The Impact of Intra-Seasonal Oscillation on Westward Track Deflection of Super Typhoon Fitow (2013)
Abstract
:1. Introduction
2. Overview of Super Typhoon Fitow (2013)
3. Model and Experiment Design—Method
4. Simulation Results
4.1. Experiments CTL and NOISO
4.2. Sensitivity of TC Track Deflection to the Zonal Propagation of ISO
4.3. Piecewise PV Inversion Diagnosis
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Li, Y.; Zhang, D.L.; Chen, L. A 65-yr Climatology of Unusual Tracks of Tropical Cyclones in the Vicinity of China’s Coastal Waters during 1949–2013. J. Appl. Meteorol. Climatol. 2018, 57, 155–170. [Google Scholar] [CrossRef]
- Bi, M.; Li, T.; Peng, M.; Shen, X. Interactions between Typhoon Megi (2010) and a Low-Frequency Monsoon Gyre. J. Atmos. Sci. 2015, 72, 2682–2702. [Google Scholar] [CrossRef]
- Carr, L.E.; Elsberry, R.L. Monsoonal Interactions Leading to Sudden Tropical Cyclone Track Changes. Mon. Weather. Rev. 1995, 123, 265–289. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.F.; Wu, C.C.; Yen, T.H.; Huang, Y.H.; Lien, G.Y. Typhoon Fanapi (2010) and Its Interaction with Taiwan Terrain–Evaluation of the Uncertainty in Track, Intensity and Rainfall Simulations. J. Meteorol. Soc. Jpn. 2020, 98, 93–113. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhou, W.; Peng, M.; Li, T. Factors Controlling Northward and North-eastward Moving Tropical Cyclones Near the Coast of East Asia. Front. Earth Sci. 2019, 13, 778–790. [Google Scholar] [CrossRef]
- Shi, W.; Fei, J.; Huang, X.; Cheng, X.; Ding, J.; He, Y. A Numerical Study on the Combined Effect of Midlatitude and Low-latitude Systems on the Abrupt Track Deflection of Typhoon Megi (2010). Mon. Weather. Rev. 2014, 142, 2483–2501. [Google Scholar] [CrossRef]
- Wu, C.C.; Chen, S.G.; Chen, J.H.; Chou, K.H.; Lin, P.H. Interaction of Typhoon Shanshan (2006) with the Midlatitude Trough from Both Adjoint-derived Sensitivity Steering Vector and Potential Vorticity Perspectives. Mon. Weather. Rev. 2009, 137, 852–862. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Liang, J.; Wu, C.C. Monsoonal Influence on Typhoon Morakot (2009). Part II: Observational Analysis. J. Atmos. Sci. 2011, 68, 2208–2221. [Google Scholar] [CrossRef]
- Ge, X.; Yan, Z.; Peng, M.; Bi, M.; Li, T. Sensitivity of Tropical Cyclone Track to the Vertical Structure of a Nearby Monsoon Gyre. J. Atmos. Sci. 2018, 75, 2017–2028. [Google Scholar] [CrossRef]
- Ito, K.; Wu, C.C.; Chan, K.T.F.; Toumi, R.; Davis, C. Recent Progress in the Fundamental Understanding of Tropical Cyclone Motion. J. Meteorol. Soc. Jpn. 2020, 98, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.J.; Zhang, D.L.; Huang, H.L. A Modeling Study of Typhoon Nari (2001) at Landfall. Part I: Topographic Effects. J. Atmos. Sci. 2008, 65, 3095–3115. [Google Scholar] [CrossRef] [Green Version]
- Jian, G.J.; Wu, C.C. A Numerical Study of the Track Deflection of Supertyphoon Haitang (2005) Prior to Its Landfall in Taiwan. Mon. Weather. Rev. 2008, 136, 598–615. [Google Scholar] [CrossRef]
- Wang, C.C.; Chen, Y.H.; Kuo, H.C.; Huang, S.Y. Sensitivity of Typhoon Track to Asymmetric Latent Heating/Rainfall Induced by Taiwan Topography: A Numerical Study of Typhoon Fanapi (2010). J. Geophys. Res. Atmos. 2013, 118, 3292–3308. [Google Scholar] [CrossRef]
- Li, D.Y.; Huang, C.Y. The Influences of Orography and Ocean on Track of Typhoon Megi (2016) Past Taiwan as Identified by HWRF. J. Geophys. Res. Atmos. 2018, 123, 11,492–11,517. [Google Scholar] [CrossRef]
- Wu, C.C.; Li, T.H.; Huang, Y.H. Influence of Mesoscale Topography on Tropical Cyclone Tracks: Further Examination of the Channeling Effect. J. Atmos. Sci. 2015, 72, 3032–3050. [Google Scholar] [CrossRef]
- Huang, K.C.; Wu, C.C. The Impact of Idealized Terrain on Upstream Tropical Cyclone Track. J. Atmos. Sci. 2018, 75, 3887–3910. [Google Scholar] [CrossRef]
- Wu, C.C.; Huang, T.S.; Huang, W.P.; Chou, K.H. A New Look at the Binary Interaction: Potential Vorticity Diagnosis of The Unusual Southward Movement of Tropical Storm Bopha (2000) and Its Interaction with Supertyphoon Saomai (2000). Mon. Weather. Rev. 2003, 131, 1289–1300. [Google Scholar] [CrossRef]
- Yang, C.C.; Wu, C.C.; Chou, K.H.; Lee, C.Y. Binary Interaction between Typhoons Fengshen (2002) and Fungwong (2002) Based on the Potential Vorticity Diagnosis. Mon. Weather. Rev. 2008, 136, 4593–4611. [Google Scholar] [CrossRef] [Green Version]
- Xian, Z.; Chen, K. Numerical Analysis on the Effects of Binary Interaction between Typhoons Tembin and Bolaven in 2012. Adv. Meteorol. 2019, 2019, 7529263. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.C.; Chen, S.G.; Yang, C.C.; Lin, P.H.; Aberson, S.D. Potential Vorticity Diagnosis of the Factors Affecting the Track of Typhoon Sinlaku (2008) and the Impact from Dropwindsonde Data during T-PARC. Mon. Weather. Rev. 2012, 140, 2670–2688. [Google Scholar] [CrossRef]
- Liang, J.; Wu, L. Sudden Track Changes of Tropical Cyclones in Monsoon Gyres: Full-Physics, Idealized Numerical Experiments. J. Atmos. Sci. 2015, 72, 1307–1322. [Google Scholar] [CrossRef]
- Hua, T.; Li, C.Y. Further Study of Typhoon Tracks and the Low-frequency (30–60 days) Wind-field Pattern at 850 hPa. Atmos. Ocean. Sci. Lett. 2010, 3, 319–324. [Google Scholar] [CrossRef]
- Bi, X.; Chen, G.; Shi, D.; Wang, K.; Zhou, W. A Statistical Analysis of the Influences of Multi-Timescale Waves on Tropical Cyclone Sudden Track Changes Over the Western North Pacific. Front. Earth Sci. 2020, 8, 309. [Google Scholar] [CrossRef]
- Ching, L.; Sui, C.-H.; Yang, M.-J.; Lin, P.-L. A Modeling Study on the Effects of MJO and Equatorial Rossby Waves on Tropical Cyclone Genesis over the Western North Pacific in June 2004. Dyn. Atmos. Ocean. 2015, 72, 70–87. [Google Scholar] [CrossRef]
- Bao, X.; Davidson, N.E.; Yu, H.; Hankinson, M.C.; Sun, Z.; Rikus, L.J.; Liu, J.; Yu, Z.; Wu, D. Diagnostics for An Extreme Rain Event Near Shanghai during the Landfall of Typhoon Fitow (2013). Mon. Weather. Rev. 2015, 143, 3377–3405. [Google Scholar] [CrossRef]
- Dong, M.; Ji, C.; Chen, F.; Wang, Y. Numerical Study of Boundary Layer Structure and Rainfall after Landfall of Typhoon Fitow (2013): Sensitivity to Planetary Boundary Layer Parameterization. Adv. Atmos. Sci. 2019, 36, 431–450. [Google Scholar] [CrossRef]
- Lou, L.; Li, X. Radiative Effects on Torrential Rainfall during the Landfall of Typhoon Fitow (2013). Adv. Atmos. Sci. 2016, 33, 101–109. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, Y.; Wu, D.; Chen, G.; Bao, X.; Yang, Q.; Yu, R.; Zhang, L.; Tang, J.; Xu, M. Overview of Severe Typhoon Fitow and Its Operational Forecasts. Trop. Cyclone Res. Rev. 2014, 3, 22–34. [Google Scholar] [CrossRef]
- Kurihara, Y.; Bender, M.A.; Ross, R.J. An Initialization Scheme of Hurricane Models by Vortex Specification. Mon. Weather. Rev. 1993, 121, 2030–2045. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, Y.; Bender, M.A.; Tuleya, R.E.; Ross, R.J. Improvements in the GFDL Hurricane Prediction System. Mon. Weather. Rev. 1995, 123, 2791–2801. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note No. NCAR/TN-475+STR; National Center for Atmospheric Research, University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather. Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Noh, Y.; Cheon, W.; Hong, S.; Raasch, S. Improvement of the K-profile Model for the Planetary Boundary Layer Based on Large Eddy Simulation Data. Bound. Layer Meteorol. 2003, 107, 401–427. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S.; Fritsch, J.M. A One-dimensional Entraining/Detraining Plume Model and its Application in Convective Parameterization. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.; Kiladis, G.N. Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain. J. Atmos. Sci. 1999, 56, 374–399. [Google Scholar] [CrossRef]
- Liang, J.; Wu, L.; Ge, X.; Wu, C.C. Monsoonal Influence on Typhoon Morakot (2009). Part II: Numerical Study. J. Atmos. Sci. 2011, 68, 2222–2235. [Google Scholar] [CrossRef]
- Frank, W.M.; Roundy, P.E. The Role of Tropical Waves in Tropical Cyclogenesis. Mon. Weather. Rev. 2006, 134, 2397–2417. [Google Scholar] [CrossRef]
- Hsu, H.H.; Weng, C.H. Northwestward Propagation of the Intraseasonal Oscillation in the Western North Pacific during the Boreal Summer: Structure and Mechanism. J. Clim. 2001, 14, 3834–3850. [Google Scholar] [CrossRef]
- Ko, K.C.; Hsu, H.H. Sub-monthly Circulation Features associated with Tropical Cyclone Tracks over the East Asian Monsoon Area during July-August Season. J. Meteorol. Soc. Jpn. 2006, 84, 871–889. [Google Scholar] [CrossRef] [Green Version]
- Straub, K.H.; Kiladis, G.N. Interactions between the Boreal Summer Intraseasonal Oscillation and Higher-frequency Tropical Wave Activity. Mon. Weather. Rev. 2003, 131, 945–960. [Google Scholar] [CrossRef]
- Ding, L.; Li, T.; Xiang, B.; Peng, M. On the Westward Turning of Hurricane Sandy (2012): Effect of Atmospheric Intraseasonal Oscillations. J. Clim. 2019, 32, 6859–6873. [Google Scholar] [CrossRef]
- Ko, K.C.; Hsu, H.H. ISO Modulation on the Submonthly Wave Pattern and Recurving Tropical Cyclones in the Tropical Western North Pacific. J. Clim. 2009, 22, 582–599. [Google Scholar] [CrossRef]
- Davis, C.A. Piecewise Potential Vorticity Inversion. J. Atmos. Sci. 1992, 49, 1397–1411. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.A. A Potential Vorticity Diagnosis of the Importance of Initial Structure and Condensational Heating in Observed Extratropical Cyclogenesis. Mon. Weather. Rev. 1992, 120, 2409–2428. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.A.; Emanuel, K.A. Potential Vorticity Diagnostics of Cyclogenesis. Mon. Weather. Rev. 1991, 119, 1929–1953. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.C.; Emanuel, K.A. Potential Vorticity Diagnostics of Hurricane Movement. Part I: A Case Study of Hurricane BOB (1991). Mon. Weather. Rev. 1995, 123, 69–92. [Google Scholar] [CrossRef]
- Wu, C.C.; Emanuel, K.A. Potential Vorticity Diagnostics of Hurricane Movement. Part II: Tropical Storm ANA (1991) and Hurricane ANDREW (1992). Mon. Weather. Rev. 1995, 123, 93–109. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, L.J. The Motion of Hurricane Gloria: A Potential Vorticity Diagnosis. Mon. Weather. Rev. 1996, 124, 2497–2508. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.C.; Huang, T.S.; Chou, K.H. Potential Vorticity Diagnosis of the Key Factors Affecting the Motion of Typhoon Sinlaku (2002). Mon. Weather. Rev. 2004, 132, 2084–2093. [Google Scholar] [CrossRef] [Green Version]
Experiment | Description of Initial Fields and Lateral Boundary Conditions |
---|---|
CTL | Interpolated from the FNL analysis data |
NOISO | Same as control (CTL) experiment, except removing the ISO wave components with zonal wavenumbers of −50~50 and periods of 10–90 days; Negative (positive) wavenumber represents the westward (eastward) propagating component |
NOISO_w | Same as CTL, except removing the westward-propagating ISO wave components with zonal wavenumbers of −50~0 and periods of 10–90 days |
NOISO_e | Same as CTL, except removing the eastward-propagating ISO wave components with zonal wavenumbers of 0~50 and periods of 10–90 days |
NOER | Same as CTL, except removing the westward-propagating equatorial Rossby (ER) wave components with zonal wavenumbers of −10~−1 and periods of 10–48 days |
NOMJO | Same as CTL, except removing the eastward-propagating Madden–Julian oscillations (MJO) wave components with zonal wavenumbers of 1~4 and periods of 20–80 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, X.; Chen, G.; Zhou, W. The Impact of Intra-Seasonal Oscillation on Westward Track Deflection of Super Typhoon Fitow (2013). Atmosphere 2022, 13, 474. https://doi.org/10.3390/atmos13030474
Bi X, Chen G, Zhou W. The Impact of Intra-Seasonal Oscillation on Westward Track Deflection of Super Typhoon Fitow (2013). Atmosphere. 2022; 13(3):474. https://doi.org/10.3390/atmos13030474
Chicago/Turabian StyleBi, Xinxin, Guanghua Chen, and Weican Zhou. 2022. "The Impact of Intra-Seasonal Oscillation on Westward Track Deflection of Super Typhoon Fitow (2013)" Atmosphere 13, no. 3: 474. https://doi.org/10.3390/atmos13030474
APA StyleBi, X., Chen, G., & Zhou, W. (2022). The Impact of Intra-Seasonal Oscillation on Westward Track Deflection of Super Typhoon Fitow (2013). Atmosphere, 13(3), 474. https://doi.org/10.3390/atmos13030474