159. [Google Scholar] [CrossRef]
- Briggs, D.J.; de Hoogh, K.; Morris, C.; Gulliver, J. Effects of travel mode on exposures to particulate air pollution. Environ. Int. 2008, 34, 2–22. [Google Scholar] [CrossRef]
- Quiros, D.C.; Lee, E.; Wang, R.; Zhu, Y. Ultrafine particle exposures while walking, cycling, and driving along an urban residential roadway. Atmos. Environ. 2013, 73, 185–194. [Google Scholar] [CrossRef]
- Tan, S.H.; Roth, M.; Velasco, E. PM exposure and inhaled dose during commuting in Singapore. Atmos. Environ. 2017, 170, 245–258. [Google Scholar] [CrossRef]
- Kumar, N.; Chu, A.; Foster, A. An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmos. Environ. 2007, 41, 4492–4503. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Kaul, D.; Wong, K.C.; Westerdahl, D.; Sun, L.; Ho, K.F.; Tian, L.; Brimblecombe, P.; Ning, Z. Heterogeneity of passenger exposure to air pollutants in public transport microenvironments. Atmos. Environ. 2015, 109, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Oladapo, M.; Akinfolarin, O.M.; Boisa, N.; Obunwo, C. Assessment of PM-based Air Quality Index in Port Harcourt, Nigeria. J. Environ. Anal. Chem. 2017, 4, 2380–2391. [Google Scholar]
- Knibbs, L.D.; de Dear, R.J. Exposure to ultrafine and PM2.5 in four Sydney transport modes. Atmos. Environ. 2010, 44, 3224–3227. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Nieuwenhuijse, M.J.; Colvile, R.N. Personal exposure of street canyon intersection users to PM2.5, ultrafine particle counts and CO in Central London, UK. Atmos. Environ. 2005, 39, 3629–3641. [Google Scholar] [CrossRef]
- Gomez-Perales, J.; Colvile, R.N.; Nieuwenhuijsen, M. Commuter’s exposure to PM2.5, CO, and benzene in public transport in the metropolitan area of Mexico City. Atmos. Environ. 2004, 38, 1219–1229. [Google Scholar] [CrossRef]
- Kolluru, S.S.R.; Patra, A.K.; Kumar, P. Determinants of commuter exposure to PM2.5 and CO during long-haul journeys on national highways in India. Atmos. Pollut. Res. 2019, 10, 1031–1041. [Google Scholar] [CrossRef]
- Tsai, D.H.; Wu, Y.H.; Chan, C.C. Comparison of commuter’s exposure to PM while using different transportation modes. Sci. Total Environ. 2008, 405, 71–77. [Google Scholar] [CrossRef]
- Yu, Q.; Lu, Y.; Xiao, S.; Shen, J.; Li, X.; Ma, W.; Chen, L. Commuter’s exposure to PM1 by common travel modes in Shanghai. Atmos. Environ. 2012, 59, 39–46. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; He, Q.; Wang, H.; Sheng, G.; Chan, L.; Fu, J.; Blake, D.R. Exposure to hazardous VOCs, PM10, and CO while walking along streets in urban Guangzhou. Atmos. Environ. 2004, 38, 6177–6184. [Google Scholar] [CrossRef] [Green Version]
- Chao, Y.H.; Tung, C.W.; Burnett, J. Influence of different indoor activities on the indoor PM levels in residential buildings. Indoor Built Environ. 1998, 7, 110–121. [Google Scholar] [CrossRef]
- Parikh, J.; Balakrishnan, K.; Laxmi, V.; Biswas, H. Exposure from cooking with biofuels: Pollution monitoring and analysis for rural Tamil Nadu. Energy 2001, 26, 949–962. [Google Scholar] [CrossRef]
- Lee, S.C.; Li, W.M.; Ao, C.H. Investigation of indoor air quality at residential homes in Hong Kong—Case study. Atmos. Environ. 2002, 36, 225–237. [Google Scholar] [CrossRef]
- Landis, M.S.; Norris, G.A.; Williams, R.W.; Weinstein, J.P. Personal exposures to PM2.5 mass and trace elements in Baltimore, MD, USA. Atmos. Environ. 2001, 35, 6511–6524. [Google Scholar] [CrossRef]
- Martuzevicius, D.; Grinshpun, S.A.; Lee, T.; Hu, S.; Biswas, P.; Reponen, T.; LeMasters, G. Traffic-related PM2.5 aerosol in residential houses located near major highways. Atmos. Environ. 2008, 42, 6575–6585. [Google Scholar] [CrossRef]
- Kingham, S.; Briggs, D.; Elliott, P.; Fischer, P.; Lebret, E. Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield. Atmos. Environ. 2000, 34, 905–916. [Google Scholar] [CrossRef]
- Fischer, P.; Hoek, G.; Van Reeuwijk, H.; Briggs, D.; Lebret, E.; Van Wijnen, J.; Kingham, S.; Elliott, P. Traffic-related differences in outdoor and indoor concentrations of particles and VOCs in Amsterdam. Atmos. Environ. 2000, 34, 3713–3722. [Google Scholar] [CrossRef]
- Fromme, H.; Lahrz, T.; Hainsch, A.; Oddoy, A.; Piloty, M.; Ruden, H. Elemental carbon and respirable PM in the indoor air of apartments and nursery schools and outdoor air in Berlin (Germany). Indoor Air. 2005, 15, 335–341. [Google Scholar] [CrossRef]
- Ward, T.J.; Noonan, C.W.; Hooper, K. Results of an indoor size fractionated PM school sampling program in Libby. Environ. Monit. Assess. 2007, 130, 163–171. [Google Scholar] [CrossRef]
- U.S. EPA—Environmental Protection Agency. Exposure Factors Handbook 1; Office of Research and Development: Washington, DC, USA, 1997; p. 95.
- Dunton, G.F.; Do, B.; Wang, S.D. Early effects of the COVID-19 pandemic on physical activity and sedentary behavior in children living in the U.S. BMC Public Health 2020, 20, 1351. [Google Scholar] [CrossRef]
- Nyhan, M.; McNabola, A.; Misstear, B. Comparison of PM dose and acute heart rate variability response in cyclists, pedestrians, bus and train passengers. Sci. Total Environ. 2014, 468, 821–831. [Google Scholar] [CrossRef]
Campaign | Description (Route) | Date (Day/Month/Year) | Time (h:min) | Tot. Time (min) | Length (km) |
---|---|---|---|---|---|
1 | Bus commute from Albany to Boston | 7 February 2019 | 20:48–23:24 | 156 | 270 |
2 | Walk in Boston | 8 February 2019 | 16:51–18:25 | 94 | 5 |
3 | Bus commute from Boston to Albany | 10 February 2019 | 13:50–18:16 | 266 | 270 |
4 | Bus commute from Albany to Boston | 15 February 2019 | 16:15–20:14 | 239 | 270 |
5 | Indoors, Boston | 16 February 2019 | 11:25–21:19 | 594 | 3 |
6 | Full day personal exposure-1, Albany | 6 March 2019–7 March 2019 | 17:53–15:09 | 1276 | 10 |
7 | Full day personal exposure-2, Albany | 11 March 2019–12 March 2019 | 14:45–15:35 | 1490 | 8 |
Campaign | PM1 | PM2.5 | PM4 | PM7 | PM10 | TSP | BC |
---|---|---|---|---|---|---|---|
1 | 0.80 ± 0.19 | 2.2 ± 0.5 | 2.8 ± 0.6 | 3.1 ± 1.0 | 3.5 ± 1.8 | 7.0 ± 12 | 474 ± 250 |
(0.4–1.3) | (1.0–3.6) | (1.2–5.4) | (1.2–13) | (1.6–22) | (2.0–137) | (56–837) | |
2 | 1.6 ± 1.9 | 15 ± 21 | 25 ± 34 | 28 ± 36 | 30 ± 37 | 37 ± 43 | 1583 ± 1004 |
(0.3–7.8) | (1.1–69) | (2.4–115) | (2.9–122) | (3.3–125) | (3.8–140) | (16–3705) | |
3 | 2.5 ± 3.3 | 16 ± 26 | 46 ± 79 | 85 ± 144 | 111 ± 193 | 149 ± 258 | 959 ± 411 |
(0.2–20) | (1.1–146) | (1.1–465) | (1.5–998) | (2.2–1492) | (3.8–2220) | (20–1625) | |
4 | 10 ± 2.4 | 30 ± 12 | 37 ± 13 | 43 ± 15 | 47 ± 17 | 57 ± 21 | 5843 ± 2099 |
(2.9–16) | (7.4–64) | (9–73) | (11–97) | (13–112) | (13–112) | (1038–8791) | |
5 | 15 ± 29 | 37 ± 55 | 50 ± 65 | 55 ± 72 | 60 ± 76 | 78 ± 82 | 5965 ± 1774 |
(1.2–203) | (2.5–485) | (3.1–560) | (3.7–631) | (4.1–689) | (5.5–774) | (2239–8571) | |
6 | 2.2 ± 2.3 | 10 ± 19 | 20 ± 43 | 28 ± 65 | 32 ± 78 | 38 ± 93 | 1593 ± 2064 |
(0.7–11.4) | (2.3–107) | (2.9–317) | (3.2–568) | (3.2–732) | (3.2–907) | (7.0–10408) | |
7 | 0.65 ± 0.75 | 2.3 ± 2.7 | 5.5 ± 21 | 16 ± 218 | 27 ± 434 | 54 ± 452 | 179 ± 266 |
(0.1–13) | (0.4–54) | (0.9–789) | (0.9–8329) | (0.9–16591) | (0.9–16789) | (2.0–2025) |
Campaign | PM1 | PM2.5 | PM4 | PM7 | PM10 | TSP | BC |
---|---|---|---|---|---|---|---|
1 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.06 | 0.004 |
2 | 0.43 | 3.86 | 6.5 | 7.32 | 7.90 | 9.67 | 0.41 |
3 | 0.04 | 0.22 | 0.63 | 1.16 | 1.53 | 2.05 | 0.01 |
4 | 0.13 | 0.37 | 0.46 | 0.53 | 0.57 | 0.70 | 0.07 |
5 | 40.3 | 102 | 136 | 152 | 164 | 216 | 16.4 |
6 | 3.95 | 18.1 | 35.5 | 48.8 | 56.4 | 68.2 | 2.83 |
7 | 1.69 | 5.87 | 14.3 | 40.7 | 69.7 | 139 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pal, V.K.; Khwaja, H.A. Personal Exposure and Inhaled Dose Estimation of Air Pollutants during Travel between Albany, NY and Boston, MA. Atmosphere 2022, 13, 445. https://doi.org/10.3390/atmos13030445
Pal VK, Khwaja HA. Personal Exposure and Inhaled Dose Estimation of Air Pollutants during Travel between Albany, NY and Boston, MA. Atmosphere. 2022; 13(3):445. https://doi.org/10.3390/atmos13030445
Chicago/Turabian StylePal, Vineet Kumar, and Haider A. Khwaja. 2022. "Personal Exposure and Inhaled Dose Estimation of Air Pollutants during Travel between Albany, NY and Boston, MA" Atmosphere 13, no. 3: 445. https://doi.org/10.3390/atmos13030445
APA StylePal, V. K., & Khwaja, H. A. (2022). Personal Exposure and Inhaled Dose Estimation of Air Pollutants during Travel between Albany, NY and Boston, MA. Atmosphere, 13(3), 445. https://doi.org/10.3390/atmos13030445