Unusual Enhancement of Midlatitude Sporadic-E Layers in Response to a Minor Geomagnetic Storm
Abstract
:1. Introduction
2. Data Sets
3. TIEGCM
4. Results
5. Discussion
6. Summary
- After IMF Bz turning southward, foEs observed at five stations exhibit increases from higher latitudes to lower latitudes in sequence.
- Semidiurnal oscillation in h’Es shows amplitude amplification during the geomagnetic storm period.
- TIEGCM simulation results show the disturbance of wind field in MLT region during the storm period and the wind disturbance could result from the pressure gradient force associated with vertical wind-induced temperature changes as proposed by Li et al. [22], which leads to the disturbance of Es layers in consequence.
- High foEs during the magnetic storm recovery phase also observed at Mohe, Wuhan, and Jeju.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Axford, W.I. Note on a mechanism for the vertical transport of ionization in the ionosphere. Can. J. Phys. 1960, 39, 1393–1396. [Google Scholar] [CrossRef]
- Whitehead, J.D. Recent work on midlatitude and equatorial sporadic E. J. Atmos. Terr. Phys. 1989, 51, 401–424. [Google Scholar] [CrossRef]
- Zhou, C.; Tang, Q.; Song, X.; Qing, H.; Liu, Y.; Wang, X.; Gu, X.; Ni, B.; Zhao, Z. A statistical analysis of sporadic E layer occurrence in the midlatitude China region. J. Geophys. Res. Space Phys. 2013, 122, 3617–3631. [Google Scholar] [CrossRef]
- Haldoupis, C.; Pancheva, D.; Mitchell, N.J. A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers. J. Geophys. Res. 2004, 109, A02302. [Google Scholar]
- Yokoyama, T.; Horinouchi, T.; Yamamoto, M.; Fukao, S. Modulation of the midlatitude ionospheric E region by atmospheric gravity waves through polarization electric field. J. Geophys. Res. 2004, 109, A12307. [Google Scholar] [CrossRef]
- Tsunoda, R.T. On the coupling of layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res. 2006, 111, A11304. [Google Scholar] [CrossRef] [Green Version]
- Batista, I.S.; Abdu, M.A. Magnetic storm associated delayed sporadic E enhancements in the Brazilian Geomagnetic Anomaly. J. Geophys. Res. 1976, 82, 4777–4783. [Google Scholar] [CrossRef] [Green Version]
- Maksyutin, S.V.; Sherstyukov, O.N. Dependence of E-sporadic layer response on solar and geomagnetic activity variations from its ion composition. Adv. Space Res. 2005, 35, 1496–1499. [Google Scholar] [CrossRef]
- Pietrella, M.; Bianchi, C. Occurrence of sporadic-E layer over the ionospheric station of Rome: Analysis of data for thirty-two years. Adv. Space Res. 2009, 44, 72–81. [Google Scholar] [CrossRef]
- Abdu, M.A.; Souza, J.R.; Batista, I.S.; Fejer, B.G.; Sobral, J.H.A. Sporadic E layer development and disruption at low latitudes by prompt penetration electric fields during magnetic storms. J. Geophys. Res. Space Phys. 2013, 118, 2639–2647. [Google Scholar] [CrossRef] [Green Version]
- Wang, C. New Chains of Space Weather Monitoring Stations in China. Space Weather 2010, 8, 35–40. [Google Scholar] [CrossRef]
- Roble, R.G.; Ridley, E.C.; Richmond, A.D.; Dickinson, R.E. A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 1988, 15, 1325–1328. [Google Scholar] [CrossRef]
- Richmond, A.D.; Ridley, E.C.; Roble, R.G. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 1992, 19, 601–604. [Google Scholar] [CrossRef]
- Hagan, M.E.; Burrage, M.D.; Forbes, J.M.; Hackney, J.; Randel, W.J.; Zhang, X. GSWM-98: Results from migrating solar tides. J. Geophys. Res. 1999, 104, 6813–6828. [Google Scholar] [CrossRef]
- Christakis, N.; Haldoupis, C.; Zhou, Q.; Meek, C. Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo. Ann. Geophys. 2009, 27, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.M.; Wickwar, V.B.; Roble, R.G.; Luhmann, J.G. Lower-thermospheric winds at high latitude: Chatanika radar observations. Ann. Geophys. 1987, 5A, 383–404. [Google Scholar]
- Johnson, R.M.; Virdi, T.S. High-latitude lower thermospheric neutral winds at EISCAT and Sondrestrom during LTCS 1. J. Geophys. Res. 1991, 96, 1099–1116. [Google Scholar] [CrossRef]
- Ma, G.; Igarashi, K.; Hocke, K. Mid-latitude winds in the mesosphere: A superposed epoch analysis over the geomagnetic storm times. J. Atmos. Sol. Terr. Phys. 2001, 63, 1993–2001. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Salah, J.E.; Foster, J.C.; Huang, C. Variations in lower thermosphere dynamics at midlatitudes during intense geomagnetic storms. J. Geophys. Res. 2004, 109, A04304. [Google Scholar] [CrossRef] [Green Version]
- Salah, J.E.; Goncharenko, L.P. Search for geomagnetic storm effects on lower thermospheric winds at midlatitudes. J. Atmos. Sol. Terr. Phys. 2001, 63, 951–963. [Google Scholar] [CrossRef]
- Robinson, R.M.; Zanetti, L.J. Auroral energy flux and Joule heating derived from global maps of fieldaligned currents. Geophys. Res. Lett. 2021, 48, e2020GL091527. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, W.; Lu, J.; Yue, J.; Burns, A.G.; Yuan, T.; Chen, X.T.; Dong, W.J. A modeling study of the responses of mesosphere and lower thermosphere winds to geomagnetic storms at middle latitudes. J. Geophys. Res. Space Phys. 2019, 124, 3666–3680. [Google Scholar] [CrossRef]
- Sun, M.; Li, Z.; Li, J.; Lu, J.; Gu, C.; Zhu, M.; Tian, Y. Responses of Mesosphere and Lower Thermosphere Temperature to the Geomagnetic Storm on 7–8 September 2017. Universe 2022, 8, 96. [Google Scholar] [CrossRef]
- Resende, L.C.A.; Shi, J.K.; Denardini, C.M.; Batista, I.S.; Nogueira, P.A.B.; Arras, C.; Andrioli, V.F.; Moro, J.; Da Silva, L.A.; Carrasco, A.J.; et al. The inflfluence of disturbance dynamo electric fifield in the formation of strong sporadic E layers over Boa Vista, a low-latitude station in the American sector. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027519. [Google Scholar] [CrossRef]
- Resende, L.C.A.; Shi, J.; Denardini, C.M.; Batista, I.S.; Picanço, G.A.S.; Moro, J.; Chagas, R.A.J.; Barros, D.; Chen, C.C.; Nogueira, P.A.B.; et al. The impact of the disturbed electric field in the sporadic E (Es) layer development over Brazilian region. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028598. [Google Scholar] [CrossRef]
- Moro, J.; Resende, L.C.A.; Denardini, C.M.; Xu, J.; Batista, I.S.; Andrioli, V.F.; Schuch, N.J. Equatorial E region electric fields and sporadic E layer responses to the recovery phase of the November 2004 geomagnetic storm. J. Geophys. Res. Space Phys. 2017, 122, 12517–12533. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chen, G.; Zhang, S.; Gong, W.; Chen, F.; He, Z.; Huang, K.; Wang, Z.; Li, Y. Statistical study of the midlatitude mesospheric vertical winds observed by the Wuhan and Beijing MST radars in China. J. Geophys. Res. Atmos. 2020, 125, e2020JD032776. [Google Scholar] [CrossRef]
- Fesen, C.G.; Richmond, A.D.; Roble, R.G. Auroral effects on midlatitude semidiurnal tides. Geophys. Res. Lett. 1991, 18, 412–415. [Google Scholar] [CrossRef]
- Fesen, C.G.; Richmond, A.D.; Roble, R.G. Theoretical effects of geomagnetic activity on thermospheric tides. J. Geophys. Res. 1993, 98, 15599–15612. [Google Scholar] [CrossRef]
- Fesen, C.G. Geomagnetic activity effects on thermospherictides: A compendium of theoretical predictions. J. Atmos. Sol. Terr. Phys. 1997, 59, 785–803. [Google Scholar] [CrossRef]
- Wand, R.H. Geomagnetic activity effects on semidiurnal winds in the lower thermosphere. J. Geophys. Res. 1983, 88, 9243–9248. [Google Scholar] [CrossRef]
- Salah, J.E.; Deng, W.; Clark, R. Observed response of the Earth’s lower thermosphere to a major geomagnetic storm. Geophys. Res. Lett. 1996, 23, 575–578. [Google Scholar] [CrossRef]
- Kunitake, M.; Schlegel, K. Neutral winds in the lower thermosphere at high latitudes from five years of EISCAT data. Ann. Geophys. 1991, 9, 143–155. [Google Scholar]
- Pancheva, D.; Singer, W.; Mukhtarov, P. Regional response of the mesosphere–lower thermosphere dynamics over Scandinavia to solar proton events and geomagnetic storms in late October 2003. J. Atmos. Sol. Terr. Phys. 2007, 69, 1075–1094. [Google Scholar] [CrossRef]
- Abdu, M.A.; De Souza, J.R.; Batista, I.S.; Santos, A.M.; Sobral, J.H.A.; Rastogi, R.G.; Chandra, H. The role of electric fields in sporadic E layer formation over low latitudes under quiet and magnetic storm conditions. J. Atmos. Sol. Terr. Phys. 2014, 115–116, 95–105. [Google Scholar] [CrossRef]
- Moro, J.; Xu, J.; Denardini, C.M.; Resende, L.C.A.; Da Silva, L.A.; Chen, S.S.; Carrasco, A.J.; Liu, Z.; Wang, C.; Schuch, N.J. Different sporadic-E (Es) layer types development during the August 2018 geomagnetic storm: Evidence of auroral type (Esa) over the SAMA region. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029701. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Sun, H.; Du, Z.; Zhao, J.; Liu, Y.; Zhao, Z.; Feng, X. Unusual Enhancement of Midlatitude Sporadic-E Layers in Response to a Minor Geomagnetic Storm. Atmosphere 2022, 13, 816. https://doi.org/10.3390/atmos13050816
Tang Q, Sun H, Du Z, Zhao J, Liu Y, Zhao Z, Feng X. Unusual Enhancement of Midlatitude Sporadic-E Layers in Response to a Minor Geomagnetic Storm. Atmosphere. 2022; 13(5):816. https://doi.org/10.3390/atmos13050816
Chicago/Turabian StyleTang, Qiong, Haiyang Sun, Zhitao Du, Jiaqi Zhao, Yi Liu, Zhengyu Zhao, and Xueshang Feng. 2022. "Unusual Enhancement of Midlatitude Sporadic-E Layers in Response to a Minor Geomagnetic Storm" Atmosphere 13, no. 5: 816. https://doi.org/10.3390/atmos13050816
APA StyleTang, Q., Sun, H., Du, Z., Zhao, J., Liu, Y., Zhao, Z., & Feng, X. (2022). Unusual Enhancement of Midlatitude Sporadic-E Layers in Response to a Minor Geomagnetic Storm. Atmosphere, 13(5), 816. https://doi.org/10.3390/atmos13050816