Ozone Monitoring in the Baikal Region (East Siberia): Spatiotemporal Variability under the Influence of Air Pollutants and Site Conditions
Abstract
:1. Introduction
2. Monitoring Sites and Methods
3. Results
3.1. Spatial Variabilities of Ozone Concentrations in the Region
3.2. Ozone Concentrations and Air Pollution
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agyei, T.; Juráň, S.; Edwards-Jonášová, M.; Fischer, M.; Švik, M.; Komínková, K.; Ofori-Amanfo, K.K.; Marek, M.V.; Grace, J.; Urban, O. The influence of ozone on net ecosystem production of a ryegrass–clover mixture under field conditions. Atmosphere 2021, 12, 1629. [Google Scholar] [CrossRef]
- Juráň, S.; Grace, J.; Urban, O. Temporal changes in ozone concentrations and their impact on vegetation. Atmosphere 2021, 12, 82. [Google Scholar] [CrossRef]
- Levy, H. Photochemistry of the lower troposphere. Planet. Space Sci. 1972, 20, 919–935. [Google Scholar]
- Belan, B.D. Ozone in Troposphere; Institute of Atmosphere Optics SB RAS: Tomsk, Russia, 2010; 527p. [Google Scholar]
- Logan, J.A.; Prather, M.J.; Wofsy, S.C.; McElroy, M.B. Tropospheric chemistry: A global perspective. J. Geophys. Res. 1981, 86, 7210–7254. [Google Scholar] [CrossRef]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- Fowler, D.; Amann, M.; Anderson, R.; Ashmore, M.; Cox, P.; Depledge, M.; Derwent, D.; Grennfelt, P.; Hewitt, N.; Hov, O.; et al. Ground-Level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications; The Royal Society: London, UK, 2008; ISBN 978-0-85403-713-1. [Google Scholar]
- Akimoto, N. Tropospheric Ozone a Growing Threat; Acid Deposition and Oxidant Research Centre: Niigata, Japan, 2006; 26p. [Google Scholar]
- Cocks, A.T.; Kallend, A.S.; Marsh, A.R.W. Dispersion limitations of oxidation in power plant plumes during long-range transport. Nature 1983, 305, 122–123. [Google Scholar]
- Obolkin, V.A.; Potemkin, V.L.; Makukhin, V.L.; Chipanina, Y.V.; Marinayte, I.I. Low-level atmospheric jets as main mechanism of long-range transport of power plant plumes in the Lake Baikal Region. Int. J. Environ. Stud. 2014, 71, 391–397. [Google Scholar]
- Obolkin, V.; Khodzher, T.; Sorokovikova, L.; Tomberg, I.; Netsvetaeva, O.; Golobokova, L. Effect of long-range transport of sulphur and nitrogen oxides from large coal power plants on acidification of river waters in the Baikal region, East Siberia. Int. J. Environ. Stud. 2016, 73, 452–461. [Google Scholar] [CrossRef]
- Pochanart, P.; Kato, S.; Katsuno, T.; Akimoto, H. Eurasian continental background and regionally polluted levels of ozone and CO observed in northeast Asia. Atmos. Environ. 2004, 38, 1325–1336. [Google Scholar]
- Pochanart, P.; Akimoto, H.; Kajii, Y.; Potemkin, V.; Khodzher, T. Regional background ozone and carbon monoxide variations in remote Siberia/East Asia. J. Geophys. Res. 2003, 108, 4028. [Google Scholar] [CrossRef]
- Kholyavitskaya, A.A.; Potemkin, V.L.; Golobokova, L.P.; Khodzher, T.V. Measurements of concentrations of surface ozone using passive sampling. Opt. Atmos. Ocean 2011, 24, 828–831. [Google Scholar]
- Khuriganova, O.; Obolkin, V.; Akimoto, H.; Ohizumi, T.; Khodzher, T.; Potemkin, V.; Golobokova, L. Long-Term Dynamics of Ozone in Surface Atmosphere at Remote Mountain, Rural and Urban Sites of South-East Siberia, Russia. Open Access Library J. 2016, 3, e2578. [Google Scholar] [CrossRef]
- Potemkin, V.L.; Golobokova, L.P.; Khodzher, T.V. Climatology and Chemistry of Surface Ozone and Aerosol under Alpine Conditions in East Siberia. Aerosol Air Qual. Res. 2019, 19, 1214–1225. [Google Scholar] [CrossRef]
- Monitoring of Environmental Pollution. Available online: http://www.feerc.ru/baikal/ru/monitoring/air/ (accessed on 20 December 2021).
- Obolkin, V.; Molozhnikova, E.; Shikhovtsev, M.; Netsvetaeva, O.; Khodzher, T. Sulfur and Nitrogen Oxides in the Atmosphere of Lake Baikal: Sources, Automatic Monitoring, and Environmental Risks. Atmosphere 2021, 12, 1348. [Google Scholar] [CrossRef]
- Trifonova-Yakovleva, A.M.; Gromov, S.A.; Gromov, S.S.; Khodzher, T.V.; Potemkin, V.L.; Obolkin, V.A. On the possibility of using the GOME2 high resolution ozone profiles for assessment of near-surface ozone concentrations // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the earth from space]. Curr. Probl. Remote Sens. Earth Space 2017, 14, 239–247. (In Russian) [Google Scholar] [CrossRef]
- Zayakhanov, A.; Khodzher, T.; Tcydypov, V.; Balzhanov, T.; Dementeva, A. Studies of the Dispersed Composition of Atmospheric Aerosol and Its Relationship with Small Gas Impurities in the Near-Water Layer of Lake Baikal Based on the Results of Ship Measurements in the Summer of 2020. Atmosphere 2022, 13, 139. [Google Scholar] [CrossRef]
- Zayakhanov, A.S.; Zhamsueva, G.S.; Tsydypov, V.V.; Balzhanov, T.S.; Balin, Y.S.; Penner, I.E.; Kokhanenko, G.P.; Nasonov, S.V. Specific Features of Transport and Transformation of Atmospheric Aerosol and Gas Admixtures in the Coastal Zone of Lake Baikal. Atmos. Ocean. Opt. 2019, 32, 158–164. [Google Scholar]
- Zayakhanov, A.S.; Zhamsueva, G.S.; Tcydypov, V.V.; Balzhanov, T.S.; Dementeva, A.L.; Khodzher, T.V. Investigation of Transport and Transformation of Tropospheric Ozone in Terrestrial Ecosystems of the Coastal Zone of Lake Baikal. Atmosphere 2019, 10, 739. [Google Scholar] [CrossRef] [Green Version]
- IUGMS. The state of atmospheric air pollution in cities on the territory of the activity of the FSBI Irkutsk UGMS in 2016. In Yearbook; IUGMS: Irkutsk, Russia, 2017; 100p. [Google Scholar]
- Demin, V.I.; Beloglazov, M.I.; Elansky, N.F. On relationship between ozone concentration and height of mixing layer. Opt. Am. Ocean. 2004, 17, 662–665. [Google Scholar]
- Yadav, R.; Sahu, L.K.; Beig, G.; Jaaffrey, S.N.A. Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India. Atmos. Res. 2016, 176, 96–107. [Google Scholar] [CrossRef]
- Monks, P.S. A review of the observations and origins of the spring ozone maximum. Atmos. Environ. 2000, 34, 3545–3561. [Google Scholar]
- Albers, J.R.; Perlwitz, J.; Butler, A.H.; Birner, T.; Kiladis, G.N.; Lawrence, Z.; Dias, J. Mechanisms governing interannual variability of stratosphere-to-troposphere ozone transport. J. Geophys. Res. Atmos. 2018, 123, 234–260. [Google Scholar] [CrossRef]
Meteorological Parameters | Months | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | ||
Air tempe-rature, (°C) | Average | −16.6 | −15.1 | −6.2 | 0.4 | 5.5 | 10.1 | 13.0 | 13.7 | 8.2 | 2.8 | −3.7 | −10.5 |
Absol. Maxim. | −4.7 | −1.6 | 9.4 | 10.7 | 16.1 | 22.1 | 28.8 | 25.5 | 20.6 | 12.8 | 9.7 | −0.7 | |
Absol. Minim. | −28.3 | −31.0 | −23.9 | −2.4 | −2.7 | 2.4 | 5.6 | 6.3 | −0.3 | −7.3 | −16.5 | −27.4 | |
Air humidity, (%) | 79 | 73 | 66 | 64 | 71 | 77 | 87 | 88 | 78 | 73 | 75 | 76 | |
Wind speed, (m/s) | 4.6 | 3.7 | 3.5 | 3.3 | 3.3 | 2.7 | 2.0 | 2.9 | 3.4 | 3.2 | 3.7 | 4.9 | |
Prevailing wind direction | N | SSE | N | N | N | N | SSE | N | N | N | N | N | |
Precipitation, (mm) | 27 | 9 | 8 | 14 | 107 | 64 | 148 | 11 | 64 | 11 | 10 | 16 |
Angarsk | Irkutsk | Listvyanka | Selenginsk | Ulan-Ude | Gusinoozersk | |
---|---|---|---|---|---|---|
January | −0.14 | −0.62 | −0.58 | −0.92 | −0.42 | |
February | −0.29 | −0.60 | −0.45 | −0.64 | −0.82 | −0.45 |
March | −0.42 | −0.62 | −0.75 | −0.90 | −0.64 | |
April | −0.25 | −0.44 | −0.58 | −0.92 | −0.61 | |
May | −0.12 | +0.10 | −0.38 | −0.06 | −0.53 | −0.27 |
June | +0.24 | −0.26 | −0.40 | −0.01 | −0.02 | +0.01 |
July | −0.18 | −0.24 | −0.16 | −0.14 | −0.05 | −0.32 |
August | −0.14 | +0.14 | −0.52 | −0.39 | −0.64 | −0.35 |
September | −0.08 | −0.01 | −0.70 | −0.29 | −0.52 | −0.53 |
October | −0.68 | −0.34 | −0.38 | −0.57 | −0.76 | −0.82 |
November | −0.18 | −0.49 | −0.41 | −0.75 | −0.62 | −0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obolkin, V.; Potemkin, V.; Khuriganova, O.; Khodzher, T. Ozone Monitoring in the Baikal Region (East Siberia): Spatiotemporal Variability under the Influence of Air Pollutants and Site Conditions. Atmosphere 2022, 13, 519. https://doi.org/10.3390/atmos13040519
Obolkin V, Potemkin V, Khuriganova O, Khodzher T. Ozone Monitoring in the Baikal Region (East Siberia): Spatiotemporal Variability under the Influence of Air Pollutants and Site Conditions. Atmosphere. 2022; 13(4):519. https://doi.org/10.3390/atmos13040519
Chicago/Turabian StyleObolkin, Vladimir, Vladimir Potemkin, Olga Khuriganova, and Tamara Khodzher. 2022. "Ozone Monitoring in the Baikal Region (East Siberia): Spatiotemporal Variability under the Influence of Air Pollutants and Site Conditions" Atmosphere 13, no. 4: 519. https://doi.org/10.3390/atmos13040519
APA StyleObolkin, V., Potemkin, V., Khuriganova, O., & Khodzher, T. (2022). Ozone Monitoring in the Baikal Region (East Siberia): Spatiotemporal Variability under the Influence of Air Pollutants and Site Conditions. Atmosphere, 13(4), 519. https://doi.org/10.3390/atmos13040519