The Effect of Metro Construction on the Air Quality in the Railway Transport System of Sydney, Australia
Abstract
:1. Introduction
2. Methodology
2.1. Instrumentation
2.2. Railway Route Selection and Measurement Procedure
3. Result and Discussion
3.1. PM Concentration inside Train Cabins
3.1.1. Average PM Concentrations of All Related Stations and Effect of Weather on PM Concentrations
3.1.2. Comparison of PM Concentrations in Different Periods
3.1.3. Comparison of PM Concentration inside Train Cabins between Ground and Underground Levels
3.2. Impact of the Existing Environment Pollution and Sydney Metro Construction Activities on Air Quality inside Train Cabins
3.2.1. Effect of the Existing Environmental Pollution
3.2.2. Effect of Potential Construction
- Excavation, handling, stockpiling, loading and unloading, and transport of spoil;
- Demolition of structures and the handling, stockpiling and transport of demolition material;
- Transport, loading and unloading, stockpiling, and handling of imported construction materials such as imported fill;
- Creation of exposed surfaces through the stripping of topsoil and other overlying structures (such as road and footpath pavements); the potential generation of dust emissions would be increased due to the wind erosion;
- Concrete batching and pre-cast concreting.
- During the combustion of fuel in construction plant, machinery and equipment;
- Handling and on-site storage of fuel and other chemicals.
3.3. HCHO and TVOC Levels inside Train Cabins
4. Conclusions
- The Sydney Metro construction activities insignificantly affect the PM concentrations inside the train at T3 line. The concentrations during the daytime are slightly higher than the nighttime. The difference in PM concentrations from these periods was around 6.8 μg/m3 for PM2.5 and 12.1 μg/m3 for PM10.
- PM concentrations inside the train at the ground level were lower than PM concentrations inside the train at the underground level. However, these concentrations were still lower than the national air quality standards.
- The meteorology insignificantly affects the PM concentrations inside the train at T3 line. From all related stations, the difference in temperatures was around 1 °C, while the difference in the RH was around 7.1%.
- The average HCHO and TVOC concentrations were lower than the recommendation criteria. The sample exceeding recommended levels of these compounds was around 1–1.4% of the total.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2007, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Katsouyanni, K. Ambient air pollution and health. Br. Med Bull. 2003, 68, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167. [Google Scholar] [CrossRef] [Green Version]
- Pöschl, U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. Int. Ed. 2005, 44, 7520. [Google Scholar] [CrossRef]
- Campbell, A. Inflammation, neurodegenerative diseases, and environmental exposures. Ann. N. Y. Acad. Sci. 2004, 1035, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.J.; Sioutas, C.; Malik, S. Potential Role of Ultrafine Particles in Associations between Airborne Particle Mass and Cardiovascular Health. Environ. Heal. Perspect. 2005, 113, 934–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A.; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallero, D. Fundamentals of Air Pollution; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Chuang, K.J.; Chan, C.C.; Su, T.C.; Lee, C.T.; Tang, C.S. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am. J. Resp. Crit. Care 2007, 176, 370–376. [Google Scholar] [CrossRef]
- Larpruenrudee, P.; Islam, M.S.; Paul, G.; Paul, A.R.; Gu, Y.T.; Saha, S.C. Model for Pharmaceutical aerosol transport through stenosis airway. In Handbook of Lung Targeted Drug Delivery Systems: Recent Trends and Clinical Evidences; CRC Press: Boca Raton, FL, USA, 2021; p. 91. [Google Scholar]
- Islam, M.; Larpruenrudee, P.; Hossain, S.; Rahimi-Gorji, M.; Gu, Y.; Saha, S.; Paul, G. Polydisperse Aerosol Transport and Deposition in Upper Airways of Age-Specific Lung. Int. J. Environ. Res. Public Health 2021, 18, 6239. [Google Scholar] [CrossRef]
- Gu, Q.; Qi, S.; Yue, Y.; Shen, J.; Zhang, B.; Sun, W.; Qian, W.; Islam, M.S.; Saha, S.; Wu, J. Structural and functional alterations of the tracheobronchial tree after left upper pulmonary lobectomy for lung cancer. Biomed. Eng. Online 2019, 18, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Ong, H.; Young, P.; Gu, Y. Euler–Lagrange approach to investigate respiratory anatomical shape effects on aerosol particle transport and deposition. Toxicol. Res. Appl. 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Islam, M.S.; Saha, S.C. Targeted Drug Delivery of Magnetic Nano-Particle in the Specific Lung Region. Computation 2020, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Larpruenrudee, P.; Paul, A.R.; Paul, G.; Gemci, T.; Gu, Y.; Saha, S.C. SARS CoV-2 aerosol: How far it can travel to the lower airways? Phys. Fluids 2021, 33, 61903. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Raghav, V.; Padhmashali, V.; Paul, G.; Islam, M.S.; Saha, S.C. Airflow and Particle Transport Prediction through Stenosis Airways. Int. J. Environ. Res. Public Health 2020, 17, 1119. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Gu, Y.; Farkas, A.; Paul, G.; Saha, S.C. Helium–Oxygen Mixture Model for Particle Transport in CT-Based Upper Airways. Int. J. Environ. Res. Public Health 2020, 17, 3574. [Google Scholar] [CrossRef]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Gu, Y.; Ristovski, Z. Numerical investigation of aerosol particle transport and deposition in realistic lung airway. In Proceedings of the International Conference on Computational Methods, Auckland, New Zealand, 14–17 July 2015. [Google Scholar]
- IARC International Agency for Research on Cancer. Air Pollution and Cancer; IARC Scientific Publications: Geneva, Switzerland, 2013. [Google Scholar]
- Löndahl, J.; Massling, A.; Pagels, J.; Swietlicki, E.; Vaclavik, E.; Loft, S. Size-Resolved Respiratory-Tract Deposition of Fine and Ultrafine Hydrophobic and Hygroscopic Aerosol Particles During Rest and Exercise. Inhal. Toxicol. 2007, 19, 109–116. [Google Scholar] [CrossRef]
- Russell, A.G.; Brunekreef, B. A Focus on Particulate Matter and Health. Environ. Sci. Technol. 2009, 43, 4620–4625. [Google Scholar] [CrossRef] [Green Version]
- Farrell, W.; Weichenthal, S.; Goldberg, M.; Valois, M.F.; Shekarrizfard, M.; Hatzopoulou, M. Near roadway air pollution across a spatially extensive road and cycling network. Environ. Pollut. 2016, 212, 498–507. [Google Scholar] [CrossRef]
- Gramotnev, D.K.; Gramotnev, J. A new mechanism of aerosol evolution near a busy road: Fragmentation of nanoparticles. J. Aerosol Sci. 2005, 36, 323–340. [Google Scholar] [CrossRef]
- Kingham, S.; Longley, I.; Salmond, J.; Pattinson, W.; Shrestha, K. Variations in exposure to traffic pollution while travelling by different modes in a low density, less congested city. Environ. Pollut. 2013, 181, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Tartakovsky, L.; Baibikov, V.; Czerwinski, J.; Gutman, M.; Kasper, M.; Popescu, D.; Veinblat, M.; Zvirin, Y. In-vehicle particle air pollution and its mitigation. Atmos. Environ. 2013, 64, 320–328. [Google Scholar] [CrossRef]
- Whitlow, T.H.; Hall, A.; Zhang, K.M.; Anguita, J. Impact of local traffic exclusion on near-road air quality: Findings from the New York City “Summer Streets” campaign. Environ. Pollut. 2011, 159, 2016–2027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhu, Y. Measurements of ultrafine particles and other vehicular pollutants inside school buses in South Texas. Atmos. Environ. 2010, 44, 253–261. [Google Scholar] [CrossRef]
- Zuurbier, M.; Hoek, G.; Oldenwening, M.; Lenters, V.; Meliefste, K.; Van den Hazel, P.; Brunekreef, B. Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ. Health Perspect. 2010, 118, 783–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joodatnia, P.; Kumar, P.; Robins, A. Fast response sequential measurements and modelling of nanoparticles inside and outside a car cabin. Atmos. Environ. 2013, 71, 364–375. [Google Scholar] [CrossRef] [Green Version]
- UIC—International Union of Railways. Railway Handbook 2015—Energy Consumption and CO2 Emissions: Focus on Vehicle Efficiency; OECD/IEA: Paris, France, 2015; p. 102. [Google Scholar]
- Song, M.; Zhang, G.; Zeng, W.; Liu, J.; Fang, K. Railway transportation and environmental efficiency in China. Transp. Res. Part D Transp. Environ. 2016, 48, 488–498. [Google Scholar] [CrossRef]
- Fridell, E.; Ferm, M.; Ekberg, A. Emissions of particulate matters from railways—Emission factors and condition monitoring. Transp. Res. Part D Transp. Environ. 2010, 15, 240–245. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Nilsson, L.; Möller, L. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells. Chem. Res. Toxicol. 2005, 18, 19–23. [Google Scholar] [CrossRef]
- Alexeyev, A. Transport Trends and Challenges in the Russian Federation. In Proceedings of the 24th Session Working Party on Transport Trends and Economics (WP.5) UNECE Inland Transport Committee, Geneva, Switzerland, 6–7 September 2011; The Ministry of Transport of the Russian Federation: Moscow, Russia. [Google Scholar]
- Kam, W.; Cheung, K.; Daher, N.; Sioutas, C. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos. Environ. 2011, 45, 1506–1516. [Google Scholar] [CrossRef]
- Cartenì, A.; Cascetta, F.; Campana, S. Underground and ground level particulate matter concentrations in an Italian metro system. Atmos. Environ. 2015, 101, 328–337. [Google Scholar] [CrossRef]
- Cusack, M.; Talbot, N.; Ondráček, J.; Minguillón, M.; Martins, V.; Klouda, K.; Schwarz, J.; Ždímal, V. Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro. Atmos. Environ. 2015, 118, 176–183. [Google Scholar] [CrossRef]
- Perrino, C.; Marcovecchio, F.; Tofful, L.; Canepari, S. Particulate matter concentration and chemical composition in the metro system of Rome, Italy. Environ. Sci. Pollut. Res. 2015, 22, 9204–9214. [Google Scholar] [CrossRef] [PubMed]
- Kam, W.; Ning, Z.; Shafer, M.; Schauer, J.; Sioutas, C. Chemical characterisation of coarse and fine particulate matter (PM) in underground and ground-level rail systems of the Los Angeles metro. Environ. Sci. Technol. 2011, 45, 6769–6776. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-H.; Yan, J.-W. Comparisons of particulate matter, CO, and CO2 levels in underground and ground-level stations in the Taipei mass rapid transit system. Atmos. Environ. 2011, 45, 4882–4891. [Google Scholar] [CrossRef]
- Park, D.-U.; Ha, K.-C. Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul, Korea. Environ. Int. 2008, 34, 629–634. [Google Scholar] [CrossRef]
- Mohsen, M.; Ahmed, M.B.; Zhou, J.L. Particulate matter concentrations and heavy metal contamination levels in the railway transport system of Sydney, Australia. Transp. Res. Part D Transp. Environ. 2018, 62, 112–124. [Google Scholar] [CrossRef]
- Aarnio, P.; Yli-Tuomi, T.; Kousa, A.; Mäkelä, T.; Hirsikko, A.; Hämeri, K.; Räisänen, M.; Hillamo, R.; Koskentalo, T.; Jantunen, M. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos. Environ. 2005, 39, 5059–5066. [Google Scholar] [CrossRef]
- Abbasi, S.; Wahlström, J.; Olander, L.; Larsson, C.; Olofsson, U.; Sellgren, U. A study of airborne wear particles generated from organic railway brake pads and brake discs. Wear 2011, 273, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Moreno, T.; Perez, N.; Reche, C.; Martins, V.; De Miguel, E.; Capdevila, M.; Centelles, S.; Minguillón, M.C.; Amato, F.; Alastuey, A.; et al. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ. 2014, 92, 461–468. [Google Scholar] [CrossRef]
- Namgung, H.-G.; Kim, J.-B.; Woo, S.-H.; Park, S.; Kim, M.; Kim, M.-S.; Bae, G.-N.; Park, D.; Kwon, S.-B. Generation of Nanoparticles from Friction between Railway Brake Disks and Pads. Environ. Sci. Technol. 2016, 50, 3453–3461. [Google Scholar] [CrossRef] [PubMed]
- Sydney Metro City & Southwest. Sydenham to Bankstown Upgrade: State Significant Infrastructure Application Report; Transport for NSW: Sydney, Australia, 2017.
- Office of Environment and Heritage. Annual Report 2015-16; NSW Office of Environment and Heritage: Sidney, Australia, 2016.
- NSW Department of Planning and Environment. Air Quality Map. Available online: https://www.dpie.nsw.gov.au/air-quality/air-quality-maps/sydney-map (accessed on 5 February 2022).
- Elitech. Field Evaluation, Elitech Temtop LKC-1000+. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/elitech-temtop-lkc-1000s---field-evaluation.pdf?sfvrsn=14 (accessed on 17 March 2022).
- Elitech. Laboratory Evaluation: Elitch Temtop LKC-1000+. Available online: http://www.aqmd.gov/docs/default-source/aq-spec/laboratory-evaluations/elitech-temtop-lkc-1000s---lab-evaluation.pdf?sfvrsn=8 (accessed on 17 March 2022).
- Department of the Environment and Energy. National Pollutant Inventory. Available online: https://data.gov.au/dataset/ds-dga-043f58e0-a188-4458-b61c-04e5b540aea4/details?q= (accessed on 27 April 2022).
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- NSW Department of Planning and Environment. Standards and Goals for Measuring air Pollution. Available online: https://www.environment.nsw.gov.au/topics/air/understanding-air-quality-data/standards-and-goals (accessed on 5 February 2022).
- Sydney Metro City & Southwest. Sydenham to Bankstown Upgrade: Environmental Impact Statement Volume 1B-Parts C and D; Transport for NSW: Sidney, Australia, 2017.
- Sydney Metro: Sydenham to Bankstown Substations. Stations and Sites. Available online: https://www.sydneymetro.info/station/sydenham-bankstown-substations (accessed on 17 March 2022).
- Mølhave, L. The sick buildings and other buildings with indoor climate problems. Environ. Int. 1989, 15, 65–74. [Google Scholar] [CrossRef]
- Henderson, L.; Brusick, D.; Ratpan, F.; Veenstra, G. A review of the genotoxicity of ethylbenzene. Mutat. Res.-Rev. Mutat. Res. 2007, 635, 81–89. [Google Scholar] [CrossRef]
- Atkinson, T.J. A review of the role of benzene metabolites and mechanisms in malignant transformation: Summative evidence for a lack of research in nonmyelogenous cancer type. Int. J. Hyg. Env. Health 2009, 212, 1–10. [Google Scholar] [CrossRef]
- Possanzini, M.; Di Palo, V. Simultaneous determination of HCHO, CH3CHO and O-X in ambient air by hydrazine reagent and HPLC. Ann. Chim. Rome 2003, 93, 149–156. [Google Scholar]
- Nissen, N.I.; Ohlsen, A.S. Erythromyelosis; review and report of a case in a Benzene (Benzol) worker. Acta Medica Scand. 1953, 145, 56–71. [Google Scholar] [CrossRef]
- Ohura, T.; Amagai, T.; Fusaya, M. Regional assessment of ambient volatile organic compounds in an industrial harbor area, Shizuoka, Japan. Atmos. Environ. 2006, 40, 238–248. [Google Scholar] [CrossRef]
- Weng, M.L.; Zhu, L.Z.; Yang, K. Levels and health risks of carbonyl compounds in selected public places in Hangzhou, China. J. Hazard. Mater. 2009, 164, 700–706. [Google Scholar] [CrossRef]
- Seow, A.; Poh, W.T.; Teh, M.; Eng, P.; Wang, Y.T.; Tan, W.C.; Yu, M.C.; Lee, H.P. Fumes from meat cooking and lung cancer risk in Chinese women. Cancer Epidemiol. Biomark. Prev. 2000, 9, 1215–1221. [Google Scholar]
- Wang, H.-W.; Chen, T.-L.; Yang, P.-C.; Ma, Y.-C.; Yu, C.-C.; Ueng, T.-H. Induction of cytochromes P450 1A1 and 1B1 in human lung adenocarcinoma CL5 cells by frying-meat emission particulate. Food Chem. Toxicol. 2002, 40, 653–661. [Google Scholar] [CrossRef]
- Saguy, L.S.; Dana, D. Integrated approach to deep fat frying: Engineering, nutrition, health and consumer aspects. J. Food Eng. 2003, 56, 143–152. [Google Scholar] [CrossRef]
- Aksoy, M. Different types of malignancies due to occupational exposure to benzene: A review of recent observations in Turkey. Environ. Res. 1980, 23, 181–190. [Google Scholar] [CrossRef]
- Plaisance, H.; Blondel, A.; Desauziers, V.; Mocho, P. Characteristics of formaldehyde emissions from indoor materials assessed by a method using passive flux sampler measurements. Build. Environ. 2014, 73, 249–255. [Google Scholar] [CrossRef]
- Tang, J.; Chan, C.; Wang, X.; Chan, L.; Sheng, G.; Fu, J. Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China. Atmos. Environ. 2005, 39, 7374–7383. [Google Scholar] [CrossRef]
- NSW Environment Protection Authority. Air Emission in My Community Web Tool: Substance Information. Available online: https://www.epa.nsw.gov.au/~/media/EPA/Corporate%20Site/resources/air/130841AEsubstance.ashx (accessed on 27 April 2022).
- National Construction Code: Australian Building Codes Board. Handbook: Indoor Air Quality. Available online: https://ncc.abcb.gov.au/sites/default/files/resources/2021/Handbook-Indoor-Air-Quality.pdf (accessed on 27 April 2022).
Station | PM2.5 (µg/m3) Avg ± SD | PM10 (µg/m3) Avg ± SD | Temperature (°C) Avg ± SD | Relative Humidity (%) Avg ± SD |
---|---|---|---|---|
Central | 7.7 ± 5.2 | 10.8 ± 7.3 | 24.1 ± 1.9 | 58.5 ± 10.4 |
Redfern | 4.6 ± 2.7 | 6.5 ± 3.8 | 24.3 ± 1.7 | 54.8 ± 7.3 |
Erskineville | 4.2 ± 2.9 | 5.9 ± 4.1 | 24.3 ± 1.5 | 53.7 ± 6.0 |
St Peters | 4.1 ± 2.8 | 5.8 ± 3.9 | 24.3 ± 1.3 | 53.3 ± 5.8 |
Sydenham | 4.6 ± 3.9 | 6.5 ± 5.4 | 24.4 ± 1.2 | 53.3 ± 5.5 |
Marrickville | 4.5 ± 3.6 | 6.3 ± 4.8 | 24.4 ± 1.2 | 53.4 ± 5.2 |
Dulwich Hill | 4.1 ± 3.0 | 5.8 ± 4.2 | 24.4 ± 1.4 | 53.6 ± 5.6 |
Hurlstone Park | 4.0 ± 2.6 | 5.6 ± 3.7 | 24.5 ± 1.6 | 53.9 ± 5.7 |
Canterbury | 6.4 ± 4.7 | 8.9 ± 6.6 | 24.3 ± 1.7 | 57.0 ± 6.8 |
Campsie | 4.6 ± 3.6 | 6.5 ± 5.1 | 24.9 ± 1.0 | 52.1 ± 4.7 |
Belmore | 4.4 ± 3.6 | 6.2 ± 5.0 | 24.9 ± 1.0 | 51.9 ± 5.0 |
Lakemba | 4.2 ± 3.4 | 6.0 ± 4.8 | 24.9 ± 1.1 | 51.6 ± 4.6 |
Wiley Park | 4.3 ± 3.5 | 6.0 ± 4.9 | 24.9 ± 1.2 | 51.4 ± 3.3 |
Punchbowl | 4.1 ± 3.3 | 5.7 ± 4.6 | 25.0 ± 1.2 | 51.7 ± 4.3 |
Bankstown | 6.8 ± 4.7 | 9.5 ± 6.6 | 25.0 ± 1.3 | 57.3 ± 4.4 |
Facility Name | Industrial Facility | Substance Release | Location | Opening Hours |
---|---|---|---|---|
Asphalt Plant | Other petroleum and coal product manufacturing | CO, NOx, PM2.5, PM10, PAHs SO2, TVOCs, other chemical compounds (F−, Mn) | Alexandria | Weekday: 6:00 a.m.–3:00 p.m. Weekend: 6:00 a.m.–1:00 p.m. (Saturday only) |
Monroe Springs | Spring and wire product manufacturing | CO, C8H10, C6H12, C7H8, C4H8O2, C4H8O, C6H12O, NOx, PM2.5, PM10, PAHs, SO2, TVOCs, other chemical compounds (Hg) | Alexandria | Weekday: 8:00 a.m.–4:30 p.m. Weekend: closed |
Viva Energy Airport | Petroleum product wholesaling | C7H8, C8H10, TVOCs | Bankstown | Weekday: 5:00 a.m.–10:30 p.m. Weekend: 6:00 a.m.–6:00 p.m. |
Bankstown Airport | Petroleum product wholesaling | C6H6, C9H12, C8H10, C7H8, C8H10, C6H14, TVOCs | Bankstown | 24 h a day |
Qantas Sydney | Aircraft manufacturing and repair services | CO, C8H10, C9H12, NOx, PM2.5, PM10, PAHs, SO2, TVOCs, other chemical compounds (As, Be, Cd, Cr2O3, Cu, Pb, Hg, Ni, Zn), Polychlorinated dioxins & furans | Mascot | 24 h a day |
Sydney Airport | Airport operations and other air transport support services | CO, C8H10, C9H12, NOx, PM2.5, PM10, PAHs, SO2, TVOCs, other chemical compounds (As, Be, Cd, Cr2O3, Cu, Pb, Hg, Ni, Zn), Polychlorinated dioxins & furans | Mascot | 24 h a day |
Ensign Services | Laundry and dry-cleaning services | CO, SO2, C8H10, NOx, PM2.5, PM10, TVOCs, PAHs | Punchbowl | Weekday: 7:30 a.m.–5:00 p.m. Weekend: 7:30 a.m.–5:00 p.m. (Saturday only) |
Austral Bricks | Other ceramic product manufacturing | CO, SO2, NOx, PM2.5, PM10, TVOCs, HCI, PAHs, other chemical compounds (As, Be, Cd, Cr2O3, CrO3, Cu, F−, Pb, Mn, Hg, Ni, Zn), Polychlorinated dioxins & furans | Punchbowl | Weekday: 8:00 a.m.–4:00 p.m. Weekend: 9:00 a.m.–12:00 p.m. (Saturday only) |
Sydney Trains Maintenance Centre | Railway rolling stock manufacturing and repair services | C9H12, C8H10, TVOCs, | Sydenham | 24 h a day |
Object (Unit) | Avg | Min. | Median | Max. | Recommended Criteria | Sample Exceeding Recommended Levels (%) |
---|---|---|---|---|---|---|
HCHO (µg/m3) | 18.8 | 10 | 10 | 1500 | <100 | 1.0 |
TVOC (µg/m3) | 88.9 | 40 | 60 | 4250 | <500 | 1.4 |
Station | Avg | Min. | Median | Max. | Sample Exceeding Recommended Levels (%) |
---|---|---|---|---|---|
Central | 21.0 | 10 | 10 | 270 | 2.2 |
Redfern | 17.5 | 10 | 10 | 80 | 0 |
Erskineville | 15.4 | 10 | 10 | 70 | 0 |
St Peters | 15.0 | 10 | 10 | 80 | 0 |
Sydenham | 15.5 | 10 | 10 | 70 | 0 |
Marrickville | 16.6 | 10 | 10 | 110 | 1.1 |
Dulwich Hill | 18.6 | 10 | 10 | 170 | 1.1 |
Hurlstone Park | 18.0 | 10 | 10 | 70 | 0 |
Canterbury | 41.0 | 10 | 10 | 1500 | 5.4 |
Campsie | 19.6 | 10 | 10 | 80 | 0 |
Belmore | 17.7 | 10 | 10 | 130 | 1.1 |
Lakemba | 15.4 | 10 | 10 | 90 | 0 |
Wiley Park | 10.4 | 10 | 10 | 20 | 0 |
Punchbowl | 11.9 | 10 | 10 | 20 | 0 |
Bankstown | 10.8 | 10 | 10 | 20 | 0 |
Station | Avg | Min. | Median | Max. | Sample Exceeding Recommended Levels (%) |
---|---|---|---|---|---|
Central | 115.5 | 40 | 60 | 930 | 5.4 |
Redfern | 86.1 | 40 | 60 | 420 | 0 |
Erskineville | 76.9 | 40 | 60 | 320 | 0 |
St Peters | 88.3 | 40 | 60 | 1400 | 1.1 |
Sydenham | 73.7 | 40 | 60 | 320 | 0 |
Marrickville | 80.5 | 40 | 60 | 540 | 1.1 |
Dulwich Hill | 89.0 | 40 | 60 | 690 | 1.1 |
Hurlstone Park | 84.2 | 40 | 60 | 330 | 0 |
Canterbury | 149.8 | 40 | 60 | 4250 | 5.4 |
Campsie | 90.4 | 40 | 45 | 420 | 0 |
Belmore | 79.6 | 40 | 40 | 580 | 1.1 |
Lakemba | 77.3 | 40 | 50 | 470 | 0 |
Wiley Park | 50.4 | 40 | 50 | 80 | 0 |
Punchbowl | 58.5 | 40 | 60 | 110 | 0 |
Bankstown | 55.4 | 40 | 50 | 100 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larpruenrudee, P.; Surawski, N.C.; Islam, M.S. The Effect of Metro Construction on the Air Quality in the Railway Transport System of Sydney, Australia. Atmosphere 2022, 13, 759. https://doi.org/10.3390/atmos13050759
Larpruenrudee P, Surawski NC, Islam MS. The Effect of Metro Construction on the Air Quality in the Railway Transport System of Sydney, Australia. Atmosphere. 2022; 13(5):759. https://doi.org/10.3390/atmos13050759
Chicago/Turabian StyleLarpruenrudee, Puchanee, Nic C. Surawski, and Mohammad S. Islam. 2022. "The Effect of Metro Construction on the Air Quality in the Railway Transport System of Sydney, Australia" Atmosphere 13, no. 5: 759. https://doi.org/10.3390/atmos13050759
APA StyleLarpruenrudee, P., Surawski, N. C., & Islam, M. S. (2022). The Effect of Metro Construction on the Air Quality in the Railway Transport System of Sydney, Australia. Atmosphere, 13(5), 759. https://doi.org/10.3390/atmos13050759